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Preface

Scilab has progressed significantly since I wrote the previous version of this manual (Scilab, then,

was in Version 2.7). The most important improvement, in my mind, is the new graphic system;

then it just became available as an alternative, now it is the only one supported. It appears to

provide all the features that I missed in the original version. Nevertheless, a description of Scilab’s

graphic capabilities is not included here; I continue to believe that they deserve a manual of their

own.

Another improvement is the built-in editor. It works nicely, and it eliminates an annoyance: one can

load a specific function (or all functions) in the editor into Scilab and it is automatically compiled.

No more forgetting to compile a function after it has been changed.

Overall, Scilab functions are even closer to those of Matlab. For example, function “xgetfile” is

now obsolete; its replacement, function “uigetfile” has the same name as the corresponding Matlab

function. This also hints at a change in attitude. Initially, Scilab appeared to be geared towards

Unix/X Windows with MS Windows just an afterthought. Now there are quite a few functions just

for MS Windows. In addition, according to the Scilab team, Scilab runs “out of the box” on Mac

OS X 10.5.5 (Leopard) and 10.6.x (Snow Leopard).

In this updated version of the manual I have removed outdated restrictions or caveats and included

features that have been added to Scilab since Version 2.7. I am grateful to Sylvestre Ledru and

Vincent Couvert, both members of the Scilab Team, for reading the manuscript and providing

feedback that not only improved this manual but also my understanding of the new capabilities of

Scilab.

May 2010

From the Introduction to Version 2.7 of this manual

This year the Scilab Group officially released Scilab-2.7. Its most important new feature—in my

mind—is the new object-based graphics system. From what I have gleaned from the help files and

the examples I consider it quite impressive. It reminds me of Matlab’s handle graphics with some

nifty features. But as yet there is no manual for it, and this could be a major impediment for its

adoption. Furthermore, a number of features that I deem important are still missing. This manual,

like the previous edition, does not discuss Scilab graphics either.

However, many other things have changed as well; these changes made some of the statements in

the previous version obsolete. New functions, that I found useful, were added. They were already
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available in the CVS version of Scilab-2.7 and lead to continuous updates of the manual. As a

result this new version of the manual is slightly longer and has a more extensive index. I have also

fixed a number of typos that I found, and new ones are likely to have crept in.

September 2003

From the Introduction to Version 2.6 of this manual

Since 1993 I have been a heavy user of Matlab; this manual is the result of my effort to learn

Scilab. Consequently, it is written from the point of view of someone who is familiar with Matlab

and wants to use this knowledge to ease his entry into Scilab. Hence, this manual explains Scilab’s

functionality by drawing on the experience and expectations of a Matlab user. Thus, features that

are the same in both systems are “glossed over” to some degree and more space is devoted to those

features where the two differ; examples are operator overloading and lists of all types. Overall, this

manual is not tailored to the needs of someone who is not already somewhat familiar with either

Matlab or Scilab. Nevertheless, quite a number of chapters, which do not refer to Matlab analogs,

would be useful for Scilab users without Matlab background.

To aid in the conversion of Matlab macros Table A.1 lists Matlab functions and their functional

equivalents. Furthermore, the index includes an even more extensive lists of those Matlab functions

and Scilab functions that are mentioned in the Manual. So one can look up quite a number of Matlab

functions to find out what means there are in Scilab to achieve the same end. A user trying to

figure out how to implement, say, a Matlab structure will be directed to Scilab lists. Someone who

wants to understand the difference in the definition of workspace—which has the potential to trip

up the unsuspecting—will need to look in the index which points to those pages that describe this

difference.

Incidentally, one branch of the Scilab directory tree is a directory with Scilab functions that “emu-

late” Matlab functions. As explained more fully in Section 1.4 I do not advocate their use. Using

such emulations deprives the user of the flexibility and power Scilab offers. In most cases it is a

concept one needs to emulate not a function.

This manual is organized in a number of chapters, sections, and subsections. Obviously, this

is arbitrary and reflects my own choices. Several sections have tables of functions or operators

pertinent to the subject matter discussed. Due to some overlap one and the same function may

show up in several different tables.

It was tempting to use unadulterated screen dumps as examples. However, Scilab wastes screen real

estate the same way format loose does in Matlab — except, in Scilab, there is no equivalent to

format compact, which suppresses the extra line-feeds. Hence, to conserve space, most examples

are reproduced without some of these extra empty lines.

In compiling this manual I used Scilab 2.6 and the standard Scilab documentation:

Introduction To Scilab - Users Guide by the Scilab Group

Une Introduction à Scilab by Bruno Pinçon



vii

Scilab Bag of Tricks by Lydia E. van Dijk and Christoph L. Spiel

All three can be downloaded from the INRIA web site (http://www.scilab.org), which also has

manuals in languages other than English and French. I also drew freely on newsgroup discussions

(comp.soft-sys.math.scilab), in particular contributions by Bruno Pinçon, Alexander Vigodner,

Enrico Segre, Lydia van Dijk, and Helmut Jarausch.

From newsgroup discussions I got the impression that most users run Scilab on Unix (particularly

Linux) machines. I, on the other hand, use Matlab and Scilab on Windows PCs. I do have

a Scilab installation on a Sun workstation running Solaris, but use it only occasionally for quick

calculations in a Unix environment. While I do not expect significant differences in the use of Scilab

on different platforms, my pattern of use does color this manual. However, I am not completely

Windows-centric: affected by many years of Unix use, I tend to favor the Unix term “directory”

over the PC term “folder”.

Every now and then this manual contains judgements regarding the relative merits of features in

Matlab and Scilab. They represent my personal biases, experiences, and — presumably — a lack

of knowledge as well.

Obviously, I cannot claim to cover every Matlab function or Scilab function. The selection is largely

based on the subset of functions and syntactical features that I have been using over the years.

But among all the omissions one is glaring. I do not discuss plotting. Were I unaware of Matlab, I

would consider Scilab’s plotting facility superb. But now I am spoiled. However, I understand that

a new object-oriented plot library is under development, and I am looking forward to its release.

Furthermore, plotting is such an important and extensive subject that it deserves a manual of its

own (as is the case for Matlab).

Finally, the typographic conventions used are:

Red typewriter font is used for Scilab commands, functions, variables, ...

Blue slanted typewriter font is used for Matlab commands, functions,

variables, ...

Black typewriter font is used for general operating system-related terms and

filenames outside of code fragments.

Keyboard keys, such as the Enter key, are written with the name enclosed in angle brackets:

<ENTER>. In the section on operator overloading angle brackets are also used to enclose operand

types and operator codes.

Acknowledgment

Special thanks go to Glenn Fulford who was kind enough to review this manuscript and offer

suggestions and critique and, in particular, to Serge Steer who not only provided a list of corrections

but also an extensive compilation of the differences between Scilab and Matlab; I used it for my

own education and included what I learned.

May 2002
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Chapter 1

Preliminaries

1.1 Customizing Scilab for Windows

1.1.1 Start-up File

Commands that should be executed at the beginning of a Scilab session can be put into the start-up

file .scilab (the dot “.” as the first character of the file name betrays the Unix heritage of Scilab).

An alternative name for the start-up file is scilab.ini which might sound more familiar to those

running Scilab on a Windows PC.

On a PC running Windows this start-up file must be in the Scilab home directory (type SCIHOME

in the Scilab Console window to find the Scilab home directory).

Scilab’s own start-up file, scilab.start, is in the etc subdirectory of the Scilab directory (type SCI

or getenv(’SCI’) in the Scilab Console window to find this directory). Function scilab.start

actually calls .scilab first and then tries to run scilab.ini.

1.1.2 Fonts

Screen fonts can be set in two different ways: Either click on the Preference menu button and

then on Font... on the drop-down menu. Alternatively, click the font icon, A, on the icon bar.

Both actions produce a window that allows selection of font and font size.

1.1.3 Number Formats

The way numbers are printed to the screen (e.g. number of digits) can be set with the command

format. It has one or two arguments. The first argument, if given, is a string and describes the

variable type; the second argument is the total number of positions used for digits, decimal point,

sign, etc.

-->x=rand(1,3)

x =

0.2113249 0.7560439 0.0002211 1

-->format(20);

--> x

1
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x =

0.21132486546412110 0.7560438541695476 0.00022113462910056

-->format(’e’,10);

--> x

x =

2.113E-01 7.560E-01 2.211E-04

-->format(’v’,10);

--> x

x =

0.2113249 0.7560439 0.0002211 1a

Comparison of 1 and 1a shows that the default is format(’v’,10).

1.1.4 Paging

By default, display of a long array or vector is halted after a number of lines have been printed to

the screen, and the message [More (y or n ) ?] is displayed. The number of lines displayed

can be controlled via the lines command. Paging (and that message) can be suppressed by means

of the command lines(0). If this appears desirable, this command can be put in the start-up file

.scilab to be run at start-up (see Section 7.2).

1.2 Interruption/Termination of Scripts and Scilab Session

Scilab has a feature that is sorely missed in Matlab: a reliable facility to interrupt or terminate a

running program. The command abort allows one to terminate execution of a function or script,

e. g. in debugging mode after a pause has been executed and continuation of the execution is not

desired. In Matlab the usual way to achieve this goal is to clear all variables and thus to force a fatal

error with the return command — and even this does not work every time. The abort command

can also be invoked from the Control menu and does what it says: it aborts any running program.

A less drastic intervention is Interrupt, also available from the Control menu. It interrupts a

running program to allow keyboard entry (note that a program interruption in Scilab creates a new

workspace; what this means is explained on page 12). Execution of the program can be resumed

by typing resume or return. The same objective can be achieved by means of the Resume menu

item in the Control menu or its keyboard shortcut <Alt c> followed by <Alt e> (press down the

<Alt> key and hit <c> and then <e>).

The commands quit and exit can be used to terminate a Scilab session. Both commands exist in

Matlab as well, and exit behaves like its Matlab counterpart. The quit command is somewhat

different. If called from a higher workspace level it reduces the level by 1 (see the discussion of

pause on page 12). If called from level 0 it terminates Scilab. In this case, quit also executes a

termination script, scilab.quit, located in the etc subdirectory of the Scilab root directory (type



1.3. HELP 3

SCI or getenv(’SCI’) in the Scilab Console to find this directory). This script can be modified

by the user and is comparable to finish.m in Matlab. Of course, one can also terminate Scilab

by clicking on Exit in the File menu or the close box in the right upper corner of the Scilab

window.

1.3 Help

The command-line help facility is similar to Matlab’s. Typing help sin, for example, brings up

a separate help window with information about sin. Typing help symbols brings up a table

of symbols and the corresponding alphabetic equivalent to be used in the help command. For

example, to find out what .* does type help star. Unfortunately, one still has to type in a

misspelled word, “tilda”, for “tilde”; help tilde gets the help file for gtild).

The command apropos, somewhat equivalent to Matlab’s lookfor, performs a string search and

lists the result in a separate window. Clicking a command in this list brings up the help window

for that command. A search argument consisting of more than one word must be enclosed in single

or double quotes (e.g. apropos "matrix pencil")

The Help Menu on the menu bar is pretty self-explanatory. It provides a nice overview of the

commands available in more than 50 categories and is a very convenient way to get started with

Scilab.

1.4 Emulated Matlab functions

The Scilab distribution comes with a directory,

SCIDIR\modules\compatibility functions\macros,
where SCIDIR denotes the Scilab root directory (in Windows something like C:\Program Files\Scilab).
In this directory there are more than 100 function that emulate Matlab functions; they appear to

be mainly intended for automatic translations of Matlab functions to Scilab. For several reasons I

do not advocate their use since this kind of “translation” of a Matlab object to Scilab may prevent

a user from fully exploiting powerful features Scilab offers. An example are cell arrays. If all cell

entries are strings then a string matrix is the appropriate “translation” to Scilab. Converting them

into Scilab cell arrays instead deprives one of the benefits Scilab’s string matrices offer (such as the

overloaded + operator and the functionality of length). In other situations an ordinary list or a

list of lists may be more appropriate.
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Syntax

2.1 Arithmetic Statements

Scilab syntax is generally quite like Matlab syntax. This means that someone familiar with Matlab

knows how to write basic Scilab commands such as

// These are simple examples

-->a = 3; b = 7.2;

-->c = a + b̂2 - sin(3.1415926/2)

c =

53.84

As shown in these examples the Scilab prompt is -->, and any statements following it represent

user input.

Comments are indicated by two slashes (//): everything to the right of the slashes is ignored by

the interpreter/compiler. There are no means to define a block of comments similar to Matlab’s

“%{” “%}” syntax. However, the built-in editor editor has a “Comment selection” and “Uncomment

selection” option in the Edit drop-down menu.

Like in Matlab, several statements can be on one line as long as they are separated by commas or

semicolons. Semicolons suppress the display of results, commas do not.

Names of Scilab variables and functions must begin with a letter or one of the following special

characters %, #, !, $, ?, and the underscore . Subsequent characters may be alphanumeric or

the special characters #, !, $, ?, and . Thus % is only allowed as the first character of a variable

name. Variables starting with % generally represent built-in constants or functions that overload

operators. Variable names may be of arbitrary length, but all except the first 24 characters are

disregarded (Matlab, since version 6.5, uses the first 63 characters).

-->a12345678901234567890123456789012345678901234567890 = 34

a12345678901234567890123 =

34.

Variable names are case-sensitive (i. e. Scilab distinguishes between upper-case and lower-case

letters). A semicolon (;) terminating a statement indicates that the result should not be displayed

whereas a comma or <ENTER> prompts a display of the result.

4
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To create expressions, Scilab uses the same basic arithmetic operators Matlab does, but with two

options for exponentiation.

+ Addition

− Subtraction

∗ Matrix multiplication

.∗ Array multiplication

. ∗ . Kronecker multiplication

/ Division

\ Left matrix division

./ Array division

.\ Left array division

./. Kronecker division

.\. Kronecker left division̂ or ** Matrix exponentiation

.̂ Array exponentiation
′ Matrix complex transposition

.′ Array transposition

Table 2.1: List of arithmetic operators

Statements can continue over several lines. Similar to Matlab’s syntax, continuation of a statement

is indicated by two or more dots, .. (Matlab requires at least three dots).

Numbers can be used with and without decimal point. Thus the numbers 1, 1., and 1.0 are equiv-

alent. However, in both Scilab and Matlab, the decimal points does double duty. In conjunction

with the operators *, /, and ̂ it indicates that operations on vectors and matrices are to per-

formed on an element-by-element basis. This leads to ambiguities that can cause problems for the

unsuspecting.

-->x = 1/[1 2 3] 2a

x =

0.0714286

0.1428571

0.2142857

-->x = 1./[1 2 3] 2b

x =

0.0714286

0.1428571

0.2142857

-->x = 1 ./[1 2 3] 2c

x =

1. 0.5 0.3333333
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Statements 2b and 2c look very similar and yet they produce quite different results. The reason

for the difference is the space between the zero and the dot in 2c where the dot is interpreted as

part of the operator ./ whereas in 2b it is interpreted as the decimal point of the number 1. In

Matlab, on the other hand, statements 2b and 2c produce the same result (the one produced in

Scilab by 2c ), and 2a causes an error message. In Scilab, however, a is a solution of a’*[1 2

3]’ = 1. More generally, if

xTAT = bT (2.1)

where the superscripted T denotes transposition, then x = b’/A’ computes the unknown xT .

Since Eq. 2.1 is equivalent to

Ax = b (2.2)

x can also be computed from x = A\b. Hence, (b’/A’)’ is equivalent to A\b. The latter is also

Matlab syntax. Thus

-->x = [1 2 3]’\ 1

x =

0.0714286 0.1428571 0.2142857

In addition to single-variable assignments, Scilab has tuple assignments in which multiple variables

are assigned values in a single statement. An example is

--> [u,v,w] = (1,2,3)

w =

3.

v =

2.

u =

1.

Note that the commas on the right-hand and the left-hand side are required; they cannot be

replaced by blanks). This construct bears some similarity with Matlab’s deal function, but it is

less powerful. For example, the number of Scilab objects on the right-hand side must equal that

on the left hand side. Even if one wanted to assign the same value to all three variables one would

still have to write it out three times; thus [u,v,w] = (1) is not allowed.

A feature peculiar to Scilab is the order (from right to left) in which variables in a left-hand

bracketed expression are displayed; as shown in the example above the rightmost variable, w, is

displayed first, followed by u and, finally, v.

A handy use of the tuple assignment is swapping of values. With variables u and v defined above

-->[u,v] = (v,u)

v =

1.

u =

2.
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Scilab Matlab Description

%i i, j Imaginary unit (
√
−1)

%e e Euler’s constant (e = 2.7182818 · · · )
%pi pi Ratio of circumference to diameter of a circle; (π = 3.14159 · · · )
%eps eps Machine ϵ (≈ 2.2 · 10−16); smallest number such that 1 + ϵ > 1

%inf inf Infinity (∞)

%nan NaN Not a number

%s Polynomial s=poly(0,’s’)

%z Polynomial z=poly(0,’z’)

%t true Boolean variable: logical true

%f false Boolean variable: logical false

%io Two-element vector with file identifiers for standard I/O

Table 2.2: Built-in constants

2.2 Built-in Constants

Table 2.2 lists Scilab’s special, built-in constants together with their Matlab equivalents (where

they exist). Unlike constants in Matlab they are protected and cannot be overwritten. This has

benefits; in Matlab a variable such as i can be overwritten inadvertently if it is redefined, for

example, by its use as an index.

In many respects, keyboard (standard input) and Scilab window (standard output) are treated like

files, and %io(1) (usually 5) is the file identifier for the keyboard and %io(2) (usually 6) is the

file identifier for the Scilab window.

2.3 Predefined Global and Environmental Variables

Scilab Matlab Description

HOME User’s home directory (environmental variable)

home User’s home directory (global variable)

OS OS Operating system (environmental variable)

PWD pwd Working directory (global variable)

SCI matlabroot Scilab root directory (global/environmental variable)

SCIHOME prefdir Directory containing preferences (global/environmental variable)

TMPDIR tempdir Name of directory for temporary files (global variable)

Table 2.3: Global and environmental variables

The previously available environmental variable LANGUAGE is now obsolete; its replacement are

functions getlanguage and setlanguage, respectively. These two functions can be used to

identify (or set) the language used for menu buttons, Scilab help, etc. While setlanguage can

take any variable, the only presently supported values are ’en US’ and ’fr FR’ for English and

French, respectively. Obviously, this function can be used to create language-specific user interfaces,

help files, etc.
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The global variable MSDOS has been deprecated and will be removed in Scilab Version 5.3. Its

functionality is provided by function getos which outputs a string with the name of the operating

system.

-->getos()

ans =

Windows

Global variables can be accessed like actual variables. Thus

-->PWD

PWD =

C:\Users\user\Desktop

Environmental variables, on the other hand, need to be accessed via getenv and set via setenv.

For example,

-->getenv(’SCI’)

ans =

D:/Program Files/Scilab-5.1.1

Note the quotes; the argument of getenv (and of setenv) must be a string. Also note that slashes

(/) are used — rather than backslashes (\) to separate directory and file name in spite of the fact

that the function was run on a PC.

2.4 Comparison Operators

Scilab uses the same comparison operators Matlab does, but with two choices for the “not equal”

operator.

< less than

> greater than

<= less than or equal to

>= greater than or equal to

== equal to

<> or ∼= not equal to

Table 2.4: Comparison operators

The result of a valid expression involving any of these operators — such as a > 0 — is a boolean

variable (%t or %f) or a matrix of boolean variables. These boolean variables are discussed later in

Section 3.4.

In Scilab the first four operators are only defined for real numbers; in Matlab complex numbers are

allowed but only the real part is used for the comparison.

The last two operators compare objects. Examples are

-->[1 2 3] == 1 3a

ans =
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T F F

-->[1 2 3] == [1 2] 3b

ans =

F

-->[1 2] == [’1’,’2’] 3c

ans =

F

In Matlab 3a would produce the same result, 3b abort with an error message, and 3c create

the boolean vector [0 0].

2.5 Flow Control

Scilab’s flow control syntax mirrors that used by Matlab.

Scilab Matlab

break break Force exit from a loop

case case Start clause within a select block

catch catch Start of the error-catching code in a try / catchidstry block

elseif elseif Start a conditional alternative in an if block

else else Start the alternative in an if block

else otherwise Start the alternative in an select/switch block

end end Terminate for, if, select, while, and try/catch blocks

errcatch try/catch Traps error with several possible actions

for for Start a loop with a generally known number of repetitions

if if Start a conditionally executed block of statements

select switch Start a multi-branch block of statements

try try Start of a try / catch block

while while Start repeated conditional execution of a block

Table 2.5: Flow control

However, there is more than the semantic difference between keywords switch and otherwise

in Matlab and select and else, respectively, in Scilab. The following comparison illustrates this

difference. With function foobar defined as:

function foobar(a)

// Scilab

select a

case [’foo’,’pipo’]

disp(’ok’)

case ’foo’

disp(’not ok’)
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else

disp(’invalid case’)

end

endfunction

one gets

-->foobar([’foo’,’pipo’])

ok

-->foobar(’foo’)

not ok

-->foobar(’pipo’)

invalid case

The variable a following the keyword select can be any Scilab data object.

The analogous Matlab function

function foobar(a)

% Matlab

switch a

case {’foo’,’pipo’}
disp(’ok’)

case ’foo’

disp(’not ok’)

otherwise

disp(’invalid case’)

end

on the other hand, leads to

>>foobar({’foo’,’pipo’})
??? SWITCH expression must result in a scalar or string constant.

>>foobar(’foo’)

ok

>>foobar(’pipo’)

ok

The variable a following the keyword switch can only be a scalar or string constant. On the other

hand, a case can represent more than one value of the variable. The strings ’foo’ and ’pipo’

satisfy the first case and so the second case is never reached.

In an if clause Scilab has the optional keywords then and do as in

-->if a >= 0 then a=sqrt(a); end

-->if a >= 0 do a=sqrt(a); end
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but then and do can be replaced by a comma, a semicolon, or pressing the <ENTER> key. Hence,

both statements are equivalent to

-->if a >= 0, a=sqrt(a); end

Likewise, the for loop can be written with the optional keyword do as in

for i = 1:n do a(i)=asin(2*%pi*i); end

and again do can be replaced by a comma, a semicolon, or pressing the <ENTER> key. The same

is true for the while clause.

Matlab uses the try/catch syntax to trap errors. Its functionality is now also available in Scilab.

For the sake of clarity it is shown here the way it would look in a file.:

try 4

a=1/0;

b=0;

catch

disp(’New definition of ""a"":’) 5

a=1.0e10;

end

disp(a)

disp(b)

The result looks like this:

New definition of "a":

1.000D+10

disp(b)

!--error 4

Undefined variable: b

at line 8 of exec file called by :

exec("C:/Users/user/AppData/Local/Temp/SCI TMP 4264 /Untitled1.sce");

while executing a callback

Statement 4 starts trapping errors. Any error found between the try and the catch statements

is caught and control is transferred to statement 5 , the one following the catch statement.

Probably of more historical interest is the approach to error trapping by means the combination of

errcatch and iserror. This is illustrated in the following code fragment.

errcatch(-1,’continue’,’nomessage’); // Start error trapping 6

a=1/0 7a

if iserror() // Check for error

disp(’A division by zero has occurred’)

errclear(-1)

end

a=1/0 7b
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b=1

errclear(-1)

errcatch(-1) // Error trapping toggled off

a=1/0 7c

Statement 6 starts error trapping with the system error message suppressed. Statements 7a ,

7b , and 7c represent errors. Execution of these statements produces the following result:

-->errcatch(-1,’continue’,’nomessage’); // Start error trapping 6

-->a=1/0 7a

-->if iserror() // Check for error

--> disp(’A division by zero has occurred’)

A division by zero has occurred

--> errclear(-1)

-->end

-->a=1/0 7b

-->b=1

b =

1.

-->errclear(-1)

-->errcatch(-1) // Error trapping toggled off

-->a=1/0 7c

!--error 27

division by zero...

Clearly, the three identical “division by zero” errors are treated differently. The first one, 7a , is

trapped and the user-supplied message is printed; the second, 7b , is trapped and ignored; the

third division by zero, 7c , occurs after error trapping has been turned off and creates the standard

system error message.

Other commands can be considered as at least related to flow control. They include pause which

interrupts execution similar to Scilab’s keyboard command, but with some important differences

explained in Section 2.6 beginning on page 12.

Another function, halt, can be used to temporarily interrupt a program or script. Execution of a

function or script will stop upon encountering halt() and wait for a key press before continuing.
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2.6 General Functions

Table 2.6 lists Scilab’s low-level functions and commands (commands are actually functions used

with command-style syntax; see Section 4.1). Some, like date, are essentially the same as in

Matlab, others have slightly different names (exists vs. exist), some may have the same name

but may give slightly different output (in Scilab length with a numeric-matrix argument returns

the product of the number of rows and columns, in Matlab length returns the larger of the number

of rows and columns), and many are quite different.

In this list of functions the command pause deserves special attention. It is equivalent to Matlab’s

keyboard command in that it interrupts the flow of a script or function and returns control to the

keyboard. However, a Matlab function/script stays in the workspace of the function. In Scilab the

pause command creates a new workspace. The prompt changes from, say, --> to -1-> where the

number 1 indicates the workspace level. All variables of all lower workspace are available at this

new workspace as long as they are not shadowed (a variable in a lower workspace is shadowed if a

variable with the same name is defined in a higher workspace). This is an example:

-->a = 1, b = 2 // Variables in original workspace

a =

1.

b =

2.

-->pause // Creates new workspace (level 1)

-1->disp([a,b])

1. 2.

-1->c = a+b

c =

3.

-1->a = 0

a =

0.

-1->return // Return to original workspace 8a

-->a, c

a =

1.

!--error 4

undefined variable : c

The command pause creates a new workspace (the level of this workspace becomes part of the

prompt); the display function disp shows that the variables a and b are available in this new
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workspace, and the new variable c is computed correctly. However, upon returning to the original

workspace we find that a still has the value 1 (in spite of being changed in the level-1 workspace)

and that the variable c is no longer available. This is not what one would have found with Matlab’s

keyboard command.

In order to get these new values to the original workspace they have to be returned by the return

command. In Scilab the return command can have input and output arguments!

-->a = 1, b = 2

a =

1.

b =

2.

-->pause // Create new workspace (level 1)

-1->disp([a,b])

1. 2.

-1->c = a+b

c =

3.

-1->a = 0

a =

0.

-1->[aa,c] = return(a,c) // Return to original workspace 8b

-->aa,c

aa =

0.

c =

3.

The above two code fragments are identical except for the return statements 8a and 8b . State-

ment 8b returns variables a and c created in the level-1 workspace, renaming a to aa. Without

this name change, the existing variable a would have been overwritten by the value of a created in

the level-1 workspace. A more complicated use of the return function is illustrated in statement

35 on page 88. It is used there to return variables from a function. The number of variables and

their names are generally not known at the time the function is called.

The command resume is equivalent to the return command (one could have used resume instead

of return in the two examples above). Like return it can also be used to return variables to the

level-1 workspace.
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Scilab Description

$ Index of the last element of matrix or (row/column) vector

abort Interrupts current evaluation and return to prompt

apropos Keyword search for a function

clear Clear unprotected variables and functions from memory

clearglobal Clear global variables from memory

date Current date as string

disp Display input argument

getdate Get date and time in an 8-element numeric vector

global Define variables as global

halt Stop execution and wait for a key press

help On-line help

inttype(a) Output numeric code representing type of integer a

pause Interrupt execution of function or script

resume Return from a function or resume execution after a pause

return Return from a function or resume execution after a pause

tic Start a stopwatch timer

timer Outputs time elapsed since the preceding call to timer()

toc Read the stopwatch timer initiated via tic

type(a) Output numeric code representing type of variable a

typeof(a) Output string with type of variable a

whereis Display name of library containing a specific function

who Displays/outputs names of current variables

who user Displays/outputs names of current user-defined variables

whos Displays/outputs names and specifics of current variables

Table 2.6: General functions

Unlike its Matlab counterpart, the display function disp, which has already been used above,

allows more than one input parameter:

-->disp(123,’The result is:’)

The result is:

123.

It shows the same behavior noted previously: the input arguments are printed to the screen begin-

ning with the last.
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The pair tic and toc, familiar from Matlab, perform similarly to timer(). They measure the

wall-clock time required for the execution of one or more statements.

-->clear a;

-->tic; a=rand(1000,1000); toc

ans =

0.109

-->clear a;

-->timer(); a=rand(1000,1000); timer()

ans =

0.1092007

Note that function timer displays the CPU time, using more digits than the tic/toc pair. The

latter, like in Matlab, measure the elapsed time (wall-clock time).
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Variable Types

The only two variable types a casual user is likely to define and use are numeric variables and

strings; but Scilab has many more data types — in fact, it has more than Matlab. Hence, it is

important to be able to identify them. Unlike Matlab, which uses specific functions with boolean

output for each variable type (e. g. iscell, ischar, isnumeric, issparse, isstruct), Scilab

uses essentially two functions, type and typeof: the former has numeric output, the latter outputs

a character string. Table 3.1 lists variable types and the output of functions type and typeof.

The last column of this table, with heading “Op-type”, defines the abbreviation used to specify the

operand type for operator overloading (see Section 6.3).

In addition, there is a special function inttype (see Table 3.2) to identify variables of type integer

(see Table 3.3). Also, for variables of type integer, the function typeof outputs a character string

identical to the name of the function that creates it (see Table 3.3). Thus

-->i8=uint8(16) // i8 is an unsigned 8-bit integer

i8 =

16

-->typeof(i8)

ans =

uint8

The output of typeof for typed lists (tlist) and matrix-oriented typed lists (mlist) is discussed

in Section 3.7.

Function typeof affords a straightforward simulation of Matlab function isa:

-->i8=uint8(11);

-->typeof(i8) == ’uint8’

ans =

T

and

>> i8=uint8(11);

>> isa(i8,’uint8’)

ans =

1

17
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are equivalent.

Type of variable type typeof Op-type

real or complex constant matrix 1 ’constant’ s

polynomial matrix 2 ’polynomial’ p

boolean matrix 4 ’boolean’ b

sparse matrix 5 ’sparse’ sp

sparse boolean matrix 6 ’boolean sparse’ spb

Matlab sparse matrix 7 ? msp

matrix of integers stored in 1, 2, or 4 bytes 8 Depends on type of integer i

handle of a graphic entity 9 ’handle’ h

matrix of character strings 10 ’string’ c

function (un-compiled) 11 ’function’ m

function (compiled) 13 ’function’ mc

function library 14 ’library’ f

list 15 ’list’ l

typed list (tlist) 16 Depends on type of list tl

matrix-oriented typed list (mlist) 17 Depends on type of list ml, ce, st

pointer 128 ? ptr

index vector with implicit size 129 ’size implicit’ ip

intrinsic function, primitive 130 ’fptr’ fptr

Table 3.1: Variable types

Scilab Description

inttype(a) Output numeric code representing type of integer a

type(a) Output numeric code representing type of variable a

typename Associate a variable type name with a numeric avariable type

typeof(a) Output string with type of variable a

who Displays/outputs names of current variables

who user Displays/outputs names of current user-defined variables

whos Displays/outputs names and specifics of current variables

Table 3.2: Utility functions for managing/classifying of variables

3.1 Numeric Variables — Scalars and Matrices

Scilab knows matrices. This term includes scalars and vectors. Scalars and the elements of vectors

and matrices can be real or complex. The statements
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-->a = 1.2;

-->b = 1.0e3;

-->cx = a+%i*b

cx =

1.2 + 1000.i

-->cy = complex(a,b)

cy =

1.2 + 1000.i

define four 1× 1 matrices, i.e. scalars. Complex numbers, such as cx and cy above, can be defined

via an arithmetic statement or by means of function complex.

Vectors and matrices can be entered and accessed in much the same way as in Matlab.

-->mat=[ 1 2 3; 4 5 6]

mat =

1. 2. 3.

4. 5. 6.

-->mat2=[mat;mat+6]

mat2 =

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

-->mat(2,3)

ans =

6.

-->mat(2,:)

ans =

4. 5. 6.

-->mat($,$)

ans =

6.

-->mat($)

ans = 6.

There is a difference in the way the last element of a vector or matrix is accessed. Scilab uses

the $ sign as indicator of the last element whereas Matlab uses end. The $ represents, in fact, a

somewhat more powerful concept and can be used to create an implied-size vector, a new variable

of type ’size implicit’.

-->index=2:$



20 CHAPTER 3. VARIABLE TYPES

index =

2:1:$

-->type(index)

ans =

129.

-->typeof(index)

ans =

size implicit

-->mat2(2,index)

ans =

5. 6.

There is no equivalent in Matlab for this kind of addressing of matrix elements.

By default, Scilab variables are double-precision floating point numbers. There are no single-

precision floating-point numbers. However, like Matlab, Scilab knows integers Conversion functions

are shown in Table 3.3. Function iconvert, which takes two input arguments, does essentially

what the seven other conversion functions listed in this table do.

Scilab Description

double Convert integer array of any type/length to floating point array

iconvert Convert numeric array to any integer or floating point format

int8(a) Convert a to an 8-bit signed integer

int16(a) Convert a to a 16-bit signed integer

int32(a) Convert a to a 32-bit signed integer

uint8(a) Convert a to an 8-bit unsigned integer

uint16(a) Convert a to a 16-bit unsigned integer

uint32(a) Convert a to a 32-bit unsigned integer

Table 3.3: Integer conversion functions

Both, Matlab and Scilab, allow mathematical operations for such integers. However, the results

are different if the number of digits is insufficient to hold the result.

-->u = int8(100), v = int8(2)

u =

100

v =

2

-->u*v

ans =

-56
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The result is wrapped (200-256).

Matlab, on the other hand,

>> u=int8(100), v=int8(2)

u =

100

v =

2

>> u*v

ans =

127

Unsigned integers give an analogous result.

-->x = uint8(100), y = uint8(2), z= uint8(3)

x =

100

y =

2

z =

3

-->x*y

ans =

200

-->x*z

ans = 44

Again, the last result is wrapped (300-256).

The same code for Matlab produces

>> x = uint8(100), y = uint8(2), z = uint8(3)

x =

100

y =

2

z =

3

>> x*y

ans =

200

>> x*z
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ans =

255

In both cases Matlab does not wrap around but outputs the largest number that can be represented

with the given number of digits.

Operations between integers of different type are not allowed, but those between integers and

standard (double precision) floating point numbers are, and the result is a floating point number.

-->typeof(z)

ans =

uint8

-->typeof(2*z)

ans =

constant

The variable z, defined in the previous example, is an unsigned one-byte integer. Multiply it by 2

and the result is a regular floating point number for which typeof returns the value constant.

3.2 Special Matrices

Like Matlab, Scilab has a number of functions that create “standard” matrices or matrices of

random numbers. Many of them have the same or a very similar names. The arguments or the

output may be slightly different.

The empty matrix [] in Scilab behaves slightly different than the corresponding [] in Matlab; in

Scilab, for example,

-->a = []+3 9a

a =

3.

whereas in Matlab

>>a = []+3 9b

a =

[].

While 9a is the default result, Scilab’s behavior in this situation can be changed by invoking

Matlab-mode.

-->mtlb mode(%t)

-->a = []+3 9c

a =

[]
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Scilab Description

[] Empty matrix

companion Companion matrix

diag Create diagonal matrix or extract diagonal from matrix

eye Identity matrix (or its generalization)

grand Create random numbers drawn from various distributions

ones Matrix of ones

rand Matrix of random numbers with uniform or normal distribution

sparse Sparse matrix

sylm Sylvester matrix (input two polynomials, output numeric)

testmatrix Test matrices: magic square, Franck matrix, inverse of Hilbert matrix

toeplitz Toeplitz matrix

zeros Matrix of zeros

Table 3.4: Special matrices

With Matlab-mode true, Scilab 9c produces the same result Matlab 9b does.

The standard syntax with two arguments to define dimensions works for functions zeros, ones,

rand, eye the same way it does for Matlab.

-->rand mat = rand(2,3)

rand mat =

0.2113249 0.0002211 0.6653811

0.7560439 0.3303271 0.6283918

However, the syntax used in the following example

-->a=[1 2 3; 4 5 6];

-->rand mat = rand(a) 10

rand mat =

0.02113249 0.0002211 0.6653811

0.7560439 0.3303271 0.6283918

has been deprecated in Matlab; Matlab expects 10 written as rand mat = rand(size(a));

this also works in Scilab (in the sense that it does not throw an error), but produces a different

result.

-->rand mat1=rand(size(a))

randmat1 =

0.0002211 0.3303271

It creates a random matrix with the size of size(a), a 1× 2 matrix.

Function grand is a “generalized” version of rand; it allows one to create random numbers drawn

from a variety of distributions and even provides means to choose between several random-number

generators.
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3.3 Character String Variables

3.3.1 Creation and Manipulation of Character Strings

Character strings can be defined with single quotes or double quotes, but the opening quote must

match the closing quote. Thus 11a and 11b below are equivalent.

-->test = "This is a test"; 11a

-->test = ’This is a test’; 11b

Function length produces a familiar result—the number of characters in the string.

-->length(test)

ans =

14.

However, a character string in Scilab is not a vector but rather akin to a Matlab cell. Thus

-->size(test)

ans =

1. 1.

This is the same result size would give in Matlab if test were a Matlab cell. Thus it is not

surprising that strings can be elements of matrices.

-->sm = [’This is’,’a’,’matrix’;

--> ’each element’,’is a’,’string’]

sm =

!This is a matrix !

! !

!each element is a string !

-->size(sm)

ans =

2. 3.

Function size again gives the same result size would give for a Matlab cell array. In other words:

in order to get an analogous representation in Matlab one would have to use a cell array. However,

there is no analog in Matlab for the behavior of length; nevertheless, it is a straight-forward

generalization of its behavior for an individual string.

-->length(sm)

ans =

7. 1. 6.

12. 4. 6.

The output of length is a matrix with the same dimension as sm; each matrix entry is the number

of characters of the corresponding entry of sm. For many purposes this output is so useful that one

gets to miss it in Matlab.

Function emptystr() returns an empty string or string matrix very similar to the function cell

in Matlab.
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-->length(emptystr(2,5))

ans =

0. 0. 0. 0. 0.

0. 0. 0. 0. 0.

A handy function for many string manipulations is ascii which converts character strings into

their ASCII equivalent (e.g. ’A’ to 65, ’a’ to 97) and vice versa. Function ascii does in Scilab

what the pair char and double does in Matlab.

Strings can be concatenated by means of the + sign (this is an example of operator overloading)

-->s1 = ’Example’;

-->s2 = ’of ’;

-->s3 = ’concatenation’;

-->ss1 = s1+’ ’+s2+s3’ 12a

ss1 =

Example of concatenation 13a

-->length(ss1)

ans =

24.

The following is also a legal Scilab statement; it creates a string matrix.

-->ss2 = [s1,’ ’,s2,s3] 12b

ss2 =

Example of concatenation 13b

-->length(ss2)

ans =

7. 1. 3. 13.

In Scilab, statement 12a does what 12b would do in Matlab; in Scilab the variable ss2 is a

4-element string vector—note the difference in the display of ss1 13a and ss2 13b where the

exclamation marks in 13b indicate that ss2 is a string vector. In Matlab, strings in cell arrays

are in quotes.

Scilab’s built-in function strcat can be used to transform string vector ss2 into string ss1 (com-

pare 13c with 13a ).

-->ss1a = strcat(ss2)

ss1a =

Example of concatenation 13c
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Scilab Description

ascii Convert ASCII codes to equivalent string and vice versa

basename Strip directory and file extension from a file name

blanks Create string of blank characters

convstr Convert string to lower or upper case

date Current date as string

emptystr Create a matrix of empty strings

grep Find matches of strings in a vector of strings

gsort(a) Sort elements/rows/columns of a

intersect(str1,str2) Returns elements common to two vectors str1 and str2

isalphanum Test if characters of a string are alphanumeric

isascii Test if characters of a string are represented by 7-bit ASCII code

isdigit Test if characters of a string are digits between 0 and 9

isletter Test if characters of a string are letters

isnum Test if a string represents a number

length Matrix of lengths of the strings in a string matrix

msprintf Convert, format, and write data to a string

msscanf Read variables from a string under format control

part Extract substrings from a string or string vector

pathconvert Convert file path from Unix to Windows and vice versa

pol2str Convert polynomial to a string

regexp Find substring matching regular-expression string

sci2exp Convert a variable into a string representing an expression

size Size/dimensions of a Scilab object

strcat Concatenate character strings

strcmp Compare character strings

strcmpi Case-insensitive comparison of character strings

strcspn(str1,str2) Get number of characters in str1 before finding one of the

characters in str2

strindex(str1,str2) Return starting index/indices where string str2 occurs in str1

string Convert number(s) into string(s)

stripblanks Remove leading and trailing blanks from a string

strncpy(str,num) Copy the first num characters from each entry of string matrix str

strrchr(str1,str2) Copy the characters of the entries of string matrix str1 from the

last occurrence of the corresponding entry ins string matrix str2

strrev Reverse the order of the characters in the input string

strspn(str1,str2) Get characters in str1 before finding one not in the

characters in str2

strsubst(s1,s2,s3) Substitute string s3 for s2 in s1

strtod Convert string to numeric value (double)

tokens Split string into substrings based on one or more “separators”

union(a,b) Extract the unique common elements of a and b

unique(a) Return the unique elements of string vector a in ascending order

Table 3.5: Functions that manipulate strings
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As shown below, strcat can do even more. It has a second argument that allows one to concatenate

elements of a string vector but insert a string between the individual elements. One can, for example,

create a string containing the comma-separated elements of a string vector.

-->s=[’a’,’b’,’c’]

s =

a b c

-->strcat(s,’+’)

ans =

a+b+c

It does not matter if the strings are arranged in a row vector, column vector or a matrix.

-->norns = [’Urd’;’Werdandi’;’Skuld’]

norns =

!Urd !

! !

!Werdandi !

! !

!Skuld !

-->Nornen = strcat(norns,’, ’)

Nornen =

Urd, Werdandi, Skuld

The string inserted between individual elements by strcat can be as long as desired. In this

specific instance, where it consists of characters (comma and space) not present in the original

strings, function tokens can be used to “decompose” Nornen to obtain the original strings.

-->norns1 = tokens(Nornen,[’,’,’ ’])

norns1 =

!Urd !

! !

!Werdandi !

! !

!Skuld !

Function tokens, which includes the functionality of Matlab’s strtok, decomposes a string into

substrings separated by one or more “tokens”, single characters in a vector. In the example above

these characters are a comma and a space (arranged in string vector [’,’,’ ’] and not simply

as string ’, ’). Thus, in certain circumstances, tokens is the inverse of strcat.

The operator +, used above for strings, works for string matrices the same way it works for numeric

matrices. As illustrated below, a single string “added” to a string matrix is prepended (or appended)

to every matrix element.
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-->cost = [’10’ ’100’ ’1000’; ’1’ ’13’ ’-22’]

cost =

!10 100 1000 !

! !

!1 13 -22 !

-->new cost= ’$’+cost+’.00’

new cost =

!$10.00 $100.00 $1000.00 !

! !

!$1.00 $13.00 $-22.00 !

Since indexing is used to identify elements of string vectors and string matrices the question is how

one would access individual characters in a string. As far as extracting characters is concerned this

can be done with function part.

-->test = ’This is a test’;

-->part(test,1) // Select the first character

ans =

T

-->part(test,1:4) // Select the first 4 characters

ans =

This

The second argument of part is a vector of indices. For every index that exceeds the length of the

string a blank is appended to the output of part. This is illustrated in 14a .

-->str1 = part(test,11:20) 14a

str1 =

test

-->length(str1)

ans =

10.

The string str1 consists of the requested 10 characters, and 14b below shows that the last six

characters of str1 are indeed blanks (ASCII code 32).

-->ascii(str1) 14b

ans =

116. 101. 115. 116. 32. 32. 32. 32. 32. 32.

A more general approach to creating string matrices with equal elements uses emptystr together

with the + operator

-->const=emptystr(5,3)+’constant’

const =
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!constant constant constant !

! !

!constant constant constant !

! !

!constant constant constant !

! !

!constant constant constant !

! !

!constant constant constant !

It is worth reviewing a few more of the functions shown in Table 3.5.

grep(vstr1,str2) searches for occurrence of string str2 in string vector vstr1; returns a vector

of indices of those elements of vstr1 where str2 has been found or an empty vector if str2 does

not exist in any element of vstr1.

strindex(str1,vstr2) looks for the position in string str1 of the character string(s) in string

vector vstr2. Function strindex differs from grep in that its first input argument is a string

whereas the first argument of grep can be a string vector. The index vector output by grep refers

to elements of the string vector vstr1 whereas the index vector output by strindex refers to the

position of the elements of vstr2 in string str1. This is illustrated by the following example.

-->str1 = ’abcdefghijkl’;

-->idx1 = grep(str1,’jk’) //String ’jk’ is in str1(1)

idx1 =

1.

-->idx2 = strindex(str1,’jk’) //String ’jk’ is in str at position 10

idx2 =

10.

-->str2 = [’abcdefghijkl’,’xyz’,’jklm’];

-->idx3 = grep(str2,’jk’) //String ’jk’ is in str2(1) and str2(3)

idx3 =

1. 3.

-->idx4 = grep(str2,[’jk’,’y’]) //Strings ’jk’ or ’y’ are in str2(1)

//str2(2), and str2(3)

idx4 =

1. 2. 3.

This means that grep with some additional checking can be used to emulate the Matlab function

ismember for string arguments (a generally more useful implementation of ismember — it works

for numeric and string vectors — is reproduced on pages 38 ff.).

function bool=ismember(strv1,strv2)
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// Function outputs a boolean vector the same size as strv1.

// bool(i) is set to %t if the string strv1(i) is equal to

// one of the strings in strv2

bool = ∼ones(strv1); // Create a boolean vector %f

[idx1,idx2]=grep(strv1,strv2); // Find indices of strv1 and strv2

// for which there is a match

if idx1 == []

return

end

// Eliminate indices for which an element of strv2 is only

// a substring in strv1

temp1 = strv1(idx1);

temp2 = strv2(idx2);

bool(idx1(temp1(:) == temp2(:))) = %t;

endfunction

Like its Matlab equivalent the function msscanf can be use to extract substrings separated by

spaces and numbers from a string.

-->str=’ Weight: 2.5 kg’;

-->[a,b,c] = msscanf(str,’%s%f%s’)

c =

kg

b =

2.5

a =

Weight:

-->typeof(a)

ans =

string

-->typeof(b)

ans =

constant

The format types available are %s for strings, %e, %f, %g for floating-point numbers, %d, %i for

decimal integers, %u for unsigned integers, %o for octal numbers, %x for hexadecimal numbers,

and %c for a characters (white spaces are not skipped). For more details see the help file for

scanf conversion.

In the context of the next subsection the function sci2exp may prove useful. It converts a variable

into a string representing a Scilab expression. An example is



3.3. CHARACTER STRING VARIABLES 31

-->a=[1 2 3 4]’

a =

! 1. !

! 2. !

! 3. !

! 4. !

-->stringa = sci2exp(a)

stringa =

[1;2;3;4]

Regular expressions based on the PCRE syntax are now supported for functions grep, strindex,

and strsubst. They require the ’r’ flag, an additional input argument, to be set. Function

regexp, which corresponds to Matlab’s regexp, is also available.

3.3.2 Strings with Scilab Expressions

Like Matlab, Scilab allows execution of strings with Scilab statements and expressions. There are

three possible functions with slightly different features.

Scilab Matlab

eval eval Evaluate string vector with Scilab expressions

evstr eval Evaluate string vector with Scilab expressions

execstr eval Evaluate string vector with Scilab expressions or statements

Table 3.6: Functions that evaluate strings with Scilab expressions
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While there is a Scilab function eval, the best functional equivalent to Matlab’s eval is execstr.

Thus

-->execstr(’a=1+sin(1)’)

-->a

a =

1.841471

Note that the execstr does not echo the result even though there is no semicolon at the end of

the statement. A more elaborate use of execstr is

-->ier = execstr([’a=2’,’b=3ˆa’],’errcatch’,’n’)

ier =

0.

-->a,b

a =

2.

b =

9.

This code fragment illustrates that the first input argument of execstr can be a string vector.

Since the second input argument ’errcatch’ is given, an error in one of the statements of the

first argument does not issue an error message. Instead, execstr aborts execution at the point

where the error occurred, and resumes with ier equal to the error number. In this case the display

of the error message is controlled by the third input argument (’m’ ⇒ error message, ’n’ ⇒ no

error message).

A practical example of the use of execstr is the implementation, on page 87, of the return

command in the simulation of a search path for the execution of a Scilab script.

In Scilab eval evaluates a vector of Scilab expressions. Thus

-->c = eval([’1+sin(1)’;’1+cos(1)’]) 15a

c =

! 1.841471 !

! 1.5403023 !

Note that eval(’a=1+sin(1)’) produces the error message

Warning: obsolete use of = instead of ==

%h = a=1+sin(1)

!

at line 3 of function %eval called by :

line 17 of function eval called by :

eval(’a=1+sin(1)’)

!--error 4

undefined variable : a

at line 2 of function %eval called by :
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line 18 of function eval called by :

eval(’a=1+sin(1)’)

Scilab expects an expression and interprets the = as a typo, assumes that the user really means ==,

and then finds that b is undefined.

The Scilab command evstr is very similar to eval; it, too, works only with expressions. However,

while eval has no provisions to allow user-defined error handling, evstr will trap errors if used

with two output arguments.

-->[c,ier] = evstr([’1+sin(1)’;’1+cos(1)’]) 15b

ier =

0.

c =

! 1.841471 !

! 1.5403023 !

If an error occurs, ier is set to the error number, but the function does not abort. The following

is an example where the second expression of the of the argument has a syntax error.

-->[c,ier] = evstr([’1+sin(1)’;’1+-cos(1)’])

ier =

2.

c =

[]

The function does not abort, but ier is set to 2.

Note: since all the variables of the whole workspace (that are not shadowed) are available to these

three functions there is generally no need for an equivalent to Matlab function evalin.

3.3.3 Symbolic String Manipulation

Scilab has several function that treat strings as variables and perform symbolic operations. An

examples is trianfml which converts a symbolic matrix to upper triangular form.

-->mat = [’a’,’b+c’,’d’;’-b*a’,’0’,’a+b’;’b’,’1’,’-1’]

mat =

a b+c d

-b*a 0 a+b

b 1 -1

-->tri = trianfml(mat)

tri =

b 1 -1

0 b*a b*(a+b)-b*a
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0 0 b*a*(b*d+a)-(b*(b+c)-a)*(b*(a+b)-b*a)

A symbolic matrix can be evaluated by means of the function evstr discussed above.

-->a = 1,b = -1,c = 2,d = 0

a =

1.

b =

- 1.

c =

2.

d =

0.

-->nummat = evstr(tri)

nummat =

! - 1. 1. - 1. !

! 0. - 1. 1. !

! 0. 0. 1. !

There are several functions such as solve and trisolve that operate on symbolic matrices and

addf, subf, mulf, ldivf, and rdivf that operate on symbols representing scalars. What exactly

they do can be found by looking at their help files.
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3.4 Boolean Variables

Boolean (logical) variables are represented by %t (true) and %f (false). Since Scilab’s main initial-

ization file scilab.start equates the corresponding upper-case and lower-case variables they can

also be used with capital letters (%T, %F). This is similar to Matlab which, in Version 6.5, introduced

boolean variables true and false1. While intrinsically different from numbers, they are displayed

as 1 and 0. This analogy is illustrated in the following table which shows a line-by-line comparison

of corresponding Scilab and Matlab statements.

Scilab Matlab

-->index = [1 1] >> index = [1 1]

index = index =

1. 1. 1 1

-->bool = [%t,%t] >> bool = [true,true]

b = b =

T T 1 1

-->a = [1 2] >> a = [1 2]

a = a =

1. 2. 1 2

-->a(index) >> a(index)

ans = ans =

1. 1. 1 1

-->a(bool) >> a(bool)

ans = ans =

1. 2. 1 2

Table 3.7: Comparison of the use of boolean variables as array indices in Scilab and Matlab

When displayed on the screen in Matlab, vectors n and b look exactly the same. Nevertheless, they

are different

>> islogical(n)

0

>> islogical(b)

1

and, when used as indices for the vector a, they produce different results. But, fortunately, these

results agree with those obtained with Scilab.

There are three operators, well known from Matlab, that operate on boolean variables. They are

shown in Table 3.8. Scilab does not know the “short-circuit” logical AND (&&) and OR (||).

1Actually, true and false are functions analogous to zeros, ones, NaN, etc., and true is the same as

true(1).
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& logical AND˜ logical NOT

| logical OR

Table 3.8: Boolean operators

In the proper context, both Scilab and Matlab treat numeric variables like logical (boolean) vari-

ables; any real numeric variable ̸= 0 is interpreted as true and 0 is interpreted as false. Thus

-->if -1.34

--> a=1;

-->else

--> a=2;

-->end

-->a

a =

1.

Interestingly, Scilab itself is not very consistent regarding the use of boolean variables . The two

functions exists and isdef do the same thing: they check if a variable exists (actually, isdef

is a script that calls exists). However, isdef outputs T if the variable exists and F otherwise,

whereas exists outputs 1 and 0, respectively. In this sense the function bool2s, which converts a

boolean or a numeric matrix to a matrix of 1s and 0s, can be considered as having boolean output.

If a is a numeric matrix then b = bool2s(a) creates a matrix b where all non-zero entries of a

are 1.

If a is a boolean matrix then b = bool2s(a) creates a matrix b where entries are 1 where those

of a are %t and 0 where entries of a are %f. The same result — even without an execution-time

penalty — can be achieved by adding 0 to the boolean matrix a.

Since there is no Scilab function analogous to false, true, or logical a similar trick can be

used to create a boolean matrix or vector.

-->false = ˜ones(1,10)
false =

F F F F F F F F F F

-->true = ˜zeros(1,10)
true =

T T T T T T T T T T

Like in Matlab, boolean variables can be used in arithmetic expressions where they behave as if

they were 1 and 0, respectively.

-->5*%t

ans =

5.
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-->3*%f

ans =

0.

Table 3.9 lists a number of functions that output or use boolean variables.

Functions and and or are functional equivalents of Matlab’s functions all and any, respectively.2

Function and(a) returns the boolean variable %t if all entries of a are %t (for a boolean matrix)

or non-zero (for a numeric matrix).

a =

! 0. 1. !

! 2. 3. !

-->and(a)

ans =

F

-->and(a,’r’) 16

ans =

F T

In the example above a has a zero entry in the upper left corner; hence, the answer is false. With

the optional second argument ’r’ (line 16 ), and analyzes the columns of a and outputs a row

vector. The first column contains a zero; hence the first element of the output vector is f. Matlab’s

all would output an analogous logical vector.

Function or(a) returns the boolean variable %t if at least one entry of a is %t (for a boolean

matrix) or non-zero (for a numeric matrix). Hence, for the same matrix a

-->or(a)

ans =

T

-->or(a,’c’)

ans =

T

T

With the second argument ’c’ function or analyzes the rows and puts out a column vector. Since

each row has at least one non-zero element, all entries of the output are %t. The analog to Matlab’s

any is or with the second input argument ’r’.

Like Matlab, Scilab always evaluates all terms of a logical expression; it does not, say, evaluate

an expression from left to right and stop as soon as the result is no longer in question. Thus the

statement

bool = exists(’a’) & a > 0

2See also the discussion of max, min, etc. on page 61
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Scilab Description

and(a) Output %t if all entries of the boolean matrix a are true

bool2s Replace %t (or non-zero entry) in matrix by 1 and %f by zero

exists(a) Test if variable a exists

find(a) Find the indices for which boolean matrix a is true

isascii Test if characters of a string are represented by 7-bit ASCII code

iscell(a) Test if variable a is a cell array

iscellstr(a) Test if variable a is a cell array of strings

isdef(a) Test if variable a exists

isdigit Test if characters of a string are digits between 0 and 9

isdir(a) Test if variable a is a directory path

isempty(a) Test if variable a is empty

iserror Test if error has occurred

isglobal(a) Test if a is a global variable

isfield(a,b) Test if b is a field of structure a

isinf(a) Test if a is infinite

isletter Test if characters of a string are letters

isnan(a) Output boolean vector with entries %t where a is %nan

isnum Test if a string represents a number

isnum Test if a string represents a number

isstruct(a) Test if a is structure

mtlb mode Test for (or set) Matlab mode for empty matrices

or(a) Output %t if at least one entry of the boolean matrix a is true

simp mode Test for (or set) simplification mode for rational expressions

with texmacs Test if Scilab as been called by TeXmacs

Table 3.9: Boolean variables and functions that operate on, or output, boolean variables

will fail with an error message if the variable a does not exist even though the fact that exists(’a’)

is false also means that bool is false. This statement needs to be split up.

bool = exists(’a’)

if bool

bool = a > 0;

end

Some of the constructs discussed above are used in the following example of an emulation of the

Matlab function ismember. For example, the Matlab statements

>>vstr = {’abcd’,’abc’,’xyz’,’uvwx’};
>>str = ’abc’;

>>index = ismember(vstr,str)

index =

0 1 0 0

produce the same result as the analogous Scilab statements
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-->vstr = [’abcd’,’abc’,’xyz’,’uvwx’];

-->str = [’abc’,’xy’];

-->index = ismember(vstr,str)

index =

F T F F

if the function ismember is defined as

function bool=ismember(a,b)

// Find elements in vector "a" that are also in vector "b".

// Return logical vector "bool" of the same length as "a". An element of

// "bool" is true if the corresponding element in "a" is also in "b".

// "a" and "b" can be numeric vectors or string vectors

// INPUT

// a numeric or string vector

// b numeric or string vector (same type as "a")

// OUTPUT

// bool boolean vector with the same length as an element lv(k) is true

// if a(lv(k)) exists in b. Hence, a(lv) are the common elements

if type(a) ˜= type(b)

disp(’Input arguments must be of the same type’)

error(’ Abnormal termination’)

end

if type(a) == 1

if a == []

bool= [];

return

end

elseif type(a) == 10

if a == ’’

bool=[];

return

end

else

error(’ This function does not work with variables of type ’ ...

+string(type(a))+’ (’+typeof(a)+’)’)

end

[ua,index]=myunique(matrix(a,1,-1));

[temp,idx]=gsort([ua,unique(matrix(b,1,-1))],’g’,’i’);

idx1=temp(2:$) == temp(1:$-1);
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if ˜or(idx1)
bool=˜ones(a);
return

end

idx2=find(idx1);

idx2=min(idx(idx2)’,idx(idx2+1)’);

bool=˜ones(ua);
bool(idx2)=%t;

bool=bool(index)

endfunction

The two output arguments of Scilab’s function unique correspond to the first two output arguments

of Matlab’s function unique. However, Matlab’s unique has an optional third output argument

which allows one to recover the original input vector from its sorted unique elements. Function

myunique, used in ismember above and defined below, is similar to Scilab’s function unique, but

its second output argument corresponds to the third output argument of Matlab’s unique.

function [u,index]=myunique(a)

// Sort input vector and eliminate duplicate elements

// An optional second output allows recreation of the original input vector

// INPUT

// a numeric or string vector

// OUTPUT

// u vector a sorted and without duplicate entries

// index optional index vector such that a = u(index)

if a == []

u=[];

index=[];

return

end

[a,index]=gsort(a,’g’,’i’)

num=[1:size(a,’*’)];

bool=a(2:$) == a(1:$-1);

bool=[0,matrix(bool,1,-1)];

u=a(˜bool)
if argn(1) > 1

num=num-cumsum(bool);

[dummy,index]=gsort(index,’g’,’i’);

index=num(index);

end

endfunction
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3.5 Cell arrays

The entries of a numeric array are numbers. The cells of a cell array, on the other hand, can

contain not only numbers but any other Scilab object such as strings, matrices, other cell arrays,

etc. Scilab’s cell arrays, however, are not quite like Matlab’s cell arrays — in fact, if one needs to

access the content of a cell, an ordinary Scilab list is closer to a Matlab cell array.3 Scilab’s cell

arrays, on the other hand, are “typed matrix-oriented lists” discussed later in this manual.

Scilab Description

cell Create a cell array with empty cells

cell2mat Convert a cell array into a matrix

iscell(a) Test if variable a is a cell array

makecell Create a cell array and initiate its cells

Table 3.10: Functions that create, or operate on, cell arrays

Table 3.10 shows functions related to cell arrays. There are two functions, cell and makecell,

that create cell arrays. The former, of course, is known from Matlab; as shown in the example

below, it works like its Matlab counterpart. The latter not only creates a cell array but also

populates it with values. There must be a value for each entry, and the cells are filled one row after

the other. In the example below, makecell creates a 2×3 cell array. The first two cells in the first

row contain numeric values, the third contains a numeric array. The bottom row contains strings.

-->c = cell(2,3)

c =

!{} {} {} !

! !

!{} {} {} !

-->cc = makecell([2,3],1,2,[3,4],’one’,’two’,’three’)

cc =

!1 2 [3,4] !

! !

!"one" "two" "three" !

The cell array c created by function cell is simply an empty container that can be filled with

Scilab objects. In order to do that one needs to use the following syntax:

-->c(1,2).entries = 2;

-->c(2,1).entries = [1,2,3];

-->c(2,3).entries = %t

c =

!{} 2 {} !

3Ordinary lists are discussed in Section 3.7.1 beginning on page 46
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! !

![1,2,3] {} %t !

The same syntax is used to retrieve objects from a cell of a cell array

-->bool=c(2,3).entries

bool =

T

-->type(bool)

ans =

4.

-->typeof(bool)

ans =

boolean

In contrast, c23, as computed below, is a cell (type ce).

-->c23=c(2,3)

c23 =

%t

-->type(c23)

ans =

17.

-->typeof(c23)

ans =

ce

->iscell(c23)

ans =

T

-->c23.entries

ans =

T

The meaning of the output of typeof and type can be found in Table 3.1 on page 17.

It one extracts the cell content from two or more cells the result is a list.

-->cc1to2=cc(1:2,1).entries;

-->typeof(cc1to2)

ans =

list
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cc1to2(1)

ans =

1

cc1to2(2)

ans =

one

There are two ways to compute the dimensions of a cell array; they are illustrated in the following

code fragments by means of cell array cc defined above:

-->cc.dims

ans = 2 3

-->size(cc)

ans =

2. 3.

The output of the first one shows the dimensions of cc as 32-byte integers, the latter as doubles.

3.6 Structures

A structure is a convenient container for disparate data that can be stored and retrieved in a self-

explanatory way. Let us assume we need to store, for Toy Store # 31, toys for sale, their price,

and the quantities on hand. Toys are represented by strings with their name; price and quantities

are numeric values. We could store each in its own vector, but it is more convenient to have them

all in one place. This is where structures come in. In this specific case we create a structure, called

toys1, with fields ’shop’, ’currency’, ’name’, ’price’, and ’quantity’. This can be done

in many different ways; for example, by means of the struct function.

-->toys1=struct(’shop’, ’Store # 31’, ..

--> ’currency’, ’$’, ..

--> ’name’, [’doll’,’truck’,’game station’], ..

--> ’quantity’, [75,102,7], ..

--> ’price’, [39.90,12.99,299.95])

toys1 =

shop: "Toy Store # 31"

currency: "$"

name: ["doll","truck","game station"]

quantity: [75,102,7]

price: [39.9,12.99,299.95]

Function struct must have an even number of arguments (zero is allowed). The odd-numbered

arguments, the names of the “fields” of the structure, must be strings.

The above structure, toys1, has five fields with names shop, currency, name, quantity, and

price. Each field name is followed by a valid Scilab object (the even-numbered arguments of
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struct). In the example above they are two strings, a string matrix and, two numeric matrices.

The first entry in field name is ’doll’. The first entry in field quantity is 75, the number of

dolls available for sale, and the first entry in field price is the price of the doll, $39.90 (since the

currency is $).

There are two ways to access fields of a structure. One is the ”structure.fieldname” syntax familiar

from Matlab.

-->toys1.shop

ans =

Toy Store # 31"

The other uses parentheses to access the content of a field (in this example the field shop).

-->toys1("shop")

ans =

Toy Store # 31"

Note that there is no dot (“.”) after the structure name and that the field name is quoted, i.e. it

is a string. This latter form has two advantages: there are no restrictions on the field name (it can

contain blanks, special characters, etc. and can be longer than 23 characters), and the field name

can be a string variable. In this respect it resembles Matlab’s syntax toys1.(’shop’) (notice

the dot after the structure name toys1).

On the other hand, if one uses the ”structure.fieldname” syntax, field names must satisfy the same

restrictions as variable names (e.g. no blanks, see page 4); Function struct does not complain

about illegal field names; however, an error will be thrown if one tries to access a field with an

illegal name.

If we need to find the number of trucks in Store #31 we simply type

-->number = toys1.quantity(2)

number =

102.

since truck is the second entry in field name. This shows that one way to reference a field of a

structure is to append the field name, preceded by a dot, to the structure name. Similarly, the

price of the truck is

-->price = toys1.price(2)

price =

12.90

Thus we can write

-->disp(’In shop ""’ + toys1.shop + ’"" the price of the ’ + ..

-->toys1.name(3) + ’ is ’+toys1.currency + string(toys1.price(3)))

In shop "Store No 31" the price of the game station is $299.95

Using function struct is but one way to define a structure. Another method is:
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-->toys2.shop = ’Toy Store No 69’;

-->toys2.currency = ’$’;

-->toys2.name =[ "doll","truck","game station"];

-->toys2.quantity = [14,49,3];

-->toys2.price=[34.90,11.99,279.95]

toys2 =

shop: "Toy Store No 69"

currency: "$"

name: ["doll","truck","game station"]

quantity: [14,49,3]

price: [34.9,11.99,279.95]

Since the two structures toys1 and toys2 have the same fields they can be concatenated to form

a structure array.

-->toys=[toys1,toys2]

toys =

1x2 struct array with fields:

shop

currency

name

quantity

price

-->size(toys)

ans =

1. 2.

It is worth mentioning that the above example is but one way to store the information about the

toys in a structure. Another approach could be

-->toysx=struct(’shop’, ’Toy Store # 31’, ..

--> ’currency’, ’$’, ..

--> ’doll’, [75, 39.90], ..

--> ’truck’, [201, 19.95], ..

--> ’game station’, [7, 299.95])

toysx =

shop: "Toy Store # 31"

currency: "$"

doll: [75, 39.90]

truck: [201, 19.95]

game station: [7, 299.95]

In this case information about each toy is stored in its own field. The toy name is the field name;

note that “game station” needs an underscore to avoid an illegal blank space in the field name.
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Scilab Description

getfield Get field names and values from a structure

isfield(a,b) Test if b is a field of structure a

isstruct(a) Test if a is a structure

length(a) Number of user-created fields of a + 2

null() Delete an element of a list

setfield Set field names and values of a structure

struct Create a structure

size(a) Size of structure a

Table 3.11: Functions that create, or operate on, structures

While Scilab has functions getfield and setfield they work differently than the like-named

functions in Matlab. In particular,

-->fields=getfield(1,toys)

fields =

!st dims shop currency name quantity price !

outputs a seven-element string vector. Its first entry, ’st’ is the type of the matrix-oriented typed

list (internally, a Scilab structure is an mlist). The second entry is a field that Scilab created: the

dimension of the structure. The other entries are the fields of toys defined above. Hence, it could

be used to emulate Matlab’s function fieldnames.

-->temp=getfield(1,toys); fieldnames=temp(3:$)

fieldnames =

!shop currency name quantity price !

The values associated with the user-created fields can be obtained by choosing the first argument

of getfields ≥ 3.

-->value1=getfield(3,toys(2))

value1 =

Store No 69

Thus value1 is a string representing the value of toys(2).shop, the field shop of the second

entry of toys. If we drop the index we get

-->value1=getfield(3,toys)

value1 =

value1(1)

Store No 31

value1(2)

Store No 69

In this case value1 is a two-entry list with the names of the two shops. The problem with this

approach is that one needs to know the sequence of the fields of the structure. The following sample

function shows a quick and dirty emulation that works like Matlab’s getfield.
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function field=getfield4st(st,fieldname)

//\Get the value of a field of structure "st"

//INPUT

//st structure

//fieldname name of the field to retrieve

//OUTPUT

//field value of the field

// Find the field names

fields=getfield(1,st);

// Check if "fieldname" is one of the fields of structure "st"

index=find(strcmp(fields(2:$),fieldname) == 0);

if isempty(index)

error(’Field ""’+fieldname+’"" is not present in this structure.’)

end

// Extract the value of the field specified

field=getfield(index+1,st); 17

endfunction

A function providing Matlab’s setfield functionality is is quite analogous. More interesting is

an emulation of Matlab’s rmfield which removes one or more fields from a structure. A simple

version, which removes just one field, is exactly like function setfield above, except that statement

17 needs to be replaced by the three statements

fields(index+1)=[]; // Remove the string "fieldname" from

// the list of fields

setfield(1,fields,st)

setfield(index+1,null(),st) // Remove the object associated with

// field "fieldname"

The last statement illustrates a use of function null(), which has no input arguments.

3.7 Lists

Lists are Scilab data objects; they come in three flavors: ordinary lists, list, which behave like

Matlab cell vectors (one-dimensional cell arrays), typed lists, tlist, and matrix-oriented typed

lists, mlist. The latter two can be used to emulate Matlab cell arrays and structures; in fact, the

cell arrays and structures described above are matrix-oriented lists.

Someone coming from Matlab might be inclined to disregard lists; and for “quick and dirty” pro-

gramming this appears reasonable. However, any serious user should avail himself of the power

that typed lists and matrix-oriented typed lists offer. Operator overloading is just one example,

and the flexibility offered by Scilab is unmatched by Matlab.
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3.7.1 Ordinary lists (list)

A list is a collection of data objects. Its Matlab equivalent is a one-dimensional cell array. Like

Matlab cell arrays these objects need not be of the same type. They can be scalars, matrices,

character strings, string matrices, functions, as well as other lists. An example is (remember that

both single quotes (’) and double quotes (”) can be used to denote strings in Scilab):

-->a list=list(’Test’,[1 2; 3 4], ...

[’This is an example’; ’of a list entry’])

a list =

a list(1)

Test

a list(2)

1. 2.

3. 4.

a list(3)

This is an example

of a list entry

Individual elements can be accessed with the usual index notation. Thus

-->a list(1)

ans =

Test

This is different from the way Matlab works. If a list were a Matlab cell array the same result

would be achieved by a list{1} — note the curly brackets — whereas a list(1) would be a

one-element cell array which contains the string ‘Test’ (note the quotes).

Scilab Description

getfield Get a data object from a list

length Length of list

list Create a list

lstcat Concatenate lists

mlist Create a matrix-oriented typed list

null Delete an element of a list

setfield Set a data object in a list

size Size of a list or typed list (but not matrix-oriented typed list)

tlist Create a typed list

Table 3.12: Functions that create, or operate on, lists
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Using the index 0 one can prepend an element to the list

-->a list(0)=%eps;

This pushes all elements of a list back. Hence

-->a list(2)

ans =

Test

What used to be the first element is now the second one. The Matlab equivalent would be

a list=[{eps},a list]; it is more flexible since any number of elements (not just one) could

be prepended and the augmented cell array could be saved under a new name; e.g.

a list1=[{eps},a list]

However, in Scilab the same functionality could be created by overloading (see Section 6.3).

Appending elements works the same way.

-->a list(8)=’final element’;

assigns the string ’final element’ to element 8 of the list a list. Elements 5 to 7 are undefined.

Thus

-->a list(5)

!--error 117 List element 5 is Undefined

The null function can be used to delete an elements of a list. For example,

-->aa=list(1,2,3,4,5);

-->aa(3)=null()

aa =

aa(1)

1.

aa(2)

2.

aa(3)

4.

aa(4)

5.

The third element has been removed from the list. The list has now only four elements. It is not

possible to delete more than one element at a time in this way; e.g. the attempt to delete elements

2 and 4 via aa([2,4])=null() generates an error message.

Lists allow tuple assignments, i. e. more than one variable can be assigned a value in a single

statement. With the list aa defined above

-->[u,v]=aa(2:3)
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v =

4.

u =

2.

This kind of tuple assignment can also be used with typed lists.

The functions size and length have been appropriately overloaded for lists.

-->blist = list(’abcd’,’efg’,1.3,[1 2; 3 4],list(’1’,1))

blist =

blist(1)

abcd

blist(2)

efg

blist(3)

1.3

blist(4)

! 1. 2. !

! 3. 4. !

blist(5)

blist(5)(1)

1

blist(5)(2)

1.

-->length(blist)

ans =

5.

-->size(blist)

ans =

5.

Note that length and size give the same result — one number. Lists are inherently one-

dimensional objects. But this last example illustrates how one can emulate a two-dimensional

cell array, i. e. a multi-dimensional object where an element is defined by two indices (this may be

desirable for tables where some columns have alphanumeric entries while others are purely numeric).

One can write it as a list of lists. The following is an example.

-->cell=list(list(),list());
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-->cell2d(1)=[’first’,’second’,’third’];

-->cell2d(2)=[1,2,3];

-->cell2d(1)(3)

ans =

third

-->cell2d(2)(3)

ans =

3.

Nevertheless,

-->length(cell2d)

ans =

2.

Thus cell is still a one-dimensional data object.

3.7.2 Typed lists (tlist)

Typed lists are lists with very useful properties. They allow the user to set up special kinds of data

objects and to define operations on these objects (see Section 6.3 beginning on page 98). Examples

are linear systems (type ’lls’) or rational functions (type ’rational’; see page 58).

The first element of a typed list must be a string (the type name or type) or a string vector. In

the latter case the type name is the first element of the string vector; the other elements of this

string vector are names (in the following called “fields”) for the other entries of the typed list. An

example is

-->my tlist=tlist([’example’,’first’,’second’], 1.23,[1,2])

my tlist =

my tlist(1)

!example first second !

my tlist(2)

1.23

my tlist(3)

! 1. 2. !

-->type(my tlist)

ans =

16.
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-->typeof(my tlist)

ans =

example

Here the first element of the list is a three-element vector of character strings whose first element,

’example’, identifies the type of list (type name). While this type name can consist of almost

any number of characters (definitely more than 1024), it must not have more than 8 if one intends

to overload operators for this typed list. The other elements of the first string vector, first and

second, are the fields.

From a Matlab user’s perspective the fact that typed lists can be used to represent Matlab structures

is of greatest relevance here, and in this case the type name as represented by the first element of

the first string vector can, in principle, be ignored4. The elements of my tlist can be accessed in

the usual way via indices.

-->my tlist(1)

ans =

!example first second !

-->my tlist(2)

ans =

1.23

-->my tlist(3)

ans =

! 1. 2. !

-->my tlist(1)(2)

ans =

first

Displays of lists can become quite lengthy and confusing. Here, for display purposes, a function

show is used (it is not part of the Scilab distribution, but too long to be reproduced here) which

displays data objects in a more compact form and, for typed lists, is patterned after the format

Matlab uses for structures. Thus

-->show(my tlist)

LIST OF TYPE "example"

first: 1.23

second: 1 2

Section 6.3 shows how this kind of display can be made the default for displaying a typed list with

a particular type name.

Elements of the typed list other than the first can be accessed in various ways. For example

4As shown above, the display of lists can be rather unwieldy. Fortunately, the way a typed list (or matrix-oriented

typed list) is displayed can be overloaded to create, for example, a Matlab-like look. If this is desired then the type

name plays a key role (see Section 6.3).
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-->my tlist(’first’)

ans =

1.23

-->my tlist(’second’) 18a

ans =

! 1. 2. !

This means that the second and subsequent elements of my tlist(1) can be used as “names” for

the second and subsequent elements, respectively, of my tlist. But there is another way of using

these names. It is a construct where a dot “.” separates the name of a typed list and the name of

the field—the representation of structures familiar to Matlab and C users.

-->my tlist.first

ans =

1.23

-->my tlist.second 18b

ans =

1. 2.

Thus a typed list can be accessed like a Matlab structure. Once a field is defined, different values

can be assigned to it in the same way they would be assigned to a Matlab structure.

-->my tlist.second = ’A new value’;

-->my tlist.second

ans =

A new value

One advantage of 18a over 18b is that the field name need not satisfy requirements for a variable;

it may contain white spaces and special characters not allowed for variable names. But more

importantly, the field name may be computed by concatenating strings or it could be the element

of a string vector.

In principle, the typed list my tlist could have been defined as

-->my tlist = tlist([’example’,’first’,’second’]);

-->my tlist.first = 1.23;

-->my tlist.second = [1,2];

If my tlist were to have one more element, it would have to be added first — e.g. via (remember

that $ means “last element” equivalent to end in Matlab);

-->my tlist(1)($+1) = ’new’;

-->my tlist.new = ’value of new field’; 19a ;
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-->show(my tlist)

LIST OF TYPE "example"

first: 1.23

second: 1 2

new: value of new field

The statement 19a above could have been written as

my tlist($+1) = ’value of new field’; 19b

Generally speaking, the kth element of the first-element character string vector of a typed list is

the field name of the kth element of the typed list.

Operator overloading—more specifically, insertion overloading (see page 102)—can be used to make

adding new fields to a typed list as simple as adding fields to a structure in Matlab.

Lists can have other lists as elements. For example

-->record=tlist([’record’,’patient’,’invoice’]);

-->record.patient=tlist([’patient’,’address’,’city’,’phone’]);

-->record.patient.phone=’123.456.7890’;

-->record.invoice=1234.33;

-->record

record =

record(1)

!record patient invoice !

record(2)

record(2)(1)

!patient address city phone !

record(2)(2)

Undefined

record(2)(3)

Undefined

record(2)(4)

123.456.7890

record(3)
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1234.33

With function show this typed list is displayed as:

-->show(record)

LIST OF TYPE "record"

patient: LIST OF TYPE "patient"

address: Undefined

city: Undefined

phone: 123.456.7890

invoice: 1234.33

An element of a typed list can be removed the same way an element of an ordinary list is removed.

However, the index or the name can be used. Thus, for the typed list record defined above the

following four Scilab statements

-->record.patient.phone = null();

-->record.patient(4) = null();

-->record(2)(4) = null();

-->record(2).phone = null();

are equivalent.

A combination of list and tlist can be used to create a Scilab equivalent of a structure array.

-->seis1 =

tlist([’seismic’,’first’,’last’,’step’,’traces’,’units’],0,[],4,[],’ms’);

-->seismic = list(seis1,seis1,seis1);

-->for ii=1:3

--> seismic(ii).last=1000*ii;

--> nsamp = (seismic(ii).last-seismic(ii).first)/seismic(ii).step+1;

--> seismic(ii).traces=rand(nsamp,10);

-->end

-->show(seismic)

List element 1:

LIST OF TYPE "seismic"

first: 0

last: 1000

step: 4

traces: 251 by 10 matrix

units: ms

List element 2:

LIST OF TYPE "seismic"

first: 0

last: 2000
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step: 4

traces: 501 by 10 matrix

units: ms

List element 3:

LIST OF TYPE "seismic"

first: 0

last: 3000

step: 4

traces: 751 by 10 matrix

units: ms

Thus seismic is a list with three seismic data sets with the same start times but different end

times, that can be individually addressed.

-->show(seismic(3))

LIST OF TYPE "seismic"

first: 0

last: 3000

step: 4

traces: 751 by 10 matrix

units: ms

It is also straight forward to access fields of individual data sets. For example,

-->seismic(2).last

ans =

2000.

3.7.3 Matrix-oriented typed lists (mlist)

A matrix-oriented typed list, mlist, is like a regular typed list discussed above — but with an

important difference. This is illustrated by an example. The statement

-->an mlist=mlist([’VVV’,’name’,’value’],[’a’,’b’,’c’],[1 2 3])

an mlist =

an mlist(1)

!VVV name value !

an mlist(2) 20a

!a b c !

an mlist(3)

! 1. 2. 3. !

creates a matrix-oriented typed list, and the statements

-->an mlist.name
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ans = !a b c !

-->an mlist(’name’)

ans =

!a b c !

-->an mlist.value

ans =

! 1. 2. 3. !

-->an mlist(’value’)

ans =

! 1. 2. 3. !

work as expected. However, elements cannot be accessed by index the way elements of a typed list

can.

-->an mlist(2) 20b

!--error 4

undefined variable : %l e

This is in spite of the fact that 20b looks exactly like 20a , the output created by function mlist.

Also, the size function does not work with mlists. In practical terms, this means that matrix-

oriented typed lists allow overloading the “extraction operator”. This appears to be the reason

why structures and cell arrays in Scilab are implemented as matrix-oriented lists of types st and

ce, respectively (see below).

-->ccc=cell(1,3)

ccc =

!{} {} {} !

-->type(ccc)

ans =

17.

-->typeof(ccc)

ans =

ce

Numeric and ASCII type codes are listed in Table 3.1 on page 17.

3.8 Polynomials

If polynomials are a data type available with standard Matlab (there is, of course, the Symbolic

Toolbox based on the Maple kernel) then, at least, I am not aware of them. In Scilab they can be

created by means of function poly.
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-->p = poly([1 2 3],’z’,’coeff’)

p =

2

1 + 2z + 3z

-->typeof(z)

ans =

polynomial

-->typeof(p)

ans =

polynomial

In this example the first argument of poly is a vector of polynomial coefficients. Alternatively, it

is also possible to define a polynomial via its roots.

-->p = poly([1 2 3],’z’,’roots’)

p =

2 3

- 6 + 11z - 6z + z

-->roots(p)

ans =

! 1. !

! 2. !

! 3. !

The default for the third argument is actually ’roots’ and so it could have been omitted. It is

also possible to define first the symbolic variable and then create polynomials via standard Scilab

expressions.

-->s = poly(0,’s’) // This is a polynomial whose only zero is 0

s =

s

-->p = 2 - 3*s + ŝ2
p =

2

2 - 3s + s

-->q = 1 - s

q =

1 - s
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Scilab Description

bezout Compute greatest common divisor of two polynomials

clean Round to zero small entries of a polynomial matrix

cmndred Create common-denominator form of two polynomial matrices

coeff Compute coefficients of a polynomial matrix

coffg Compute inverse of a polynomial matrix

colcompr Column compression of polynomial matrix

degree Compute degree of polynomial matrix

denom Compute denominator of a rational matrix

derivat Compute derivative of the elements of a polynomial matrix

det Compute determinant of a polynomial or rational matrix

determ Compute determinant of a polynomial matrix

detr Compute determinant of a polynomial or rational matrix

diophant Solve diophantine equation

factors Compute factors of a polynomial

gcd Compute greatest common divisor of elements of polynomial matrix

hermit Convert polynomial matrix to triangular form

horner Evaluate polynomial or rational matrix

hrmt Compute greatest common divisor of polynomial row vector

inv Invert rational or polynomial matrix

invr Invert rational or polynomial matrix

lcm Compute least common multiple elements of polynomial matrix

lcmdiag Least common multiple diagonal factorization

ldiv Polynomial matrix long division

pdiv Elementwise polynomial division of one matrix by another

pol2str Convert polynomial to a string

residu Compute residues (e. g. for contour integration) of ratio of two polynomials

roots Compute roots of a polynomial

rowcompr Row compression of polynomial matrix

sfact Spectral factorization of polynomial matrix

simp Rational simplification of elements of rational polynomial matrix

simp mode Test for (or set) simplification mode for rational expressions

sylm Sylvester matrix (input two polynomials, output numeric)

Table 3.13: Functions related to polynomials and rational functions

-->simp mode(%f) // Do not simplify ratios of polynomials

-->r = p/q

r =

2

2 - 3s + s

----------
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1 - s

-->simp mode(%t) // Simplify ratios of polynomials

-->simp(r)

ans =

2 - s

-----

1

-->type(r)

ans =

16.

-->typeof(r)

ans =

rational

The result of type indicates that r is a typed list and typeof tells us that it is a list of type

rational.

Table 3.13 lists functions available in Scilab for manipulating polynomials and ratios of polynomials.

One difference between computer algebra packages such as Mathematica, Maple, or Macsyma and

this implementation of polynomial algebra is the precision. Scilab evaluates expression to its normal

precision while the above packages maintain infinite precision unless requested to perform numerical

evaluations.



Chapter 4

Functions

4.1 General

For someone coming from Matlab, Scilab functions are familiar entities. There are differences,

though. One is that parentheses are generally required even if a function has no input arguments.

There are two exceptions:

• The function is treated as a variable

• The function has at most one output argument and all input arguments are strings (command-

style syntax).

Command-style Syntax: For any function that has at most one output argument and whose

input arguments are character strings, the calling syntax may be simplified by dropping the paren-

theses. Thus

-->exec(’fun1.sci’)

-->exec ’fun1.sci’

-->exec fun1.sci // Command-style syntax

are equivalent. The last form represents the command-style syntax (a command, possibly followed

by one or more arguments; Matlab has a similar feature). More generally, if function funct accepts

three string arguments then

funct(’a’,’total’,’of three strings’)

is equivalent to

funct a total ’of three strings’

Here the quotes around the last argument are required to prevent it from being interpreted as three

individual strings. It even seems to work if the function accepts non-string arguments provided

that these arguments are optional. In order to run a script, say script.sce, the command

exec(’script.sce’) must be executed. The function exec has one required and two optional

arguments (one of which is numeric). Nevertheless,
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exec(’script.sce’)

exec ’script.sce’

exec script.sce

give all the same result.

Scilab provides one way of passing parameters to a function that is not available in Matlab: named

arguments. This method of passing arguments is especially practical with function that have many

input parameters with good default values — plot functions are typical examples. For example,

the built-in function plot2d can be called as follows

plot2d([logflag],x,y,[style,strf,leg,rect,nax])

The first argument is an optional string that can be used to set axis graduation (linear or loga-

rithmic). The next two arguments are the x-coordinates and y-coordinates of the function to be

plotted. The last five arguments are optional again. Now suppose one wants to use the default val-

ues for all optional parameters except the curve legend (parameter leg). The parameter logflag

is not a problem. If the first input argument is not a string the program knows it is not given as a

positional parameter. But the defaults of style and strf would have to be given so that leg is

at the correct position in the argument list. Hence, the statement would read as follows

-->plot2d(x,y,1,’161’,’Curve legend’)

This, of course means that one has to figure out what the default values are. The simpler solution

to this problem is to use named parameters

-->plot2d(x,y,leg=’Curve legend’)

Note that the name of the argument, leg is not quoted — it is not a string. The order of named

parameters is arbitrary, but any positional parameters must come before named parameters. It is

for example possible to specify the parameter logflag after all. For example,

-->plot2d(x,y,leg=’Curve legend’,logflag=’ll’)

creates the same plot, but with log-log axes. Of course, the same could be achieved by

-->plot2d(’ll’,x,y,leg=’Curve legend’)

In principle, any input argument could be supplied as a named parameter.

-->plot2d(x=x,y=y,leg=’Curve legend’)

but plot2d has internal checks that do not allow that. Also, named parameters are not compatible

with variable-length input argument lists varargin.

4.2 Functions that Operate on Scalars and Matrices

4.2.1 Basic Functions

Quite a number of functions in Table 4.1 below, while having the same name, behave differently for

matrices than their Matlab counterparts. The following example illustrates this difference. Scilab

has an edge here.
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-->mat = matrix([1:20],4,5) // Create a matrix by rearranging a vector

mat =

1. 5. 9. 13. 17.

2. 6. 10. 14. 18.

3. 7. 11. 15. 19.

4. 8. 12. 16. 20.

-->[maxa,index] = max(mat) // Find largest element and its location

index =

4. 5.

maxa =

20.

-->[maxr,idx] = max(mat,’r’)

idx =

4. 4. 4. 4. 4.

maxr =

4. 8. 12. 16. 20.

-->maxc = max(mat,’c’)

maxc =

17.

18.

19.

20.

-->[maxm,idxm] = max(mat,’m’)

idxm =

4. 4. 4. 4. 4.

maxm =

4. 8. 12. 16. 20.

With a single argument, the Matlab version of max behaves just like max(mat,’r’) does —

it computes a row vector representing the maxima of every column. Likewise, max(mat,’c’)

computes a column vector with the maximum element in each row (equivalent to max(mat,[],2)

in Matlab).

The last example uses parameter ’m’ to emulate the the output provided by Matlab’s function

max(mat). In the same way, function min can be forced to emulate Matlab’s min.

The functions max and maxi are equivalent as are min and mini.

There is no equivalent in Matlab for the behavior of max(mat) or min(mat) . It is particular the

easy way of getting the indices of the largest element of a matrix that I consider extremely useful.

The analogous behavior is found for Scilab functions cumprod, cumsum, prod, sum, and

st deviation .
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Scilab Description

abs(a) Absolute value of a, |a|
bool2s Replace %t (or non-zero entry) in matrix by 1 and %f by zero

ceil(a) Round the elements of a to the nearest integers ≥a
clean “Clean” matrices; i.e. small entries are set to zero

conj Complex conjugate

cumprod Cumulative product of all elements of a vector or array

cumsum Cumulative sum of all elements of a vector or array

fix(a) Rounds the elements of a to the nearest integers towards zero

floor(a) Rounds the elements of a to the nearest integers ≥ a

gsort(a) Sort elements/rows/columns of a

imag Imaginary part of a matrix

intersect(str1,str2) Returns elements common to two vectors str1 and str2

lex sort Sort rows of matrices in lexicographic order

linspace Create vector with linearly spaced elements

logspace Create vector with logarithmically spaced elements

max Maximum of all elements of a vector or array

maxi Maximum of all elements of a vector or array

mean Mean of all elements of a vector or array

median Median of all elements of a vector or array

min Minimum of all elements of a vector or array

mini Minimum of all elements of a vector or array

modulo(a,b) a-b.*fix(a./b) if b∼=0; remainder of a divided by b

pmodulo(a,b) a-b.*floor(a./b) if b∼=0; remainder of a divided by b

prod Product of the elements of a matrix

real Real part of a matrix

round(a) Round the elements of a to the nearest integers

sign(a) Signum function, a/|a| for a ̸= 0

sqrt(a)
√
a

st deviation Standard deviation

sum Sum of all elements of a matrix

union(a,b) Extract the unique common elements of a and b

unique(a) Return the unique elements of a in ascending order

Table 4.1: Basic arithmetic functions

Beginning with Version 5.3, Scilab will have only one functions for sorting: gsort. Unlike its Matlab

counterpart, gsort sorts in decreasing order by default. It also behaves differently for matrices.

While Matlab sorts each column, Scilab sorts all elements and then stores them columnwise as

shown in the example below.

-->mat = [-1 4 -2 2;1 0 -3 3]

mat =

- 1. 4. - 2. 2.
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1. 0. - 3. 3.

-->smat = gsort(mat)

smat =

4. 2. 0. - 2.

3. 1. - 1. - 3.

-->smatc = gsort(mat,’c’) // Rows are sorted 21

smatc =

4. 2. - 1. - 2.

3. 1. 0. - 3.

In the help file 21 is called a “columnwise” sort; this appears to be somewhat misleading since

— as described later in the help file — the rows are the ones that are being sorted. The first

column contains the largest element of each row, the second column the second largest, etc. Thus

smatc(:,i) ≥ smatc(:,j) for i < j.

A third input parameter allows the user to select the sort direction (decreasing or increasing) of

gsort. In order to get what Matlab’s sort would do one needs to set it to increasing (’i’) and

also choose “row sorting” (’r’).

-->smati = gsort(mat,’r’,’i’) // Matlab-like result

smati =

- 1. 0. - 3. 2.

1. 4. - 2. 3.

This way the elements of each column are sorted in increasing order.

Function gsort also has an option to perform a lexicographically increasing or decreasing sort.

This corresponds to Matlab’s sortrows command and is illustrated below for sorting of rows

-->mat1 = [3 4 1 4; 1 2 3 4; 3 3 2 1; 3 3 1 2]

mat1 =

3. 4. 1. 4.

1. 2. 3. 4.

3. 3. 2. 1.

3. 3. 1. 2.

// Lexicographically increasing sorting of rows

-->[smat1,index] = gsort(mat1,’lr’,’i’)

index =

2. !

4.

3. !

! 1.

smat1 =

1. 2. 3. 4.

3. 3. 1. 2.
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3. 3. 2. 1.

3. 4. 1. 4.

The first column is sorted first. Rows that have the same element in the first column are sorted by

the entries of the second column. If two or more of those are the same as well the entries of the

third column are used to determine the order, etc. The optional second output argument gives the

sort order (thus smat1 = mat1(index,:)).

Changing input argument ’lr’ to ’lc’ changes row sorting to column sorting.

While shown here for numeric arrays, string arrays can be sorted the same way.

4.2.2 Elementary Mathematical Functions

Except for cotg the names of all the elementary transcendental functions listed in Table 4.2 agree

with those of their Matlab counterparts. Furthermore, atan can be called with one or with two

arguments. With one argument it equivalent to Matlab’s atan; with two arguments it corresponds

to Matlab’s atan2: if x > 0 then atan(y,x) == atan(y/x).

If the argument of any of these functions is a matrix, the function is applied to each entry separately.

Thus

-->a = [1 2; 3 4]

a =

1. 2.

3. 4.

-->b = sqrt(a)

b =

1. 1.4142136

1.7320508 2. !

-->b.*b 22a

ans =

1. 2.

3. 4.

The functions listed in Table 4.3 are “true” matrix functions; they operate on a matrix as a whole.

Thus the matrices have to satisfy certain requirement, the minimum being that they must be

square. So, the example above, with same matrix a but for sqrtm, looks like this

-->b = sqrtm(a)

b =

0.5536886 + 0.4643942i 0.8069607 - 0.2124265i

1.2104411 - 0.3186397i 1.7641297 + 0.1457544i

-->b*b 22b
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Scilab Description

acos Arc cosine

acosh Inverse hyperbolic cosine

asin Arc sine

asinh Inverse hyperbolic sine

atan Arc tangent

atanh Inverse hyperbolic tangent

cos Cosine

cosh Hyperbolic cosine

cotg Cotangent

coth Hyperbolic cotangent

exp Exponential function

log Natural logarithm

log10 Base-10 logarithm

log2 Base-2 logarithm

sin Sine

sinc Sinc function, sin(x)/x

sinh Hyperbolic sine

tan Tangent

tanh Hyperbolic tangent

Table 4.2: Elementary transcendental functions

ans =

1. + 5.551E-17i 2.

3. + 2.776E-17i 4.

clean(b*b) 23

ans =

1. 2.

3. 4.

Obviously, the matrix b is complex and so rounding errors lead to small imaginary parts of some

of the entries in the product b*b. Expression 23 illustrates how function clean can be used to

remove such small matrix entries.

The important difference between these two examples is that in 22a corresponding entries of b

are multiplied (the . in front of the *) whereas in 22b the matrices are multiplied.

The list of functions in Table 4.3 is longer than it would be in Matlab; on the other hand Scilab

lacks an equivalent for Matlab’s funm function which works for any user-specified functions; for

good accuracy, matrices should be symmetric or Hermitian.
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Scilab Description

acoshm Matrix inverse hyperbolic cosine

acosm Matrix arc cosine

asinhm Matrix inverse hyperbolic sine

atanhm Matrix inverse hyperbolic tangent

atanhm Matrix inverse hyperbolic tangent

coshm Matrix hyperbolic cosine

cosm Matrix cosine

expm Matrix xponential function

logm Matrix natural logarithm

sinhm Matrix hyperbolic sine

sinm Matrix sine

sqrtm Matrix square root

tanhm Matrix hyperbolic tangent

tanm Matrix tangent

Table 4.3: Matrix functions

4.2.3 Special Functions

Table 4.4 lists so-called special functions of mathematical physics available in Scilab.

Scilab Description

%asn Jacobian elliptic function, sn(x,m) =
∫ x
0 dt/

√
(1− t2)(1−mt2)

%k Complete elliptic integral, K(m) =
∫ 1
0 dt/

√
(1− t2)(1−mt2)

%sn Jacobian elliptic function, sn

amell Jacobian function am(u, k)

besseli Modified Bessel function of the first kind, Iα(x)

besselj Bessel function of the first kind, Jα(x)

besselk Modified Bessel function of the second kind, Kα(x)

bessely Bessel function of the second kind, Yα(x)

calerf Compute error functions erf(x), erfc(x), erfcx(x) (see definitions below)

delip Elliptic integral, u(x, k) =
∫ x
0 dt/

√
(1− t2)(1− k2)

dlgamma Digamma function, ψ(x) = d ln(Γ(x))/dx

erf Error function, erf(x) = 2/
√
π
∫ x
0 exp(−t2)dt

erfc Complementary error function, erfc(x) = 2/
√
π
∫∞
x exp(−t2)dt

erfcx Scaled complementary error function, erfcx(x) = exp(x2)erfc(x)

gamma Gamma function, Γ(x) =
∫∞
0 tx−1 exp(−t)dt

gammaln Logarithm of the Gamma function, ln(Γ(x))

Table 4.4: Special functions
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4.2.4 Linear Algebra

Tables 4.6 and 4.5 list functions for linear-algebra operations. Functions for full matrices work on

sparse matrices as well.

Scilab Description

balanc Balance matrix to improve condition number

bdiag Block diagonalization of matrix

bdiag(M) Block diagonalization/generalized eigenvectors of M

chol(M) Choleski factorization; R’*R = M

colcomp(M) Column compression of M

cond Condition number of M

det Determinant of a matrix

fullrf(M) Full-rank factorization of M

fullrfk(M) Full-rank factorization of MK

givens Given’s rotation

hess(M) Hessenberg form of M

householder Householder orthogonal reflection matrix

inv(M) Inverse of matrix M

kernel(M) Nullspace of M

linsolve Linear-equation solver

norm(M) Norm of M (matrix or vector)

orth(M) Orthogonal basis for the range of M

pinv(M) Pseudoinverse of M

polar(M) Polar form of M, M=R*expm(%i*Theta)

qr(M) QR decomposition of M

range(M) Range of M

rank(M) Rank of M

rcond(M) Reciprocal of the condition number of M; L-1 norm

schur(M) Schur decomposition

spaninter(M,N) Intersection of the span of M and N

spanplus(M,N) Span of M and N

spec Eigenvalues of matrix

sva(M) Singular-value approximation of M for specified rank

svd(M) Singular-value decomposition of M

trace(M) Trace (sum of diagonal elements) of M

Table 4.5: Linear algebra
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Scilab Description

bandwr Band-width reduction of a sparse matrix

chfact Sparse Cholesky factorization

chsolve Use sparse Cholesky factorization to solve linear system of equations

full Convert sparse to full matrix

lufact Sparse LU factorization

luget Sparse LU factorization

lusolve Solve sparse linear system of equations

nnz Number of nonzero elements of a sparse matrix

sparse Create sparse matrix

spchol Sparse Cholesky factorization

speye Sparse identity matrix

spget Retrieve entries of a sparse matrix

spones Replace non-zero elements in sparse matrix by ones

sprand Create sparse random matrix

spzeros Sparse zero matrix

Table 4.6: Functions for sparse matrices

4.2.5 Signal-Processing Functions

Scilab proper and the Signal-Processing Toolbox offer quite a number of functions for signal pro-

cessing. The functions shown here in Table 4.7 have been chosen because they are frequently used

and have Matlab equivalents. Furthermore, the Fast Fourier Transform (FFT) fft may need some

explanation. After all, it does what fft, ifft, fft2, and ifft2 do in Matlab.

Scilab Description

convol Convolution

corr Convolution

fft Forward and inverse Fast Fourier Transform

fftshift Shift zero-frequency component to center of spectrum

mfft Multidimensional Fast Fourier Transform

nextpow2 For argument x compute smallest integer n such that 2n ≥ x

Table 4.7: Functions for signal processing

The basic Fourier transform is performed as shown in the example below

-->x = rand(100,1);

-->y = fft(x,-1); 24a
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-->z = fft(y,1); 24b

-->norm(x-z)

ans =

1.532E-15

where

ym =

N∑
n=1

xn e
−2πi(n−1)(m−1)/N for m = 1, · · · , N (4.1)

with N denoting the number of elements xn. The second argument, -1, in 24a corresponds to the

minus sign in front of the exponent in (4.1). The operation performed in 24b ,

zm =
1

N

N∑
n=1

yn e
2πi(n−1)(m−1)/N for m = 1, · · · , N,

is the inverse of 24a .

If xx is a matrix then f(xx,-1) performs the two-dimensional Fourier transform. It is thus

equivalent to Matlab’s fft2. Matlab’s fft, on the other hand, performs a one-dimensional FFT

on each column of a matrix. In order to achieve the same result with Scilab one has to write fft

in the form shown in line 25 below.

-->n = 100; m = 20;

-->xx = rand(n,m);

-->yy1 = zeros(xx);

-->for i=1:m

--> yy1(:,i) = fft(xx(:,i),-1);

-->end

-->yy2 = fft(xx,-1,n,1); 25

-->norm(yy1-yy2) 26

ans =

0.

-->zz = fft(yy2,1,n,1); 27

-->norm(xx-zz) 28

ans =

3.368E-15
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Expression 26 shows that yy1 and yy2 are identical. Likewise, expression 28 shows that the

inverse Fourier transform 27 works as expected with this syntax.

Furthermore, with yy2 computed in 25 , statement 29 computes the two-dimensional FFT of xx:

-->uu1 = fft(xx,-1); // Two-dimensional FFT of xx

-->uu2 = fft(yy2,-1,m,n); 29

-->norm(uu1-uu2)

ans =

0.

Obviously, uu1 and uu2 are identically.

4.3 File Input and Output

There are quite a few functions for formatted and unformatted reading and writing of text and

numeric data. Some have Matlab equivalents. They are summarized in tables 4.9 (reading), 4.10

(writing), and 4.8 (ancillary functions). Many I/O functions come in pairs — one is designed to

read what the other one writes. The special-purpose routines for, say, writing and reading audio

files fall into this category. Some of the following pairs represent my own way of grouping. This

grouping does not imply that no other function can read what one of these functions writes and

vice versa; rather, these pairs appear similar in terms of design philosophy and input arguments.

4.3.1 Opening and Closing of Files

Before one can read from, or write to, a file the file needs to be “opened”. This is transparent

for I/O functions, such as fprintfMat or fscanfMat, that only use a file name to specify which

file to read from (write to). They open the requested file, read/write the data and close the file

without the user being aware of it. But whenever there is a need to incrementally read or write

data it is up to the user to open (and, eventually, close) files. A situation like that occurs, for

example, with big data sets. One might read a piece of the data from file A, process it, and write

it out to file B; then read in the next piece of data from file A, process it, and write it to file B, etc.

In this case files A and B must be opened before anything can be read from respectively written to

them. Scilab has two functions for opening a file, mopen and file, and Scilab functions that allow

incremental I/O require one or the other. For this reason the subsequent discussion of specific I/O

functions mentions, where appropriate, which one of the two functions needs to be used for opening

a file. Function mopen is quite similar to Matlab’s fopen whereas file reminds one of the Fortran

equivalent.

Functions mopen and file output a file identifier (Matlab terminology). Scilab help files call it

“file descriptor” or ”logical unit descriptor”; in Fortran it is called “Logical Unit Number”. It is

this file identifier, and not the file name, that is then used to specify from which file to read (to

which file to write). File identifiers are numbers which range from 1 to 19 in Scilab. File identifier

1 is used for the history file scilab.hist, file identifiers 5 and 6 (%io(1) and %io(2), respectively)

are reserved for keyboard (input) and Scilab window (output), respectively. Hence, a maximum of
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16 file identifiers are available to users; this limits to 16 the number of user files that can be open

at any one time.

Files that have been opened with mopen must be closed with mclose, and file with the ’close’

option must be used to close files that have been opened with file. Examples of the use of mopen,

mclose, and file are part of the discussion of specific I/O functions below.

Scilab Description

basename Strip directory and file extension from a file name

dirname Get the directory from a filename

dispfiles Display properties of opened files

file Open/close a file, define file attributes

fileinfo Get information about a file

getio Get Scilab’s standard logical input/output units

isdir(a) Test if directory a exists

listfiles Output string vector with names of files matching a pattern

mclearerr Reset binary-file access errors

mclose Close (all) open file(s)

meof Check if end-of-file has been reached

mopen Open a file

mseek Set position in a binary file

mtell Output the current position in a binary file

newest Find newest of a set of files

pathconvert Convert file path from Unix to Windows and vice versa

uigetfile Open dialog box for file selection

Table 4.8: Functions that manipulate file names and open, query, and close files

4.3.2 Functions mgetl and mputl

Function mputl writes a vector of strings to an ASCII file in form of a sequence of lines, and mgetl

can retrieve one or more of these lines. This is a simple example:

-->text = [’This is line 1’;’Line 2 ’;’Line 3 (last)’]

text =

!This is line 1 !

! !

!Line 2 !

! !

!Line 3 (last) !

-->mputl(text,’C:\temp\dummy.txt’)
-->

-->all = mgetl(’C:\temp\dummy.txt’) // Get the whole file
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all =

!This is line 1 !

! !

!Line 2 !

! !

!Line 3 (last) !

With only one input argument, mgetl reads the whole file. If only the first few lines are required

the number of lines can be specified via the second input parameter:

Scilab Description

auread Read a .au audio file from disk

excel2sci Read ASCII file created by MS Excel

fscanf Read numeric/string variables from ASCII file under format control

fscanfMat Read matrix from ASCII file

input Read from keyboard with a prompt message to Scilab window

load Load variables previously saved with save

loadmatfile Load variables previously saved in Matlab-readable format

loadwave Read a .wav sound file

mfscanf Read data from file (C-type format)

mget Read numeric data (vector) from binary file (conversion format)

mgeti Read data from binary file, converts to Scilab integer format

mgetl Read a specified number of lines from ASCII file

mgetstr Read bytes from binary or ASCII file and interpret as character string

mscanf Read data from keyboard (C-type format)

read Read matrix of strings/numbers from ASCII file under format control

read4b Read Fortran binary file (4 bytes/word)

readb Read Fortran binary file (8 byte/word)

readc Read a character string from a file/keyboard

wavread Read a .wav sound file

Table 4.9: Functions that input data from files or the keyboard

-->only2 = mgetl(’C:\temp\dummy.txt’,2) // Read first 2 lines only

only2 =

!This is line 1 !

! !

!Line 2 !

If more lines are requested than are available, the function aborts with an error message. If the

second argument is -1, all lines are read (equivalent to no second input argument).
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Scilab Description

auwrite Write a .au audio file to disk

diary Write screen output of a Scilab session to a file

disp Write input argument to Scilab window

fprintf Write formatted data to file (like C-language fprintf function)

fprintfMat Write matrix to ASCII file under format control

mfprintf Write data to ASCII file (C-type format)

mprintf Writes data to Scilab window (C-type format)

mput Write numeric data to file in user-specified binary representation

mputl Write string vector to ASCII file (one line per vector element)

mputstr Write character string to an ASCII file

print Print variables to file in the format used for Scilab window

printf Print to Scilab window (emulation of C-language printf function)

save Write current Scilab variables to a binary file

savematfile Write current Scilab variables to a Matlab-readable file

savewave Write a .wav sound file

wavwrite Write a .wav sound file

writb Write matrix in to a Fortran binary file (4 bytes/word)

write Write matrix of strings/numbers to ASCI file (Fortran-type format)

write4b Write matrix in to a Fortran binary file (8 bytes/word)

Table 4.10: Functions that output data to files or to the Scilab window

In the examples above, the file to use is identified by its name. In a case like this mgetl does

three things. It opens the file for reading, reads the lines requested, and closes the file again. This

convenience comes at a price. It is not possible to read a file a few lines at a time. If this is

necessary one must open the file oneself and use the file identifier created by mopen to “tell” mgetl

from which file to read. Finally, once the file has been read, one needs to close it again.

fid = mopen(’C:\temp\dummy.txt’,’r’) // Open file for reading

fid =

3.

-->one = mgetl(fid,1) // Read one line

one =

This is line 1

-->twomore = mgetl(fid,2) // Read two more lines

twomore =

!Line 2 !

! !

!Line 3 (last) !

-->mclose(fid) // Close the file

ans =

0.

An analogous procedure can be used to write a file one line (or several lines) at a time.
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It is important to note that mputl puts each string in a string matrix in a separate line. Thus a

string matrix with more than one column — when read in — will become a one-column matrix.

This is illustrated in the next example. 30a

-->textlines = [’This is line 1a’,’Line 1b’;

--> ’This is line 2a’,’Line 2b’]

textlines =

!This is line 1a Line 1b !

! !

!This is line 2a Line 2b !

-->mputl(textlines,’C:\temp\dummy.txt’)

-->allnow = mgetl(’C:\temp\dummy.txt’) // Get the whole file

allnow =

!This is line 1a !

! !

!This is line 2a !

! !

!Line 1b !

! !

!Line 2b !

The function matrix can be used to reshape (no pun on Matlab intended) allnow into the original

2 by 2 string matrix.

-->matrix(allnow,2,2) 31

ans =

! This is line 1a Line 1b !

! !

! This is line 2a Line 2b !

Similar to Matlab’s reshape, only one of the dimensions of matrix needs to be given; the other

can be replaced by -1.1 The parameter not specified is computed from the dimension of the matrix

to be reshaped. Thus statement 31 is equivalent to either of the two statements

matrix(allnow,-1,2)

matrix(allnow,2,-1)

4.3.3 Functions read and write

Functions write and read do what mputl and mgetl do — and more. The following statements

are equivalent to those in 30a above.

-->textlines = [’This is line 1a’,’Line 1b’;

--> ’This is line 2a’,’Line 2b’]

1With Matlab it is the empty matrix [].
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textlines =

!This is line 1a Line 1b !

! !

!This is line 2a Line 2b !

-->write(’C:\temp\dummy.txt’,textlines)

-->all = read(’C:\temp\dummy.txt’,-1,1,’(A)’) // Get the whole file

all =

! This is line 1a !

! !

! This is line 2a !

! !

! Line 1b !

! !

! Line 2b !

While the write statements only needs the file name and the data the read statement also wants the

size of the array to read and a format in FORTRAN syntax. The dimension are in input arguments

2 and 3, the -1 simply instructs read to read the whole file; in this example it could have been

replaced by 4 since there are 4 strings in the file. Like mputl function write writes a string array

one column to a line.

Functions read and write, when used with a file name as first argument, open the file and close

it again after the I/O operation. To read or write incrementally, one needs to open the file oneself.

However, this cannot be done with function mopen used above. Rather, the file must be opened

(and closed) with function file. This is illustrated in the example below where the file created

above is read again.

-->fid = file(’open’,’C:\temp\dummy.txt’,’unknown’) // Open file

fid =

4.

-->one = read(fid,1,1,’(A)’) // Read one line

one =

This is line 1a

-->twomore = read(fid,2,1,’(A)’) // Read two more lines

twomore =

! This is line 2a !

! !

! Line 1b !

-->file(’close’,fid) // Close the file

Function file above opens the file C:\temp\dummy.txt for read and write access. By default

the file is a sequential-access file for ASCII data. Other file types can be chosen by setting the

appropriate input parameters.
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Sequentially writing to a file is completely analogous.

Functions read and write can also be used to read and write numeric data.

-->fid = file(’open’,’C:\temp\numeric.txt’,’unknown’); // Open file

-->a = rand(3,5,’normal’)

a =

- 0.7460990 0.1023021 - 0.3778182 - 0.6453261 1.748736

- 1.721103 - 1.2858605 2.5749104 0.0116391 0.1645912

- 1.7157583 0.6107784 - 0.4575284 - 1.4344473 0.9182207

-->write(fid,a)

-->file(’close’,fid) // Close the file

The 3 by 5 matrix a is written to file in ASCII format (as a string) and unformatted and can be

retrieved as shown below.

-->[fid,ierr] = file(’open’,’C:\temp\numeric.txt’,’old’) // Open file

ierr =

0.

fid =

4.

-->if ierr ˜= 0 then error(’ Problem opening file’), end

-->newa = read(fid,2,3)

newa =

- 0.7460990 0.1023021 - 0.3778182

- 1.721103 - 1.2858605 2.5749104

-->file(’close’,fid) // Close the file

Function file is used here with two output arguments; the second provides the error status. If an

error occurs while opening a file function file does not abort but rather saves the error number

in this second output argument and leaves it to the user to handle the error. Function read only

requests the first two columns of the first two rows, and that is what is output. Furthermore, the

file status is set to ’old’. After all, the file must already exist in order to be read. Of course,

’unknown’ would have been an option too.

The next example shows how a can be written to a file under format control. It also shows that the

“file” can be the Scilab window — as mentioned earlier, %io(2) is the file identifier for the Scilab

window.

-->write(%io(2),a,’(5f10.5)’)

0.51633 0.64507 -.54852 -1.38505 -1.10499

1.04225 -.44840 1.13162 -1.62805 0.76045

2.49761 -.72190 -1.36674 0.77577 -.65881
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Matrix a is written to the file in 5 columns, each of which is 10 characters wide, with 5 digits to

the right of the decimal point. Incidentally, write can also be used to write a string vector (but

not a matrix) to the Scilab window without the “almost blank” lines.

textlines(:)

ans =

!This is line 1a !

! !

!This is line 2a !

! !

!Line 1b !

! !

!Line 2b !

-->write(%io(2),textlines)

This is line 1a

This is line 2a

Line 1b

Line 2b

-->write(%io(2),textlines,’(a20)’)

This is line 1a

This is line 2a

Line 1b

Line 2b

Without a format the strings are left-justified. With format a20 they are right justified; the total

number of characters per line is 20.

4.3.4 Functions load and save

Functions save and load perform the same function they perform in Matlab: save writes one, or

more, or even all variables of the workspace to a file. The file can be defined either by its name (in

this case opening and closing is done automatically) or by a file identifier. In the latter case the

file needs to be opened with mopen with parameter wb (write binary). But variables can be saved

incrementally to the same file. An example is below.

-->a = 3;

-->fid = mopen(’C:\Temp\saved.bin’,’wb’);

-->save(fid,a)

-->b = 5; c = ’text’;

-->save(fid,b,c)
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-->mclose(fid);

Note that variable names in the save command are not in quotes. In Matlab they would be.

To recall variables saved earlier, possibly in another session,

-->clear a, clear b

-->load(’C:\Temp\saved.bin’,’a’,’b’)

-->a,b

a =

3.

b =

5.

Here, as in Matlab’s load function, the variable names must be in quotes.

4.3.5 Functions loadmatfile and savematfile

Function savematfile and loadmatfile are quite analogous to functions save and load, re-

spectively. The difference is the format they use for saving variables. Function savematfile

saves one, several, or all workspace variables to a file that Matlab can read. The Matlab format

is version-specific, with later versions also supporting earlier formats. Scilab supports ’-v4’, ’-v6’,

’-v7’, and ’-v7.3’. Function loadmatfile reads the variables from a file in Matlab formats ’-v4’,

’-v6’, ’-v7’, and ’-v7.3’. Hence, exchange of data between Matlab and Scilab is quite simple.

4.3.6 Functions mput and mget/mgeti

The two input functions allow one to read blocks of 1, 2, 4, or 8 bytes from a binary file and

convert them into either double-precision floating point numbers (mget) or into integers (mgeti)

(see rightmost column of the table below). The type of conversion is controlled by a type parameter

which can take the following values

Type in file in Scilab

c 8-bit integer int8

s 16-bit integer int16

i 32-bit integer int32

l 64-bit integer double

uc Unsigned 8-bit integer uint8

us Unsigned 16-bit integer uint16

ui Unsigned 32-bit integer uint32

ul Unsigned 64-bit integer double

f 32-bit floating-point number double

d 64-bit floating-point number double

The functions can incrementally read/write files that have been opened with mopen.
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With binary files the questions of byte ordering has to be addressed. Intel CPU’s, and thus PC’s,

use “little-endian” byte ordering whereas so-called workstations (Sun Sparc, SGI) use “big-endian”

byte ordering. In Matlab byte ordering is specified when a file is opened with fopen. Function

mopen in Scilab has no such option; instead, byte ordering is specified together with the variable

type by appending a b or l to the type parameter. Thus the statement for reading 6 big-endian,

32-bit integers from a file with file identifier fid is

-->from file = mget(6,’ib’,fid)

Had the b been omitted the “natural” byte ordering of the computer on which the program runs

would have been used (e.g. little-endian for a PC). As long as one reads files written on the same

type of computer, byte ordering is generally not a problem. It needs attention when one reads a

file created on a computer with different byte ordering.

4.3.7 Functions input and disp

Function input is completely equivalent to Matlab’s input:

-->response = input(’Prompt user for input’)

Prompt user for input-->3

response =

3.

The user response (3 in this example) can also be an expression involving variables in the workspace.

Furthermore, by adding a second argument, ’string’ or simply ’s’, the user’s response can be

interpreted as a string. There is no need to put it in quotes.

Function disp has a close Matlab analog as well. Unlike its Matlab counterpart it can take more

than one argument. However, as illustrated out earlier (page 14) the arguments are displayed in

reverse order.

4.3.8 Function uigetfile

Function uigetfile opens a dialog box for interactive file selection. It works essentially like

Matlab’s uigetfile. An example is

-->file name = uigetfile(filemask=’*.sgy’,dir=’D:\Data\Seismic’, ...

title=’Read SEG-Y file’);

which opens a file selection window with the title “Read SEG-Y file”. The initial directory shown in

the window is D:\Data\Seismic, and only files with file name extension .sgy are shown initially.

4.4 Utility Functions

This chapter describes some of the functions that are not directly necessary to run or debug Scilab

functions, that are more peripheral to Scilab and may not fit well in any other topic discussed

previously. Table 4.11 shows the functions I chose to put into this category.
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The LATEX code that function prettyprint generates requires the amsmath package

(add \usepackage{amsmath} to the preamble):

-->mat = [.2113249 .3303271 .8497452 .0683740 .7263507;

0.7560439 .6653811 .6857310 .5608486 .1985144;

0.0002211 .6283918 .8782165 .6623569 .5442573];

-->prettyprint(mat)

ans =

${\begin{pmatrix}
0.2113249 &0.3303271 &0.8497452 &0.068374 &0.7263507 \cr
0.7560439 &0.6653811 &0.685731 &0.5608486 &0.1985144 \cr
0.0002211 &0.6283918 &0.8782165 &0.6623569 &0.5442573 \cr
\end{pmatrix}}$

Scilab Description

basename Strip directory and file extension from a file name

diary Write screen output of a Scilab session to a file

dirname Get the directory from a filename

findfiles Find all files in a given directory (containing specific characters)

fun2string Output string vector with a function’s source code

getenv Get value of an environment variable

getversion Display version of Scilabversion of Scilab

host Execute Unix/DOS command; outputs error code

lines Specify number of lines to display and columns/line

listfiles Output string vector with names of files matching a pattern

pathconvert Convert file path from Unix to Windows and vice versa

stacksize Determine/set the size of the stack

prettyprint LATEX representation of a Scilab object

tic Start timer

timer Output CPU time used since the preceding call to timer()

toc Output elapsed time since the call to tic

unix Execute Unix/DOS command; outputs error code

unix g Execute Unix/DOS command; output to variable

unix s Execute Unix/DOS command; no output (silent)

unix w Execute Unix/DOS command; output to Scilab window

unix x Execute Unix/DOS command; output to a new window

Table 4.11: Utility functions

The diary function causes a copy of all subsequent keyboard input and the resulting Scilab output

to be copied to the file named in the argument. It now offers more flexibility than Matlab’s diary,
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which only creates a new file if the named file does not exist. Otherwise, it appends the output to

the existing file. Also, diary recording can be turned off and on.

Quite a few functions are available to execute UNIX or DOS commands from the Scilab command

line. Those accustomed to the ways of Matlab will not be surprised to use a function that begins

with the four letters unix to execute DOS commands. The choice among the various functions

beginning with unix depends on the desired output which is indicated in Table 4.11. Functions

host and unix are interchangeable.

Since operating system commands are generally different for MS-DOS and UNIX, a function that

is expected to run on both may need to have different branches for the two. Function getos can

be used to determine the type of operating system.

select getos()

case ’Windows’

files=unix g(’dir D:\MyScilab\Experimental\*.sci /B’); 32a

case ’Unix’

files=unix g(’ls -l ˜/MyScilab/Experimental\*.sci’);
else

error(’Unknown operating system’)

end

write(%io(2),files)

s test.sci

atest.sci

clean.sci

s wplot.sci

Incidentally, statement 32a is equivalent to statement 32b below in that it also produces a string

vector with the names of the files in a particular directory. The latter uses the function listfiles

in combination with basename.

-->files=basename(listfiles(’D:\MyScilab\Experimental\*.sci’))+’.sci’; 32b

-->write(%io(2),files)

s test.sci

atest.sci

clean.sci

s wplot.sci

Function listfiles returns the files names including the directory path; basename strips off not

only the path but also the file extension .sci which is then appended again.

The advantage of 32b over 32a is that, with the correct path, 32b can be used for either UNIX

or Windows/MS-DOS.

Function findfiles, on the other hand, creates a string matrix with all the files in a director.

By adding a search string as a second argument on can reduce the number of entries in the string

matrix to those that include that string.
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-->findfiles(SCI,’*exe’)

ans =

unins000.exe

Since the source code of Scilab is freely available it is, in principle, possible to inspect every function.

However, this may require more effort than one is willing to expend. Fortunately, for macros, one

can achieve the same objective with function fun2string. This function regenerates, from the

pseudo-code of a compiled Scilab function, the original source code—essentially converting a *.bin

function into a *.sci function. Thus, many of Scilab’s functions (but not primitives, i.e. built-in

functions) can be reviewed and possibly modified for a particular purpose. The following example

shows the source code of help2.

-->fct = fun2string(help);

-->show(fct)

function []=ans(key, flag)

change old man();

INDEX = make index();

[lhs, rhs] = argn(0);

if rhs == 0 then

browsehelp(INDEX, ’index’);

return,

end,

if rhs > 2 then error(39);return,end,

if rhs == 2 then

help apropos(key);

return,

end,

path = gethelpfile(key);

if path ˜= [] then

browsehelp(path, key);

else

help apropos(key);

end

endfunction

Since comments are dropped in the compile stage, they cannot be recovered, and thus the recon-

structed source code will have empty lines where comments used to be.

2Actually, in Version 5.2, this particular example aborts with an error message. It does work in prior versions of

Scilab.
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Scripts

A script is a sequence of Scilab commands stored in a file (while a script file may have any extension,

the Scilab Group suggests the extension .sce). Scripts have neither input arguments nor output

arguments. Since they do not create a new level of workspace all variables they create are available

once the execution of the script is completed.

To invoke a script in Matlab its name without extension, say script file, is typed on the

command line. Furthermore, the file can be in any directory of the search path. Scilab, on the

other hand, uses the concept of a working directory familiar from Unix. The command pwd (Print

Working Directory) or the environmental variable PWD can be used to find out what it is. If a

script, say script file.sce, is in the working directory it can be executed by the command

-->exec(’script file.sce’) 33a

A Scilab script can also be stored as a vector of strings; in this case it is executed by means of

function execstr.

The function exec has two optional arguments: the string ’errcatch’ and the variable mode;

the former allows a user to handle errors during execution of the script, the latter allows one to

control the amount of output. It does not appear to really do what the documentation says. The

following table is taken from the help file:

Value Meaning

0 the default value

-1 print nothing

1 echo each command line

2 print prompt −− >

3 echo + prompt

4 stop before each prompt

7 stop + prompt + echo : useful mode for demos

The following are several examples of the mode parameters. Let test.sce be the following script

// Script to illustrate the mode parameter

a = 1

b = a+3;

disp(’mode = ’+string(mode()))

85
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Then, without setting the mode parameter, i.e.

mode not specified:

-->exec(’D:\MyScilab\test.sce’)

-->// Script to illustrate the mode parameter

-->a=1

a =

1.

-->b=a+3;

-->disp(’mode = ’+string(mode()))

mode = 3

-->disp(’mode is ’+string(mode()))

mode is 2

In this case exec echoes every line of the script and displays the results of every statement that has

no terminating semicolon. Here and in the following examples spaces between lines output by test

have been preserved to more accurately reflect the output of the script. Obviously, the default is

for exec to set mode to 3. But once exec has run mode reverts to 2.

mode = 0:

-->exec(’D:\MyScilab\test.sce’,0)
a =

1.

mode = 0

This value of mode produces the result one would expect from Matlab.

mode = 1:

-->exec(’D:\MyScilab\test.sce’,1)
-->// Script to illustrate the mode parameter

-->a = 1

a =

1.

-->b = a+3;

-->disp(’mode = ’+string(mode()))

mode = 1
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This is the same information displayed with mode = 0 but in a somewhat more compact form

(fewer blank lines).

mode = -1:

-->exec(’D:\MyScilab\test.sce’,-1)

mode = -1

In this case the result of expressions is not displayed even if they are not terminated by a semicolon.

mode = 2:

Displays the same information as mode = 0 but with more empty lines.

mode = 3:

Default mode (mode parameter not given).

mode = 4:

Prints

step-by-step mode: enter carriage return to proceed

but then behaves like mode = 0 after all.

mode = 7:

-->exec(’D:\MyScilab\test.sce’,7)
step-by-step mode: enter carriage return to proceed

>>

-->// Script to explain mode parameter

>>

-->a = 1

a =

1.

>>

-->b = a+3;

>> -->>disp(’mode = ’+string(mode()))

mode = 7

This mode works as advertised. It prompts the user to press the <ENTER> key after each

statement.

Function exec satisfies the requirements of the command-style syntax (see Section 4.1). Thus 33a

and 33b , 33c below are equivalent statements.

-->exec ’script file.sce’ 33b

and

-->exec script file.sce 33c

Furthermore, for all three variants, a trailing semicolon will suppress echoing the commands exec

executes.
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As in Matlab, Scilab scripts can include function definitions. However, Scilab is more flexible in

the way functions can be defined within a script (or within another function). This is explained

below in Section 6.2.

If a file with a Scilab script is not in the working directory then either the working directory needs

to be changed (with function chdir) or the full filename of the script must be given. Scilab does

not provide for a search path the way Matlab does or the way Unix provides for executables.

A bare-bones simulation of a search path for the execution of a Scilab script is afforded by the

following function.

function myexec(filename,mod)

// Function emulates use of a search path for the execution

// of a script.

//

// INPUT

// filename filename of the script to be executed; the

// extension .sce is added if the file name

// of the script has no extension

// mod mode parameter(determines amount of printout;

// see help file for exec); default: mod = 1.

//

// Path to the directories to search for script ‘‘filename’’

path=[’D:\MyScilab\Experimental\’, ...

’D:\MyScilab\tests\’, ...

’D:\MyScilab\General\’, ...

’D:\MyScilab\Sci files\’];

// Test the filename with directories in path

for ii=1:size(path,’*’);

testfile=path(ii)+filename;

[fid,ierr]=file(’open’,testfile,’old’);

if ierr == 0

file(’close’,fid)

disp(’ .... now in ""myexec"" executing ’+testfile)

// Write file to a temporary location and execute it from there

// so that it does not prevent the original file from being edited

%tempfile=pathconvert(TMPDIR)+filename; 34

select getos()

case ’Windows’

unix s(’copy ’+testfile+’ ’+%tempfile)

else

unix s(’cp ’+testfile+’ ’+%tempfile)
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end

oldvars=who(’local’); // Variables prior to execution of script

exec(%tempfile,mod); // Execute the script

// Delete the temporary file once the script has been executed;

// the appropriate statement depends on the operating system used

select getos()

case ’Windows’

unix s(’del ’+%tempfile)

else

unix s(’rm ’+%tempfile)

end

// Return variables created in script to the calling environment

// level from which myexec was called

newvars=who(’local’); // Variables after execution of script

newvars=newvars(1:size(newvars,’*’)-size(oldvars,’*’)-1);

if newvars == []

return

else

str1=strcat(newvars,’,’);

// Return to workspace from which "myexec" was called

execstr(’[’+str1+’]=return(’+str1+’)’) 35

end

end

if ierr ˜= 240

break

end

end

if ierr == 240 // File not found in any of the directories

write(%io(2),’File ’+filename+ ’ not found. Directories searched:’)

write(%io(2), ’ ’+path)

end

endfunction

The four directories of the search path are defined in the string vector path. One directory after

the other is concatenated with the file name filename of the script to be executed. If a file by

this name does not exist in the directory then file aborts with error 240 (File filename does not

exist or read access denied) and the next directory is tried. If file is successful the file is closed
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again and exec is executed with the file in that directory. In the next step any variables that have

been created by the script are returned to the calling program.

If the file is in none of the directories the function prints an error message, lists the directories in

the search path, and terminates.

Line 34 illustrate one way Scilab can handle differences between Windows and Unix. Function

pathconvert converts a directory path to the appropriate form for the type of operating system

under which it is running.

-->SCI

SCI =

D:/Science Programs/Scilab-cvs-02-13-2003

-->pathconvert(SCI)

ans =

D:\Science Programs\Scilab-cvs-02-13-2003\

-->pathconvert(SCI+’/’)

ans =

D:\Science Programs\Scilab-cvs-02-13-2003\

Furthermore, it checks if the path ends with a slash (“/”)—or a backslash (“\”) for Windows—and

appends one if it does not.

Improving compatibility with Matlab, function filesep is also available; like Matlab’s filesep,

it outputs the character that separates directory/folder names in filenames, i.e. a backslash under

Windows and a slash under Unix.
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User Functions

While functions in Scilab are variables and not files they have many features in common with those

in Matlab. They consist of a function head and the function body. The function head has the form

function [out1,out2,· · · ] = function name(in1,in2,· · · )

familiar from Matlab. The ellipses ... indicate that the number of input and output arguments

is arbitrary. A function may have no input and/or no output arguments. For functions with one

output argument, the brackets are optional. For functions with no input arguments the parentheses

are optional when it is defined, but not when it is called.Only white spaces and comments are allowed

after the closing parenthesis. The function head can extend over more than one line with the usual

continuation indicator (..).

The function body consists of a number of Scilab statements. Functions can be either in separate

files (one or more functions per file and the name of the file is not necessarily related to the names of

the functions) or they can be created within scripts or other functions (in-line functions). Functions

can be used recursively, i.e. a function can call itself.

An example of a simple function is

function [r,phi] = polcoord(x,y)

// Function computes polar coordinates from cartesian coordinates

r = sqrt(xˆ2+yˆ2);

phi = atan(y,x)*180/%pi;

endfunction

This function looks much like a Matlab function except for:

• the two slashes preceding the comment;

• the use of the function atan rather than its Matlab equivalent atan2;

• the use of special constant %pi rather than its Matlab equivalent pi;

• the use of endfunction.
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Scilab Description

abort Interrupts current evaluation and return to prompt

argn Number of imput/output arguments of a function

endfunction Indicate end of function

error Print error message and abort

function Identify header of function definition

getos Output string(s) with name/version of operating system

halt Stop execution and wait for a key press

macrovar Provides names of variables used, and functions called, in user function

mode Control amount of information displayed by function/script

pause Interrupt execution of function or script

plotprofile Create graphic display of execution profile of a Scilab function

profile Extract execution profiles from a Scilab function

resume Return from a function or resume execution after a pause

return Return from a function or resume execution after a pause

showprofile Display execution profiles of a Scilab function

varargin Variable number of input arguments for a function

varargout Variable number of output arguments for a function

warning Print warning message

where Output current instruction calling tree to variable

whereami Display current instruction calling tree

whereis Display name of library containing a specific function

Table 6.1: Functions/commands/keywords relevant for user functions

The following example computes the Chebyshev polynomial Tn(x) by means of the recurrence

relation

Tn+1(x) = 2xTn(x)− Tn−1(x)

to illustrate the recursive use of functions (functions calling themselves).

function ch = cheby(x,n)

// Compute Chebyshev polynomial of order n for argument x

if n == 0

ch = 1;

elseif n == 1

ch = x;

else

ch = 2*x*cheby(x,n-1)-cheby(x,n-2);

end

endfunction

In Scilab, variables can be passed to functions in three different ways:

• as a variable in the input argument list
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• as a global variable

• as a variable not local to the function, i.e. a variable that is not initially defined in the

function

The first two ways of input and output are also used by Matlab. The third one is not. It essentially

means that any variable defined in the calling workspace of a function is available to that function

as long as it is not defined there. A variable defined in the calling workspace that is also defined in

the called function is called “shadowed”. The following function illustrates this point. Even if the

statement endfunction were omitted the function

function y = func1(x) 36a

a = (a+1)ˆ2

y = x+a;

endfunction

would not work in Matlab since the variable a is not defined prior to its first use in func1. In

Scilab the following code fragment works:

-->a = 1; 37a

-->y = func1(3)

y =

7.

-->disp(a)

1.

Since the variable a (set to 1) is available in the calling workspace, it is also available in func1. The

new value of a created in func1 (a is changed to 4) is not passed on to the calling workspace. This

approach works across an arbitrary number of levels. Assume funcB(x), which uses a variable a

without first defining it, is called by funcA(x) which does not use a variable a. Then

a = 5; funcA(10);

still works: a in func2B is taken to be 5 since a is part of the calling workspace not only of funcA

but also of funcB. So one might wonder about the purpose of the global statement if variables

are passed to functions even if they are not in the argument list or defined as global. The answer is

simply that the global statement allows one to ”export” variables from a function. Thus changing

line 37a by defining a as global has no effect on the result

-->global a, a = 1; 37b

-->y = func1(3)

y =

7.

-->disp(a)

1.
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However, if function func1 36a is changed to func1g which also includes a global statement

function y = func1g(x) 36b

global a

a = (a+1)ˆ2

y = x+a;

endfunction

then

-->global a 37c

-->a = 1;

-->y = func1g(3)

y =

7.

-->disp(a)

4.

The variable a at the end of code fragment 37c is 4, the value computed in func1g. If the global

a is dropped from 37c then

-->a = 1; 37d

-->y = func1g(3)

y =

7.

-->disp(a)

1.

Thus 37a , which uses func1, and 37d , which uses func1g, leave the variable a unchanged in

the calling program where it is not defined as global.

Scilab — like Matlab — has variable-length input argument and output argument lists. They even

have the same names, varargin and varargout, and work the same way1. If specified together

with regular (positional) arguments, they must be last in the argument list. An example is

function sizes(varargin)

// Arguments must be numeric or string matrices

for ii = 1:length(varargin)

[nrows,ncols] = size(varargin(ii));

disp(’Input argument no ’+string(ii)+’ has ’+string(nrows)...

+’ row(s) and ’+string(ncols)+’ column(s)’)

end

endfunction

1In Scilab varargin and varargout are lists whereas they are cell vectors in Matlab.
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which can be called with any number of input arguments and prints the number of rows and columns

for each input argument (provided the input arguments are not lists and the like for which size

has fewer than 2 or more than 2 output arguments). Thus

-->sizes(1:10,’test’,[’a’,’ab’;’abc’,’abcd’])

Input argument no 1 has 1 row(s) and 10 column(s)

Input argument no 2 has 1 row(s) and 1 column(s)

Input argument no 3 has 2 row(s) and 2 column(s)

The number (in) of actually defined input arguments and the number (out) of output arguments

of a function is provided by function argn as follows

[out [,in] ]=argn()

out=argn(1)

in=argn(2)

This function does what nargin and nargout do in Matlab. However, there is a slight twist. It is

not possible to determine if a function has been called without an explicit output argument since

there is always the implied output argument ans. Thus argn(1) will never be 0.

Scilab functions can return variables to the calling program in three different ways as well:

• as a variable in the output argument list

• as a global variable

• as the argument of the resume or return command

The first two are familiar from Matlab; furthermore, the above discussion of global variables has

also touched on the role of global variables as means to output data from a function. So it is only

the third item that needs an explanation.

In order to explain how the third way of returning parameters works it is necessary refer to a

difference between the Matlab keyboard command and the Scilab pause command. Both com-

mands interrupt the execution of a function or script. In Matlab one ends up in the workspace

of the interrupted function (or script). Any variable created in this workspace is available to the

interrupted function once execution resumes. Scilab, on the other hand, creates a new workspace.

As with functions, all variables defined in the lower workspaces are available. But, upon return to

the workspace below (Scilab command resume, all newly created variables (or any modifications

of variables of the higher workspaces) are not available to this lower workspace. This is discussed

in more detail on pages 12 ff.

Before I go on to the next section it is appropriate to shed some light on this section’s opening

statement that functions in Scilab are variables. The following sequence of Scilab statements is

meant to illustrate this somewhat abstract statement.

-->a = 1;

-->typeof(a)

ans =

constant
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-->convstr(’AbCdE’)

ans =

abcde

-->typeof(convstr)

ans =

function

-->a = convstr;

-->typeof(a)

ans =

function

-->a(’UvWxY’)

ans =

uvwxy

Initially, the variable a is assigned the value 1 and is of type constant. On the other hand,

the function convstr, which converts upper case characters to lower case, is of type function.

Obviously, like a, convstr is used as an argument of function typeof. Now I set a equal to

convstr (note, that convstr is used without parentheses or argument). This turns a into a

function and, as shown in the last statement, makes it an alias for convstr.

The fact that functions are variables has number of advantages not the least of which is that they

can be input arguments or output arguments of other functions (in Matlab one needs to pass the

function name as a string and use feval to evaluate it). A practical application is statement 38

on page 103.

6.1 Functions in Files

Text files with Scilab function generally have the extension .sci though, in principle, any other

extension (or no extension at all) is permissible (but see comments/restrictions below). Scilab

functions exist in three forms: uncompiled, compiled, and compiled with provisions for profiling.

More specifically, Scilab functions in text files are uncompiled. In order to be usable in Scilab they

have to be compiled. To allow profiling, i.e. to determine how often each line is executed and how

much time is spent executing it, one needs to add provisions for profiling. Profiling is explained in

Section 6.4 starting on page 103.

Like in Matlab, there can be more than one function in a text file. But in Matlab the file name

is actually the function name, and the second, third, etc. function in a file is only visible to the

first function. In Scilab the file name is immaterial and all functions in a file are “visible” to any

function loaded, command-line statement, or script.
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In order to be able to use a function defined in a text file it has to be compiled and loaded first.2

In Scilab, functions are loaded with the exec3 command. However, some functions, like genlib

and getd use the extension to recognize files with Scilab functions. Hence, it is a good idea to

comply with this convention.

Scilab comes with an integrated text editor; it can be invoked via the statement editor, which

opens the editor window. Statement editor filename opens the editor window and lodes the

file filename, if it exists, or creates a new file by this name. One can also open the editor window

via menu item “Editor” on the Scilab Console’s drop-down menu “Applications”. The editor

comes with the standard syntax highlighting; but, apart from that, it is still fairly unsophisticated.

However, using this editor — rather than a Scilab-independent editor — has a big advantage: files

can be compiled and loaded directly into Scilab. In the statement exec(’filename’) command

the argument filename is the name of the file containing the function; if this file is not in the

working directory the full path must be given. Thus

-->getf(’polcoord.sci’)

is sufficient to load the file polcoord.sci if it is in the working directory. If this is not the case

then something like

-->exec(’D:\MyScilab\Filters\polcoord.sci’)

must be used. It is important to note that the filename must include the extension (whereas Matlab

implies the extension .m). Once exec is executed the functions in the file are immediately available.

This differs from the load command discussed below. Also, see the “gotcha” regarding exec on

page 112.

Functions can also be collected in libraries. This is discussed in Section 7.1. It is important to

remember, however, that loading a library does not mean that the functions in it are loaded but

rather that they are marked as available to be loaded when called—provided they are undefined

at that time. If the name of a function happens to be that of an already defined function or a

built-in function it will never be loaded. One can use getf to force loading of a function (provided

it does not have the same name as a protected built-in function).

This last condition points to one of the challenges of writing a function: choosing its name. It is

important that a name reflects the purpose of the function, is easy to remember, and is not already

used. The set of names that satisfy these criteria is surprisingly small — significantly smaller than

in Matlab. And there are four reasons:

1. Variable names are shorter (24 vs 63 characters in Matlab)

2. In Matlab a subfunction, i.e. a second, third, etc. function in a single file, is only visible to

the first function in the file. So there is no conflict with any other function in Matlab’s search

path.

3. Matlab has the concept of “private functions”. These are functions that reside in a subdi-

rectory named private and that are only visible to functions in the parent directory: when

2This means a significant departure from the approach Matlab uses where the interpreter searches the directories

of the search path and loads and compiles the function in the first file encountered with the name
3Function getf is obsolete and will be dropped in Version 5.3
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a function in a directory that has a subdirectory private calls another function the subdi-

rectory private is searched first to check if the function is there; only if it is not found the

standard search path is checked.

4. Matlab has the concept of function handles which allows one—among other things—to pass

a function reference to other functions. The function is resolved at the time the function

handle is created. These other functions then use the value as a means to call the previously

resolved function which need not be in the scope by the time it is called (incidentally, this

is a way to make a Matlab subfunction available to functions outside the file in which it is

created).

It is particularly the lack of the “private directory” concept that makes writing a program package

that peacefully coexists with other packages more challenging than it needs be.

6.2 In-line Functions

Functions need not be set-up in files. They can also be created “on the fly”. There are two ways

to do so; one of them has already been used for examples in previous chapters (see e. g. function

ismember on page 38). The function can be typed into the Scilab window as if it were typed in a

file editor; the important thing to remember is that the statement endfunction is required to tell

the interpreter that the function definition is complete. While the function statements are typed

in, the usual double-spaced display format is replaced by single spacing.

The other way of inputting a function uses the function deff. A simple example of its use is

-->deff(’y = funct(x)’,’y = x̂2’)
-->funct(3.5)

ans =

12.25

-->typeof(funct)

ans =

function

-->type(funct)

ans =

13.

The first argument of deff is a character strings with the function header, the second is a string

or a string vector which contains the body of the function. An optional third argument specifies if

the function should be compiled (’c’) or not (’n’). The former is more efficient than the latter

and is the default (there is actually a third possible value for the third input argument: ’p’ which

prepares the function for profiling; see page 103). Thus, in the example above, funct is compiled.

This is also proven by the fact that funct has type 13 (see Table 3.1). On the other hand, with

-->deff(’y = funct(x)’,’y = x̂2’,’n’);
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-->typeof(funct)

ans =

function

-->type(funct)

ans =

11.

The variable funct has type 11 (uncompiled function), while the output of typeof is unchanged.

Another example for the use of deff is on page 103.

With more complicated functions or functions that contain string definitions the first version of

in-line function definition is generally easier to read.

It is important to note that inline functions can be defined not just in the Scilab Console. They

can also be included in Scilab scripts and functions.

6.3 Functions for operator overloading

Operator overloading refers to the ability to give operators that are used for one kind of data object

a new meaning for another one. An example mentioned before is the use of the + to concatenate

two strings or string matrices. But not only operators can be overloaded. The way a data object

is displayed can be overloaded as well. For typed lists and matrix-oriented typed lists it is the type

name, the first string in the first entry of a typed list, that defines the type of data object. The

typed list seismic data has type seismic; it simulates a seismic data set with 10 seismic traces,

each consisting of 251 samples; hence, in the following, it is generally referred to as “seismic data

set”

-->seismic data = tlist([’seismic’,’first’,’last’,’step’, ...

’units’,’traces’],0,1000,4,’ms’);

-->nsamp = (seismic data.last-seismic data.first)/seismic data.step+1;

-->seismic data.traces=rand(nsamp,10);

-->seismic data

seismic data(1)

!seismic first last step units traces !

seismic data(2)

0.

seismic data(3)

1000.
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seismic data(4)

4.

seismic data(5)

ms

seismic data(6)

column 1 to 5

0.3914068 0.2173720 0.4883297 0.4061224 0.9985317

0.8752304 0.4418458 0.9141346 0.9613220 0.1959695

0.5266080 0.9798274 0.6645192 0.8956145 0.9872472

0.9856596 0.5259225 0.5468820 0.0717050 0.4248699

[More (y or n ) ?]

The default display of such a typed list is needlessly long; for this reason the function show had been

introduced to provide a more compact display for typed lists (see page 51). It is highly desirable

to use show as the default display of typed lists of type seismic. This can be done surprisingly

easily by means of the function

function %seismic p(seis)

// Function displays the typed list ‘‘seis’’ of type ’seismic’ much like

// a Matlab structure

show(seis)

endfunction

The result is

-->seismic data =

LIST OF TYPE "seismic"

first: 0

last: 1000

step: 4

units: ms

traces: 251 by 10 matrix

Overloading the way a variable is displayed is possible because the typed list of type seismic looks

for a function with the name %seismic p. As shown in this example the function name consists

of the % sign followed by the type name, seismic, an underscore as a separator, and the letter p

which indicates display (the fact that the underscore serves as a separator between the list type

and the “p” does not mean that there cannot be an underscore in the type name).

In principle, any operator that is not predefined for given types of operands can be overloaded.

The name of the overloading function is constructed according to certain rules. For the three unary

operators -, ’, and ∼, for example, it has the form %<operand type> <op code>. An example is

the use of the minus sign in front of the seismic-typed list seismic data to change the sign of

the entries of the matrix seismic data.traces. As shown in Table 6.2 the operator code for the

minus sign is s. Thus
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Operator Op-code Operator Op-code

’ t \. w

+ a [a,b] c

- s [a;b] f

∗ m () extraction e

/ r () insertion i

\ l == ô p <> n

.* x | g

./ d & h

.\ q .̂ j

.*. k ∼ 5

./. y .’ 0

.\. z < 1

: b > 2

∗. u <= 3

/. v >= 4

Table 6.2: Operator codes used to construct function names for operator overloading

function seismic = %seismic s(seismic)

// Function defines the unary negation for a seismic data set

seismic.traces=-seismic.traces;

endfunction

With the seismic data set seismic data defined above

-->seismic data.traces(1,1)

ans =

0.2113249

-->seismic data = -seismic data;

-->seismic data.traces(1,1)

ans =

- 0.2113249

The function name for overloading binary operators has the form

%<first operand type> <op code> <second operand type>. In this definition <operand type>

is code for the type of variable the operator of type <op code> is operating on. Operand types,

i.e. codes for the various Scilab variables, are listed in the rightmost column of Table 3.1 on page

17. An example is the following function which defines the operation of adding a scalar to a seismic

data set.

function seismic = %seismic a s(seismic,c)

// Function adds a constant to the matrix "seismic traces"
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seismic.traces = seismic.traces + c;

endfunction

Here <first operand type> is seismic and the <second operand type> is s. A quick look at

Table 3.1 shows that s is the operand type of a constant. As shown in Table 6.2, a is the operator

code for + (addition). Thus

-->seismic data.traces(1,1)

ans =

0.2113249

-->seismic data = seismic data + 1;

-->seismic data.traces(1,1)

ans =

1.2113249

It is important to note that overloading the operator + via %seismic a s(seismic,c) is only

defined for this specific sequence of operands. The expression 1 + seismic data causes an error

message as does, for example, seismic data - 1; but seismic data + (-1) works.

Another example of overloading the + operator is on page 111.

Some primitive functions can also be overloaded if they are not defined for the data type. In this

case the function name has the form %<type of argument> <function name>. The function below

takes the absolute value of the traces of a seismic data set.

function seismic = %seismic abs(seismic)

// Function takes the absolute value of the entries of the

// matrix ‘‘seismic.traces’’

seismic.traces = abs(seismic.traces);

endfunction

Thus, for the seismic data set seismic data defined above,

-->seismic data.traces(1,1)

ans =

0.2113249

-->seismic data = abs(-seismic data);

-->seismic data.traces(1,1)

ans =

0.2113249

Extraction of object elements can be overloaded by means of a function the name of which has the

form %<operand type> e(i1,...,in,operand). A somewhat simplified example is

function seis = %seismic e(i,j,seis)

// Function extracts rows i and columns j of the ...
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// matrix "seis.traces"; i and j can be vectors

seis.traces = seis.traces(i,j);

seis.last = seis.first+(i($)-1)*seis.step;

seis.first = seis.first+(i(1)-1)*seis.step;

endfunction

which outputs a seismic data set where seis.matrix consists only of the elements i,j of the input

matrix. An example is

-->seismic data.traces(5,10)

ans =

0.1853351

-->temp = seismic data(5,10)

temp =

LIST OF TYPE "seismic"

first: 16

last: 16

step: 4

traces: 0.1853351

units: ms

It is important to keep in mind that typed lists have extraction (component extraction) defined for

one index. Hence, extraction with one index cannot be overloaded, and

-->seismic data(4)

ans =

4.

produces the fourth element of typed list seismic, step, which is 4 (remember that the first

element is the string vector [’seismic’,’first’,’last’,’step,’traces’].

It is also possible to extract data object elements to more than one output object. Furthermore,

the insertion syntax and row and column concatenation can also be overloaded.

Overloading insertion allows one to add a new field to a typed list simply by assigning a value to

it—analogous to the way a field of a Matlab structure can be defined. For example, the name of

the function that performs insertion of a field that can accept a numeric value into a typed list

with type name seismic is %c i seismic. It has the form

function seis=%s i seismic(field,value,seis)

// Function adds a numeric field to a typed list with

// type name seismic and sets its value.

// INPUT

// seis typed list to which to add the field

// value numeric value to be assigned to the field

// field string with name of field
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// OUTPUT

// seis typed list with new field "field" set to "value"

temp=getfield(1,seis);

temp($+1)=field;

setfield(1,temp,seis);

endfunction

If this function has been loaded or is in a library one can create a new field— in this example

reel no—simply by assigning it a numeric value.

-->seismic data.reel no=2345

seismic data =

Seismic data set

first: 0

last: 1000

step: 4

units: ms

traces: 251 by 10 matrix

reel no: 2345

However, this function handles numeric scalars, vectors, or matrices only; no character strings or

other data objects. Thus

-->seismic data.line = ’EW-3241’;

!--error 4

undefined variable : %c i seismic

Overloading insertion of a field for a string-type variable is not yet defined. However, the func-

tion body of %c i seismic is identical to that of %s i seismic. Hence, it is enough to copy

%s i seismic to %c i seismic and bingo!

-->%c i seismic = %s i seismic 38

%c i seismic =

[seis]=%c i seismic(field,value,seis)

-->seismic data.line = ’EW-3241’

seismic data =

LIST OF TYPE "seismic"

first: 0

last: 1000

step: 4

units: ms

traces: 251 by 10 matrix

reel no: 2345

line: EW-3241

Statement 38 illustrates a practical use of the fact (discussed on page 94) that a function is just

a special type of variable.
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6.4 Profiling of functions

For those concerned about execution times and function efficiency, Scilab offers a profiler which

works somewhat differently compared to Matlab’s profiling facility. It requires that the func-

tion to be profiled is compiled with exec and then prepared for profiling via a call to function

add profiling or that it is defined via deff with the profiling option turned on. This is illus-

trated in the following example. Profiling is turned on if the optional third argument of deff is

set to ’p’.

-->deff(’y=funct(n)’,[’y=rand(n,n)’;’for ii=1:10’;’y=sqrt(y)’;’end’],’p’)

-->y=funct(1000); // Execute function ‘‘funct’’

-->profile(funct) // Profile function ‘‘funct’’

ans =

1. 0. 0.

1. 0.000094 4.

10. 0. 0.

10. 0.000906 3.

1. 0. 0.

The output of profile is a three-column matrix with one row for each line in function funct.

The number in the first column is the number of times each line of funct has been executed. The

numeric value in the second column represents the total execution time in seconds for each line.

The number in the last column reflects the effort of the Scilab interpreter for each line. Of course,

one has to know which particular line of the function corresponds to a row of the profile matrix.

Function showprofile provides this association.

-->showprofile(funct)

function y=fun(n)|1 |0|0|

y = rand(n, n); |1 |0|4|

for ii = 1:10, |10|0|0|

y = sqrt(y); |10|0|3|

end |1 |0|0|

It displays the profile matrix attached to the listing of function funct; small matrix entries are

rounded to 0 (see function clean).

It is also possible to represent the result of profiling in graphic form (plotprofile).

6.5 Translation of Matlab m-files to Scilab Format

A function, mfile2sci, is available to translate Matlab m-files to Scilab. This function is still

being worked on by someone in the Scilab team (it is likely to be a never-ending task) but the
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existing version greatly simplifies this kind of conversion—provided the files are not too long or

too complicated. It relieves the user of a lot of drudgery and lets him concentrate on the thornier

problems: instances where Matlab and Scilab functions may differ slightly, possibly depending on

parameters in the argument list, where functions unknown to mfile2sci are used, etc. mfile2sci

allows individual files or whole directories to be converted. In the process it creates a *.sci file, a

*.cat file (help file generated from the comment lines at the beginning of the m-file, those lines that

are also used by Matlab’s help facility), and, if possible, a “compiled” *.bin file. The latter is. An

example is

mfile2sci(’D:\MyScilab\Geophysics\read las file.m’, ...

’D:\MyScilab\Geophysics’)

If no input argument is provided mfile2sci opens a Graphic User Interface (GUI) window. It

allows interactive selection of either the Matlab m-file or a directory with m-files; the user can also

select the directory to which the Scilab files created should be saved.

Another related function is translatepaths which translates all Matlab m-files in a set of direc-

tories to Scilab. It uses mfile2sci to translate the individual files. If called without an input

argument it opens the very same GUI mfile2sci does. In this case mfile2sci and mfile2sci

are equivalent.
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Function Libraries and the Start-up

File

7.1 Creating function libraries

This is a topic that has no analog in Matlab. Libraries are collections of compiled functions that

can be loaded automatically upon start-up or that can be loaded on demand. There are several

ways of creating libraries; the one described in the following appears to be the least painful.

Say, C:\MyScilab is a directory/folder with two Scilab functions (file extension .sci).

-->unix w(’ls C:\MyScilab’) // List files in folder C:\MyScilab
lower.sci

upper.sci

Then a possible procedure to create a library is as follows;

-->genlib(’Mylib’,’C:\MyScilab’)

Function genlib compiles every Scilab function (file with extension .sci) in directory C:\MyScilab
and saves it in a file with the same root but extension .bin. It also creates the text file names with

the names of all functions, and a library file lib. Hence, directory C:\MyScilab now contains the

following files

-->unix w(’ls C:\MyScilab’)
lib

lower.bin

lower.sci

names

upper.bin

upper.sci

In addition, the variable Mylib of type library (numeric type code 14) is created in the workspace,

and all Scilab functions in C:\MyScilab are now available for use.

It is important to note that this does not create help files. This has to be done separately.

Furthermore, the statement
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load(’D:\MyScilab\lib’);

in the start-up file .scilab or scilab.ini will load the library Mylib every time Scilab is started.

Note that the library name Mylib is not mentioned in the load statement. Nevertheless, the variable

Mylib of type library shows up in the workspace (the library lib “knows” that its name in the

workspace is Mylib).

There are a few things to keep in mind with regard to loading libraries. This is illustrated in the

following.

-->clear // Remove all unprotected variables from the workspace

-->who // Show all variables

your variables are...

%helps scicos pal MSDOS home PWD TMPDIR

plotlib percentlib soundlib xdesslib utillib tdcslib

siglib s2flib roblib optlib metalib elemlib commlib

polylib autolib armalib alglib intlib mtlblib WSCI

SCI %F %T %z %s %nan %inf

$ %t %f %eps %io %i %e

using 5517 elements out of 10000000. and 41

variables out of 1791

-->lc = lower(’ABC’)

!--error 4

undefined variable : lower

Since all unprotected variables have been removed the function lower is not available. To get it

back one can load the library Mylib, and the command who shows that the variable Mylib is now

in the workspace.

-->load(’D:\MyScilab\lib’) // Load library containing function lower

-->who

your variables are...

Mylib %helps scicos pal MSDOS home

PWD TMPDIR plotlib percentlib soundlib xdesslib

utillib tdcslib siglib s2flib roblib optlib metalib

elemlib commlib polylib autolib armalib alglib intlib

mtlblib WSCI SCI %F %T %z %s

%nan %inf $ %t %f %eps %io

%i %e

using 5553 elements out of 10000000.

and 42 variables out of 1791

However, functions lower and upper are not yet in the workspace. Loading a library does not

mean that the functions in it are loaded into the workspace; they are only marked as available to

be loaded when called. Thus, we can now execute the function lower and expect it to be loaded.
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-->lc = lower(’ABC’)

lc =

abc

-->who

your variables are...

lc lower Mylib %helps scicos pal

MSDOS home PWD TMPDIR plotlib percentlib

soundlib xdesslib utillib tdcslib siglib s2flib roblib

optlib metalib elemlib commlib polylib autolib armalib

alglib intlib mtlblib WSCI SCI %F %T

%z %s %nan %inf $ %t %f

%eps %io %i %e

using 5650 elements out of 10000000.

and 44 variables out of 1791

This statement adds two more variables to the workspace: the string variable lc and the function

lower.

Functions in libraries are actually loaded only if they are still undefined and their name is encoun-

tered during execution! Thus a potential problem exists if the library function name is the same

as that of a built-in function or an already defined user function. In this case it would not be

loaded. A related problem would come up if one found a bug in, say, lower, fixed it, and rebuilt

and reloaded the library. If lower is executed again one would not get the corrected version in the

rebuild library Mylib but rather the one in variable lower. Hence, in order to get the corrected

version it is not only necessary to rebuild and load the new library but also to remove the variable

lower from the workspace; in other words: it is necessary to execute the command

-->clear lower

An alternative is to bring the corrected version of lower into the workspace via

-->getf(’C:\MyScilab\lower.sci’)

One of the benefits of the built-in editor editor is that all this compiling and loading is being

taken care of automatically if one uses the submenu items “Load into Scilab” of the “Execute”

drop-down menu.

7.2 Start-up file

Matlab users who want to write their own functions tend to look for a “Scilab Path”, something

akin to the Matlab Path. As mentioned before, there is no equivalent to the Matlab path in Scilab;

instead, users themselves must “load” their functions into Scilab. They can, for example, create

libraries as described above and load them into Scilab and, fortunately, this can be automated via

the “start-up file”.

This start-up file has been mentioned earlier; its name can be either .scilab or scilab.ini and,

for MS Windows, it needs to be in directory SCIHOME, i.e. in the directory defined by the global

variable SCIHOME. The following start-up file is a simplified example of a start-up file.
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// Start-up file

stacksize(10000000); // Set the size of the stack

lines(1000) // Increase the limit on the number of

// lines displayed

mydir=’G:\Backed-up\MyScilab\’; // Specify the folder with user functions

// Initialize a global structure with default settings

global MYSCILAB

MYSCILAB=tlist([’struct’,’directory’,’sce path’,’sci path’])

// Set a field of the global structure

MYSCILAB.directory=mydir;

sep=filesep(); // Select the appropriate file separator

// for constructing dirctories

// Path for scripts (one directory)

MYSCILAB.sce path=mydir+’Scripts’+sep;

// Path for functions (two different directories)

MYSCILAB.sci path=[mydir+’Seislab’+sep; mydir+’General’+sep]

// Create two personal libraries

genlib(’Generallib’,mydir+’General’)

genlib(’Geophysicslib’,mydir+’Seislab’)

// Load the personal libraries

load(mydir+’Seislab’+sep+’lib’)

load(mydir+’General’+sep+’lib’)

It sets the stack size and specifies how many lines should be displayed before the user is prompted

to decide whether to continue or abort. Then a global typed list, MYSCILAB, is defined so that a

few parameters are readily available in the workspace. Finally, two libraries are created and loaded

into the workspace. As mentioned above, the functions in them are not loaded right away but will

be loaded when called.

7.3 User-supplied Libraries

For quite a long time the Scilab web site has maintained directories with user-supplied functions that

expand Scilab’s capabilities in specific fields. These modules can now be downloaded and installed

directly from the Scilab Console (of course, an Internet connection is required). All it takes is
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clicking on submenu item “Module Manager – ATOMS” on the Scilab Console’s drop-down menu

”Applications”, selecting from the list of modules, and clicking on the install button.

Modules can also be installed via function calls from the Scilab Console. For example, function

atomsLoad installs one or more external modules, and atomsRemove removes installed modules.

Table 7.1 list a number of these functions.

Scilab Description

atomsAutoLoadList Get list of the modules scheduled for auto-loading

atomsGetInstalled Get list of installed external modules

atomsInstall Installs one or more external modules

atomsIsInstalled Checks is a certain external module is installed

atomsLoad Install one or more external modules

atomsRemove Remove one or more external modules

atomsUpdate Update one or more external modules

Table 7.1: Functions installing, managing and removing user-supplied Scilab modules
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Error Messages and Gotchas

8.1 Scilab error messages

More often than not, error messages of computer programs are considered cryptic. They reflect the

thinking of him who wrote the program and do not seem to meant for those who use them; Scilab

confirms this general experience. However, error messages have improved. 14

8.1.1 !–error 4: undefined variable:

This is a popular message where the colon is frequently followed by a strange variable name. An

example is

-->three=’3’

three =

3

-->str=three+4 39

!--error 144

Undefined operation for the given operands.

check or define function %c a s for overloading.

The error committed here is obviously the fact that statement 39 tries to add the number 4 the

string ’3’. This is an operation that is not defined in Scilab. The following is a brief explanation of

the composition of the function name. More details are in the section on operator overloading that

begins on page 98. Functions that overload a binary operator (in this case the + sign) have the form

%<first operand type> <op code> <second operand type>. Here the type of the first operand

is c, that of the second operand is s. The rightmost column of Table 3.1 on page 17 shows that

operand type c denotes a character string and operand type s a numeric variable. Furthermore,

Table 6.2 on page 100 shows that operator code a denotes addition. Hence, function %c a s—if it

existed—would “add” a constant to a string. To demonstrate this define

function str=%c a s(str,num)

// Convert a numeric variable into a string and append it to another string

// INPUT
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// str string

// num numeric variable

// OUTPUT

// str input string with numeric variable appended

str=str+string(num);

endfunction

and then execute statement 39 again.

-->str=three+4

str =

34

The error message is gone. However, it is important to remember that 4 + three would still

cause an error message “undefined variable”. To catch it as well one needs to define function

%s a c where the operands are reversed.

8.1.2 !–error 66: Too many files opened!

As explained on page 71 a user can open no more than 16 files before Scilab runs out of logical unit

numbers. The problem is that he may not be aware that he has so many open files. This can happen

if he repeatedly runs a misbehaving program that opens a file and does not close it again (possibly

because it terminates abnormally). Function dispfiles, which displays a list of all open files, also

fails with an error message. To then close all open files use the command mclose(’all’).

Be careful with mclose(’all’), though. If it is used inside a Scilab script file, it also closes the

script; consequently, Scilab will not execute commands following mclose(’all’). And there will

be no error message.

8.2 Gotchas

This section deals with unexpected problems I encountered during my travails.

Function getf

Function getf1 reads and compiles a function from a file (see page 96). In case it encounters an

error while compiling it aborts with an error message. When one corrects the error and wants to

save the file to repeat the call to getf one finds out that this is not possible since getf has not

closed the file. The sledge-hammer approach to this problem is to close all user files with mclose

all. A more nimble approach is to find the offending file’s identifier by executing dispfiles()

and then close only that specific file. This is illustrated below

-->dispfiles()

|File name |Unit|Type|Options |

|---------------------------------------------------------------------|

1Function getf has been deprecated and will be removed in Scilab version 5.3
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|D:/PROGRAM FILES/SCILAB-2.6/scilab.hist |1 |F77 |unknown formatted |

|D:\MyScilab\Tests\read segy file.sci |2 |C |r b |

|Input |5 |F77 |old formatted |

|Output |6 |F77 |new formatted |

-->mclose(2);

Line numbers in error messages

Line numbers displayed with error messages all too frequently do not agree with the line numbers

of the offending statement in the function file. Apparently, there are various reasons for that. If

there are comment lines prior the function header those lines are not counted. Other irregularities

seem to be associated with expressions that continue over two or more lines.



Appendix A

Matlab functions and their Scilab

Equivalents

The following table is an alphabetic list of Matlab functions and their Scilab functional equivalents.

The third column contains one-line descriptions that pertain to the Scilab function and not to the

Matlab function (in case there is a difference). In some instances the term ”equivalent” is defined

rather loosely; parameters may be different or the output may be somewhat different in certain

circumstances (an example is the Scilab function length which may return, for numeric matrices

or string matrices, a different result than the Matlab function length). In other cases functions

provide the same functionality, but in a somewhat different way. For this reason it is not generally

sufficient to replace a Matlab function by the equivalent listed here; it is necessary to check the

Scilab help file before using one of these equivalents.

Matlab Scilab

[] [] Empty matrix

abs(a) abs(a) Absolute value of a, |a|
acos acos Arc cosine

acosh acosh Inverse hyperbolic cosine

all and Logical AND of the elements of boolean or real numeric matrix a

any or Logical OR of the elements of boolean or real numeric matrix a

asin asin Arc sine

asinh asinh Inverse hyperbolic sine

atan atan Arc tangent

atan2 atan Arc tangent

atanh atanh Inverse hyperbolic tangent

balance balanc Balance matrix to improve condition number

Table A.1: Matlab functions and their Scilab equivalents
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Matlab Scilab

besselh besselh Bessel function of the third kind (Hankel function), Hα(x)

besseli besseli Modified Bessel function of the first kind, Iα(x)

besselj besselj Bessel function of the first kind, Jα(x)

besselk besselk Modified Bessel function of the second kind, Kα(x)

bessely bessely Bessel function of the second kind, Yα(x)

break break Force exit from a for or while loop

case case Start clause within a select block

catch catch Begin catch block (after the try block)

ceil(a) ceil(a) Round the elements of a to the nearest integers ≥a
cell cell Initiate a cell array

char ascii Convert ASCII codes to equivalent string

chol(M) chol(M) Choleski factorization; R’*R = M

clear clear Clear unprotected variables and functions from memory

clear global clearglobal Clear global variables from memory

compan companion Companion matrix

cond cond Condition number of M

cond cond Condition number of a matrix

conj conj Complex conjugate

conv convol Convolution

cos cos Cosine

cosh cosh Hyperbolic cosine

cot cotg Cotangent

coth coth Hyperbolic cotangent

cumprod cumprod Cumulative product of all elements of a vector or array

cumsum cumsum Cumulative sum of all elements of a vector or array

date date, getdate Current date as string

dbstack where Output current instruction calling tree to variable

dbstack whereami Display current instruction calling tree

deblank stripblanks Remove leading and trailing blanks from a string

det det Determinant of a matrix

diag diag Create diagonal matrix or extract diagonal from matrix

diary diary Write screen output of a Scilab session to a file

disp disp Display input argument

double double Convert integer of any type/length to floating point

double ascii Convert string to equivalent ASCII codes

echo mode Control amount of information displayed by function/script

eig spec Eigenvalues of matrix

eig bdiag Block diagonalization of matrix

ellipj %sn Jacobian elliptic function, sn

Table A.1 (continued): Matlab functions and their Scilab equivalents
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Matlab Scilab

else else Start an alternative in an if or case block

elseif elseif Start a conditional alternative in an if block

end [loop] end Terminate for, if, select, or while clause

end [matrix] $ Index of last element of matrix or (row/column) vector

erf erf Error function, erf(x) = 2/
√
π
∫ x
0 exp(−t2)dt

erfc erfc Complementary error function, erfc(x) = 2/
√
π
∫∞
x exp(−t2)dt

erfcx erfcx Scaled complementary error function, erfcx(x) = exp(x2)erfc(x)

error error Print error message and abort

eval execstr Evaluate string vector with Scilab expressions or statements

exist(a) exists(a) Test if variable a exists

exist(a,’dir’) isdir(a) Test if directory a exists

exp exp Exponential function

expm expm Matrix xponential function

eye eye Identity matrix (or its generalization)

fclose mclose Close (all) open file(s)

fft fft Forward and inverse Fast Fourier Transform

fft2 fft Forward and inverse Fast Fourier Transform

fftshift fftshift Shift zero-frequency component to center of spectrum

figure xset Set defaults for current graphics window

filesep filesep Returns the character that separates directory names (\ or /)

find spget Retrieve entries of a sparse matrix

find(a) find(a) Find the indices for which boolean matrix a is true

findstr strindex Find starting position(s) of a string in an other string

fix(a) fix(a) Rounds the elements of a to the nearest integers towards zero

flipdim(a) flipdim(a) Flip matrix a along a specified dimension

floor(a) floor(a) Rounds the elements of a to the nearest integers ≥ a

fopen mopen Open a file

for for Start a loop with a generally known number of repetitions

format format Set current display format of variables

fprintf fprintf Write formatted data to file (like C-language fprintf function)

full full Convert sparse to full matrix

function function Identify header of function definition

gamma gamma Gamma function, Γ(x) =
∫∞
0 tx−1 exp(−t)dt

gammaln gammaln Logarithm of the Gamma function, ln(Γ(x))

getenv getenv Get value of an environment variable

getfield getfield Get a data object from a list

global global Define variables as global

help help On-line help

hess(M) hess(M) Hessenberg form of M

if if Start a conditionally executed block of statements

ifft fft Forward and inverse Fast Fourier Transform

Table A.1 (continued): Matlab functions and their Scilab equivalents
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Matlab Scilab

ifft2 fft Forward and inverse Fast Fourier Transform

imag imag Imaginary part of a matrix

input input Prompt for user (keyboard) input

int16(a) int16(a) Convert a to 16-bit signed integer

int32(a) int32(a) Convert a to 32-bit signed integer

int8(a) int8(a) Convert a to 8-bit signed integer

intersect intersect Returns elements common to two vectors

inv(M) inv(M) Inverse of matrix M

isempty(a) isempty(a) Check if variable a is empty

isglobal(a) isglobal(a) Test if a is a global variable

isinf(a) isinf(a) Test if a is infinite

isnan(a) isnan(a) Output boolean vector with entries %t where a is %nan

isreal(a) isreal(a) Test if a is real (or if its imaginary part is “small”)

keyboard pause Interrupt execution of function or script

length length Length of list; product of no. of rows and columns of matrix

linspace linspace Create vector with linearly spaced elements

load loadmatfile Load workspace variables from a disk file in Matlab format

log log Natural logarithm

log10 log10 Base-10 logarithm

log2 log2 Base-2 logarithm

logm logm Matrix natural logarithm

logspace logspace Create vector with logarithmically spaced elements

lookfor apropos Keyword search for a function

lower convstr Convert string to lower or upper case

max max Maximum of all elements of a vector or array

max maxi Maximum of all elements of a vector or array

mean mean Mean of all elements of a vector or array

median median Median of all elements of a vector or array

min mini Minimum of all elements of a vector or array

min min Minimum of all elements of a vector or array

mod(a,b) pmodulo(a,b) a-b.*floor(a./b) if b∼=0; remainder of a divided by b

more lines Specify number of lines to display and columns/line

nargin argn Number of input/output arguments of a function

nargout argn Number of imput/output arguments of a function

nextpow2 nextpow2 For argument x compute smallest integer n such that 2n ≥ x

nnz nnz Number of nonzero elements of a sparse matrix

norm(M) norm(M) Norm of M (matrix or vector)

null(M) kernel(M) Nullspace of M

Table A.1 (continued): Matlab functions and their Scilab equivalents
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Matlab Scilab

num2str string Convert number(s) into string(s)

ones ones Matrix of ones

orth(M) orth(M) Orthogonal basis for the range of M

pause halt Stop execution and wait for a key press

pinv pinv(M) Pseudoinverse of M

planerot givens Given’s rotation

prod prod Product of the elements of a matrix

profile profile Extract execution profiles from a Scilab function

qr(M) qr(M) QR decomposition of M

rand rand Create random numbers with uniform or normal distribution

randn rand Create random numbers with uniform or normal distribution

rank(M) rank(M) Rank of M

rcond(M) rcond(M) Reciprocal of the condition number of M; L-1 norm

real real Real part of a matrix

regexp regexp Match regular expression

rem(a,b) modulo(a,b) a-b.*fix(a./b) if b∼=0; remainder of a divided by b

reshape matrix Reshape a vector or a matrix to a different-size matrix

return resume Return from a function or resume execution after a pause

return return Return from a function or resume execution after a pause

rmfield null Delete an element of a list

round(a) round(a) Round the elements of a to the nearest integers

save savematfile Save workspace variables to disk in Matlab format

schur(M) schur(M) Schur decomposition

setfield setfield Set a data object in a list

sign(a) sign(a) Signum function, a/|a| for a ̸= 0

sin sin Sine

sinc sinc Sinc function, sin(x)/x

sinh sinh Hyperbolic sine

size size Size/dimensions of a Scilab object

sort(a) gsort(a) Sort the elements of a

sortrows(a) gsort(a) Sort elements/rows/columns of a

spalloc spzeros Sparse zero matrix

sparse sparse Create sparse matrix

speye speye Sparse identity matrix

spones spones Replace non-zero elements in sparse matrix by ones

sprand sprand Create sparse random matrix

sqrt(a) sqrt(a)
√
a

sqrtm sqrtm Matrix square root

sscanf msscanf Read variables from a string under format control

Table A.1 (continued): Matlab functions and their Scilab equivalents
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Matlab Scilab

std st deviation Standard deviation

strrep strsubst Substitute one string for another in a third string

strtok tokens Split string into substrings based on one or more “separators”

struct struct Create a structure

sum sum Sum of all elements of a matrix

svd svd Singular value decomposition

switch select Start a multi-branch block of statements

tan tan Tangent

tanh tanh Hyperbolic tangent

tic tic Starts clock for timing of a code segment

tic timer Starts clock for timing of a code segment

toc toc Outputs time elapsed since the preceding call to toc

toc timer Outputs CPU time used since the preceding call to timer

toeplitz toeplitz Toeplitz matrix

trace trace Trace (sum of diagonal elements) of a matrix

tril tril Extract lower-triangular part of a matrix

triu triu Extract upper-triangular part of a matrix

try try Trap error

uigetfile uigetfile Open dialog box for file selection

uint16(a) uint16(a) Convert a to 16-bit unsigned integer

uint32(a) uint32(a) Convert a to 32-bit unsigned integer

uint8(a) uint8(a) Convert a to 8-bit unsigned integer

union union(a,b) Extract the unique common elements of a and b

unique(a) unique(a) Return the unique elements of a in ascending order

unix unix w Execute Unix/DOS command; output to Scilab window

upper convstr Convert string to lower or upper case

varargin varargin Variable number of input arguments for a function

varargout varargout Variable number of output arguments for a function

version getversion Display version of Scilab

warning warning Print warning message

which whereis Display name of library containing a specific function

while while Start repeated execution of a block while a condition is satisfied

who who Displays/outputs names of current variables

whos whos Displays/outputs names and specifics of current variables

zeros zeros Matrix of zeros

Table A.1 (continued): Matlab functions and their Scilab equivalents
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.scilab, see start-up file

, 82

arguments

named, 62

variable-length list of, 62, 94

ASCII codes, 25

ATOMS, 111

boolean operators, 35

boolean variables, 35–40

cell array, 3, 24, 41–43, 48–50

character string, see string

command-style syntax, 13, 61, 87

comments, 4

complex numbers, 19

constants, built-in, 7

continuation of a statement, 5

convolution, 70, 116

date, 15

directory

private, see private directory

temporary, 7

display of numbers, see format, numbers

DOS, see MS-DOS

editor, 4, 97, 109

end of file, 73

environmental variables, see variable, environ-

mental

error trapping, 9, 11, 12, 32, 33, 78, 85

error messages

undefined operation, 112

undefined variable, 113

error trapping , 11–12

execution time, 105

Fast Fourier Transform, 70, 72, 117, 118

FFT, see Fast Fourier Transform

fields, 51

file, 72–81

opening, closing, 72–73

flow control, 9

font, 1

format

compact, vi

loose, vi

numbers, 1, 2

function

handle, 98

library, see library

loading, 97

functions

as arguments, 96

as variables, 95, 104

general discussion, 61–84

inline, 98, 99

overloading, 102

private, see private functions

profiling, 105

user, 91–104

global variables

HOME, 7

LANGUAGE, 7

MSDOS, 8

OS, 7

PWD, 7, 85

SCIHOME, 1, 7

SCI, 1, 3, 7, 8

TMPDIR, 7, 88

home, 7
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help, 3

integers, 20, 22, 80

interrupt, see pause

Kronecker

division, 5

product, 5

language, 7

last element

of vector or matrix, 15, 19

LATEX, 82

length

list, 50

numeric matrix, 13

string, 24, 25

libraries

user-supplied, 110

library, 97, 107–109

lines displayed, 2

list, 42, 46, 47

matrix-oriented typed, 46, 56–57

ordinary, 48–51

polynomials, 57–60

typed, 50–56, 103, 110

logical variables, see boolean variables

Matlab

emulation, 3

m-file conversion, 105

path, see path

Matlab format

loading variables saved in, 80

saving variables in, 80

Matlab functions

OS, 7

[], 115

abs, 115

acosh, 115

acos, 115

all, 37, 115

any, 37, 115

asinh, 115

asin, 115

atan2, 66, 115

atanh, 115

atan, 66, 91, 115

balance, 115

besselh, 116

besseli, 116

besselj, 116

besselk, 116

bessely, 116

break, 9, 116

case, 9, 116

catch, 9, 11, 116

ceil, 116

cell, 24, 116

char, 25, 116

chol, 116

clear global, 116

clear, 116

compan, 116

cond, 116

conj, 116

conv, 116

cosh, 116

cos, 116

coth, 116

cot, 116

cumprod, 116

cumsum, 116

date, 116

dbstack, 116

deal, 6

deblank, 116

det, 116

diag, 116

diary, 82, 116

disp, 81, 116

double, 25, 116

echo, 116

eig, 116

ellipj, 116

elseif, 9, 117

else, 9, 117

end [loop], 9, 117
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end [matrix], 53, 117

end, 19

erfcx, 117

erfc, 117

erf, 117

error, 117

evalin, 33

eval, 31, 117

exist, 13, 117

expm, 117

exp, 117

eye, 117

false, 36

fclose, 117

feval, 96

fft2, 70, 117

fftshift, 117

fft, 70, 117

fieldnames, 46

figure, 117

filesep, 90, 117

findstr, 117

find, 117

finish, 3

fix, 117

flipdim, 117

floor, 117

fopen, 72, 81, 117

format compact, vi

format loose, vi

format, 117

for, 9, 117

fprintf, 117

full, 117

function, 117

funm, 67

gammaln, 117

gamma, 117

getenv, 117

getfield, 117

global, 117

help, 3, 117

hess, 117

ifft2, 70, 118

ifft, 70, 117

if, 9, 117

imag, 118

input, 81, 118

int16, 118

int32, 118

int8, 118

intersect, 118

inv, 118

isa, 17

iscell, 17

ischar, 17

isempty, 118

isglobal, 118

isinf, 118

ismember, 29, 38

isnan, 118

isnumeric, 17

isreal, 118

issparse, 17

isstruct, 17

keyboard, 13, 14, 95, 118

length, 118

linspace, 118

load, 80, 118

log10, 118

log2, 118

logical, 35, 36

logm, 118

logspace, 118

log, 118

lookfor, 3, 118

lower, 118

matlabroot, 7

max, 63, 118

mean, 118

median, 118

min, 118

mod, 118

more, 118

nargin, 95, 118

nargout, 95, 118
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nextpow2, 118

nnz, 118

norm, 118

null, 118

num2str, 119

ones, 119

orth, 119

otherwise, 9

pause, 119

pinv, 119

planerot, 119

prefdir, 7

prod, 119

profile, 119

pwd, 7

qr, 119

randn, 119

rand, 119

rank, 119

rcond, 119

real, 119

regexp, 31, 119

rem, 119

reshape, 119

return, 119

rmfield, 119

roots, 58

round, 119

save, 79, 119

schur, 119

setfield, 47, 119

sign, 119

sinc, 119

sinh, 119

sin, 119

size, 24, 57, 119

sortrows, 65, 119

sort, 64, 119

spalloc, 119

sparse, 119

speye, 119

spones, 119

sprand, 119

sqrtm, 119

sqrt, 119

sscanf, 30, 119

std, 120

strrep, 120

strtok, 27, 120

struct, 120

sum, 120

svd, 120

switch, 9, 120

tanh, 120

tan, 120

tempdir, 7

tic, 120

toc, 120

toeplitz, 120

trace, 120

tril, 120

triu, 120

true, 36

try, 9, 11, 120

typeof, 58, 60

type, 60

uigetfile, 81, 120

uint16, 120

uint32, 120

uint8, 17, 120

union, 120

unique, 40, 120

unix, 120

upper, 120

varargin, 120

varargout, 120

version, 120

warning, 120

which, 120

while, 9, 120

whos, 120

who, 120

zeros, 120

Matlab-mode, 22

matrix, 18–20, 23, 120

companion, 23, 116



INDEX 125

empty, 23, 115

Frank, 23

Hilbert, 23

identity, 23, 117

of ones, 23, 119

of zeros, 23, 120

polynomial, see polynomial, matrix, 59

random, 23, 119

rational, 59

reshape a, 119

sparse, 70

sparse identity, 70, 119

sparse random, 70, 119

Toeplitz, 23, 120

MS-DOS, 83

named arguments, see arguments, named

operator

binary, 101, 112

code, 101, 102

overloading, 17, 25, 52, 99–104, 112, 113

unary, 100

overloading

operator, see operator, overloading

variable display, see variable, display over-

loading

paging, see lines displayed

path, 32, 88–90, 97, 109

polynomial, 57–60

division, 59

matrix, 59

precision, 20

primitive, 84

print-out control, 85–87

private directory, 97, 98

private function, 97

profiling, 96

profiling of functions, 98, 105

program

abort, 15, 92

exit, 2

interrupt, 2, 12

quit, 2

resume, 2

return, 2

random numbers, 23

random numbers, 22, 23

regular expressions, 31

Scilab

script, see script

syntax, 4, 5

Scilab functions and variables

[], 22, 23, 115

$, 15, 19, 20, 53, 117

%asn, 68

%k, 68

%sn, 68, 116

abort, 2, 15, 92

abs, 64, 115

acoshm, 68

acosh, 67, 115

acosm, 68

acos, 67, 115

add profiling, 105

amell, 68

and, 37, 38, 115

apropos, 3, 15, 118

argn, 92, 95, 118

ascii, 25, 26, 28, 116

asinhm, 68

asinh, 67, 115

asin, 67, 115

atanhm, 68

atanh, 67, 115

atan, 66, 67, 91, 115

atomRemove, 111

atomsAutoLoadList, 111

atomsGetInstalled, 111

atomsInstall, 111

atomsIsInstalled, 111

atomsLoad, 111

atomsRemove, 111

atomsUpdate, 111

auread, 74
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auwrite, 75

balanc, 69, 115

bandwr, 70

basename, 26, 73, 82, 83

bdiag, 69, 116

besseli, 68, 116

besselj, 68, 116

besselk, 68, 116

bessely, 68, 116

bezout, 59

blanks, 26

bool2s, 36, 38, 64

break, 9, 116

calerf, 68

case, 9, 83, 116

catch, 9, 11, 116

ceil, 64, 116

cell array, 57

cell2mat, 41

cell, 41, 116

chdir, 88

chfact, 70

chol, 69, 116

chsolve, 70

clean, 59, 64, 67, 105

clearglobal, 15, 116

clear, 15, 108, 109, 116

cmndred, 59

coeff, 59

coffg, 59

colcompr, 59

colcomp, 69

companion, 23, 116

complex, 19

cond, 69, 116

conj, 64, 116

convol, 70, 116

convstr, 26, 96, 118, 120

corr, 70

coshm, 68

cosh, 67, 116

cosm, 68

cos, 67, 116

cotg, 67, 116

coth, 67, 116

cumprod, 63, 64, 116

cumsum, 63, 64, 116

date, 15, 26, 116

deff, 98, 99, 105

degree, 59

delip, 68

denom, 59

derivat, 59

determ, 59

detr, 59

det, 59, 69, 116

diag, 23, 116

diary, 75, 82, 116

diophant, 59

dirname, 73, 82

dispfiles, 73, 113

disp, 15, 75, 81, 116

dlgamma, 68

double, 20, 116

editor, 97

elseif, 9, 117

else, 9, 117

emptystr, 24, 26, 28

endfunction, 92

end, 9, 117

erfcx, 68, 117

erfc, 68, 117

erf, 68, 117

errcatch, 9, 11, 12

errclear, 11, 12

error, 83, 92, 117

eval, 31, 32

evstr, 31, 33, 34

excel2sci, 74

execstr, 31, 32, 85, 89, 117

exec, 86, 87, 97, 105

exists, 13, 36, 38, 117

exit, 2

expm, 68, 117

exp, 67, 117

eye, 23, 117
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factors, 59

fftshift, 70, 117

fft, 70, 117, 118

fileinfo, 73

filesep, 90, 117

file, 72, 73, 77, 78, 89

findfiles, 82, 83

find, 38, 117

fix, 64, 117

flipdim, 117

floor, 64, 117

format, 1, 2, 117

for, 9, 117

fprintfMat, 75

fprintf, 75, 117

fscanfMat, 74

fscanf, 74

fullrfk, 69

fullrf, 69

full, 70, 117

fun2string, 82, 84

function, 92, 117

gammaln, 68, 117

gamma, 68, 117

gcd, 59

genlib, 97, 107

getdate, 15, 116

getd, 97

getenv, 1, 3, 8, 82, 117

getfield, 46–48, 117

getf, 97, 109, 113

getio, 73

getlanguage, 7

getos, 8, 83, 88, 89, 92

getversion, 82, 120

givens, 69, 119

global, 15, 93–95, 117

grand, 23

grep, 26, 29, 31

gsort, 26, 64, 65, 119

halt, 12, 15, 92, 119

help, 3, 15, 117

hermit, 59

hess, 69, 117

horner, 59

host, 82, 83

householder, 69

hrmt, 59

iconvert, 20

if, 9, 10, 117

imag, 64, 118

input, 74, 81, 118

int16, 20, 118

int32, 20, 118

int8, 20, 118

intersect, 26, 64, 118

inttype, 15, 17, 18

invr, 59

inv, 59, 69, 118

isalphanum, 26

isascii, 26, 38

iscellstr, 38

iscell, 38, 42

isdef, 36, 38

isdigit, 26, 38

isdir, 38, 73, 117

isempty, 38, 118

iserror, 11, 38

isfield, 38

isglobal, 38, 118

isinf, 38, 118

isletter, 26, 38

ismember, 29, 39, 40

isnan, 38, 118

isnum, 26, 38

isreal, 118

isstruct, 38, 46

kernel, 69, 118

lcmdiag, 59

lcm, 59

ldiv, 59

length, 3, 24, 26, 46, 48, 50, 118

lex sort, 64

lines, 82, 118

linsolve, 69

linspace, 64, 118
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listfiles, 73, 82, 83

list, 18, 47, 48

loadmatfile, 74, 80, 118

loadwave, 74

load, 74, 79, 80, 97, 108

log10, 67, 118

log2, 67, 118

logm, 68, 118

logspace, 64, 118

log, 67, 118

lstcat, 48

lufact, 70

luget, 70

lusolve, 70

macrovar, 92

makecell, 41

matrix, 76, 119

maxi, 63, 64, 118

max, 63, 64, 118

mclearerr, 73

mclose, 73, 75, 113, 114, 117

mean, 64, 118

median, 64, 118

meof, 73

mfft, 70

mfile2sci, 106

mfprintf, 75

mfscanf, 74

mgeti, 74, 80

mgetl, 73–76

mgetstr, 74

mget, 74, 80, 81

mini, 63, 64, 118

min, 63, 64, 118

mlist, 18, 46–48, 56

mode, 85–87, 92, 116

modulo, 64, 119

mopen, 72, 73, 75, 77, 79–81, 117

mprintf, 75

mputl, 73, 75–77

mputstr, 75

mput, 75, 80

mscanf, 74

mseek, 73

msprintf, 26

msscanf, 26, 30, 119

mtell, 73

mtlb mode, 22, 38

newest, 73

nextpow2, 70, 118

nnz, 70, 118

norm, 69, 118

null, 46–49, 119

ones, 23, 36, 119

orth, 69, 119

or, 37, 38, 115

part, 26

pathconvert, 26, 73, 82, 88, 90

pause, 2, 12–15, 92, 95, 118

pdiv, 59

pinv, 69, 119

plotprofile, 92

pmodulo, 64, 118

pol2str, 26, 59

polar, 69

poly, 57

prettyprint, 82

printf, 75

print, 75

prod, 63, 64, 119

profile, 92, 105, 119

pwd, 85

qr, 69, 119

quit, 2

rand, 23, 119

range, 69

rank, 69, 119

rcond, 69, 119

read4b, 74

readb, 74

readc , 74

read, 74, 76–78

real, 64, 119

regexp, 26, 31, 119

reshape, 76

residu, 59
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resume, 2, 14, 15, 92, 95, 119

return, 2, 13–15, 92, 95, 119

roots, 59

round, 64, 119

rowcompr, 59

savematfile, 75, 80, 119

savewave, 75

save, 75, 79, 80

scanf conversion, 30

schur, 69, 119

sci2exp, 26, 30

select, 9, 83, 120

setenv, 8

setfield, 46, 48, 119

setlanguage, 7

sfact, 59

showprofile, 92, 105

sign, 64, 119

simp mode, 38, 59, 60

simp, 59

sinc, 67, 119

sinhm, 68

sinh, 67, 119

sinm, 68

sin, 67, 119

size, 24, 26, 46, 48, 50, 119

spaninter, 69

spanplus, 69

sparse, 23, 70, 119

spchol, 70

spec, 69, 116

speye, 70, 119

spget, 70, 117

spones, 70, 119

sprand, 70, 119

spzeros, 70, 119

sqrtm, 68, 119

sqrt, 64, 119

st deviation, 63, 64, 120

stacksize, 82

strcat, 25–27, 89

strcmpi, 26

strcmp, 26, 47

strcspn, 26

strindex, 26, 29, 31, 117

string, 26, 119

stripblanks, 26, 116

strncpy, 26

strrchr, 26

strrev, 26

strsubst, 26, 31, 120

strtod, 26

structure, 57

struct, 43, 46, 120

sum, 63, 64, 120

sva, 69

svd, 69, 120

sylm, 23, 59

tanhm, 68

tanh, 67, 120

tanm, 68

tan, 67, 120

testmatrix, 23

tic, 15, 16, 82, 120

timer, 15, 16, 82, 120

tlist, 18, 47, 48, 51, 53

toc, 15, 16, 82, 120

toeplitz, 23, 120

tokens, 26, 27, 120

trace, 69, 120

translatepaths, 106

tril, 120

triu, 120

try, 9, 11, 120

typename, 18

typeof, 15, 17, 18, 22, 30, 42, 57, 95, 96, 99

type, 15, 17, 18, 42, 57, 98, 99

uigetfile, 73, 81, 120

uint16, 20, 120

uint32, 20, 120

uint8, 17, 20, 21, 120

union, 26, 64, 120

unique, 26, 40, 64, 120

unix g, 82

unix s, 82, 88, 89

unix w, 82, 107, 120
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unix x, 82

unix, 82

varargin, 62, 92, 94, 120

varargout, 92, 94, 120

warning, 92, 120

wavread, 74

wavwrite, 75

whereami, 92, 116

whereis, 15, 92, 120

where, 92, 116

while, 9, 120

who user, 15, 18

whos, 15, 18, 120

who, 15, 18, 89, 108, 120

with texmacs, 38

writb, 75

write4b, 75

write, 75–79

xset, 117

zeros, 23, 120

Scilab version, 82

scilab.ini, see start-up file

scilab.start, 1, 35

script, 85–90

size

list, 50

string, 24

sorting, 64–66

start-up file, 1, 2, 107–110

string

concatenation, 25, 27, 99

convert variable into, 30

convert number into, 26, 119

decomposition, 27

extraction of substrings, 28

length, 24, 25

matrix, 25

size, 24

strings , 24–34

structure, 43–47

structures, vi, 47, 52, 53, 55, 103

subfunction, 97, 98

termination script, 2, 3

TeXmacs, 38

text editor, 4, 97, 109

time, 15

timing of a code block, 15, 16

tuple assignment, 6, 49

type name, 51, 52, 99, 100

type of variable, 17

boolean matrix, 18

boolean sparse matrix, 18

compiled function, 18

constant, 18

function library, 18

implied-size vector, 18, 19

integer, 17

list, 18

Matlab sparse matrix, 18

matrix-oriented typed list, 18

pointer, 18

polynomial matrix, 18

rational, 38, 59, 60

sparse matrix, 18

string, 18

typed list, 18

un-compiled function, 18

typed list, see list, typed

UNIX, 83, 90

variable

convert into an expression, 30

display overloading, 100

environmental, 7, 85

global, 8, 15, 94, 95, 117

name, 4, 97

shadowed, 93

type, see type, variable

Windows, 83, 90

working directory, 85

workspace, vi, 2, 13, 14, 33, 79, 85, 93, 95, 107–

109


