
TestNG Annotations And Benefits – AUTOMATION
TESTING

TestNG Annotations:

Here is a quick overview of the annotations available in TestNG along with their attributes.

@BeforeSuite
@AfterSuite
@BeforeTest
@AfterTest
@BeforeGroups
@AfterGroups
@BeforeClass
@AfterClass
@BeforeMethod
@AfterMethod

Configuration information for a TestNG class:

@BeforeSuite: The annotated method will be run before all tests in this
suite have run.
@AfterSuite: The annotated method will be run after all tests in this suite
have run.
@BeforeTest: The annotated method will be run before any test method
belonging to the classes inside the <test> tag is run.
@AfterTest: The annotated method will be run after all the test methods
belonging to the classes inside the <test> tag have run.
@BeforeGroups: The list of groups that this configuration method will
run before. This method is guaranteed to run shortly before the first test
method that belongs to any of these groups is invoked.
@AfterGroups: The list of groups that this configuration method will run
after. This method is guaranteed to run shortly after the last test method
that belongs to any of these groups is invoked.
@BeforeClass: The annotated method will be run before the first test
method in the current class is invoked.
@AfterClass: The annotated method will be run after all the test methods
in the current class have been run.
@BeforeMethod: The annotated method will be run before each test
method.
@AfterMethod: The annotated method will be run after each test
method.Behaviour of annotations in superclass of a TestNG class

The annotations above will also be honored (inherited) when placed on a
superclass of a TestNG class. This is useful for example to centralize test
setup for multiple test classes in a common superclass.

In that case, TestNG guarantees that the “@Before” methods are executed
in inheritance order (highest superclass first, then going down the
inheritance chain), and the “@After” methods in reverse order (going up
the inheritance chain).

alwaysRun

For before methods (beforeSuite, beforeTest, beforeTestClass and
beforeTestMethod, but not beforeGroups): If set to true, this configuration
method will be run regardless of what groups it belongs to.
For after methods (afterSuite, afterClass, …): If set to true, this
configuration method will be run even if one or more methods invoked
previously failed or was skipped.

dependsOnGroups The list of groups this method depends on.

dependsOnMethods The list of methods this method depends on.

enabled Whether methods on this class/method are enabled.

groups The list of groups this class/method belongs to.

inheritGroups
If true, this method will belong to groups specified in the @Test annotation
at the class level.

TestNG Annotations And Benefits – AUTOMATION TESTING https://seleniumautomationtester.wordpress.com/201...

第1页 共5页 2018/7/29 下午9:55

@DataProvider

Marks a method as supplying data for a test method. The
annotated method must return an Object[][] where each Object[]
can be assigned the parameter list of the test method. The @Test
method that wants to receive data from this DataProvider needs
to use a dataProvider name equals to the name of this
annotation.

name
The name of this data provider. If it’s not supplied, the name of this data
provider will automatically be set to the name of the method.

parallel
If set to true, tests generated using this data provider are run in parallel.
Default value is false.

@Factory
Marks a method as a factory that returns objects that will be used
by TestNG as Test classes. The method must return Object[].

@Listeners Defines listeners on a test class.

value An array of classes that extend org.testng.ITestNGListener.

@Parameters Describes how to pass parameters to a @Test method.

value The list of variables used to fill the parameters of this method.

@Test Marks a class or a method as part of the test.

alwaysRun
If set to true, this test method will always be run even if it depends on a
method that failed.

dataProvider The name of the data provider for this test method.

dataProviderClass

The class where to look for the data provider. If not specified, the data
provider will be looked on the class of the current test method or one of its
base classes. If this attribute is specified, the data provider method needs to
be static on the specified class.

dependsOnGroups The list of groups this method depends on.

dependsOnMethods The list of methods this method depends on.

description The description for this method.

enabled Whether methods on this class/method are enabled.

expectedExceptions
The list of exceptions that a test method is expected to throw. If no
exception or a different than one on this list is thrown, this test will be
marked a failure.

groups The list of groups this class/method belongs to.

invocationCount The number of times this method should be invoked.

invocationTimeOut
The maximum number of milliseconds this test should take for the
cumulated time of all the invocationcounts. This attribute will be ignored if
invocationCount is not specified.

priority The priority for this test method. Lower priorities will be scheduled first.

successPercentage The percentage of success expected from this method

singleThreaded

If set to true, all the methods on this test class are guaranteed to run in the
same thread, even if the tests are currently being run with
parallel=”methods”. This attribute can only be used at the class level and it
will be ignored if used at the method level. Note: this attribute used to be
called sequential (now deprecated).

timeOut The maximum number of milliseconds this test should take.

threadPoolSize
The size of the thread pool for this method. The method will be invoked
from multiple threads as specified by invocationCount.
Note: this attribute is ignored if invocationCount is not specified

Basic annotations and its execution process-

TestNG Annotations And Benefits – AUTOMATION TESTING https://seleniumautomationtester.wordpress.com/201...

第2页 共5页 2018/7/29 下午9:55

Lets see the order of methods called using the below script:

import org.testng.annotations.AfterClass;

import org.testng.annotations.AfterMethod;

import org.testng.annotations.AfterSuite;

import org.testng.annotations.AfterTest;

import org.testng.annotations.BeforeClass;

import org.testng.annotations.BeforeMethod;

import org.testng.annotations.BeforeSuite;

import org.testng.annotations.BeforeTest;

import org.testng.annotations.Test;

public class TestngAnnotation {

// Test Case 1

@Test

public void testCase1() {

System.out.println(“in Test Case 1”);

}

// Test Case 2

@Test

public void testCase2() {

System.out.println(“in Test Case 2”);

TestNG Annotations And Benefits – AUTOMATION TESTING https://seleniumautomationtester.wordpress.com/201...

第3页 共5页 2018/7/29 下午9:55

}

@BeforeMethod

public void beforeMethod() {

System.out.println(“in Before Method”);

}

@AfterMethod

public void afterMethod() {

System.out.println(“in After Method”);

}

@BeforeClass

public void beforeClass() {

System.out.println(“in Before Class”);

}

@AfterClass

public void afterClass() {

System.out.println(“in After Class”);

}

@BeforeTest

public void beforeTest() {

System.out.println(“in Before Test”);

}

@AfterTest

public void afterTest() {

System.out.println(“in After Test”);

}

@BeforeSuite

public void beforeSuite() {

System.out.println(“in Before Suite”);

}

@AfterSuite

public void afterSuite() {

System.out.println(“in After Suite”);

}

TestNG Annotations And Benefits – AUTOMATION TESTING https://seleniumautomationtester.wordpress.com/201...

第4页 共5页 2018/7/29 下午9:55

}

Output:-

[TestNG] Running:

in Before Suite
in Before Test
in Before Class
in Before Method
in Test Case 1
in After Method
in Before Method
in Test Case 2
in After Method
in After Class
in After Test
in After Suite

===
Default suite
Total tests run: 2, Failures: 0, Skips: 0

===

Summary of TestNG Annotations:-

TestNG is more flexible because of its annotations. What do they offer to us?

So there are controlled annotation TestNG:

Annotations@BeforeSuite, @AfterSuite Indicate the methods that are executed once
before / after execution of all tests. It is convenient to have any difficult settings common
to all tests, for example, you can create a pool of database connections.
Annotations@BeforeGroups, @AfterGroups refer to methods that run before / after
the first / last test belonging to a given group.
Annotations@BeforeClass, @AfterClass define the methods that are executed once
before / after execution of all tests in the class. The most suitable for testing of a specific
service, which does not change its status as a result of the test.
Annotations@BeforeTest, @AfterTest define methods that are executed once before /
after the execution of the test (the one that includes the test classes, not to be confused
with the test methods). Here you can store the settings of a group of interrelated services
or a service if it is tested by several test classes.
Methods with@BeforeMethod, @AfterMethod annotations will be executed
before/after each test method.

All of these annotations have the following options:

enabled– can be temporarily disabled by setting the value to false
groups– define, for which groups will be executed
inheritGroups– if true (and the default value is true), the method will inherit the group
of the test class
timeOut– the time after which “fall down” method and drags along all dependent tests
from its description – the name used in the report
dependsOnMethods– methods from which they are depended, will first be executed,
and then this method
dependsOnGroups– the groups from which they are depended
alwaysRun– if set to true, will always be called regardless of which groups it belongs to,
not applicable to @BeforeGroups, @AfterGroups.

TestNG Annotations And Benefits – AUTOMATION TESTING https://seleniumautomationtester.wordpress.com/201...

第5页 共5页 2018/7/29 下午9:55

