Chapter 4: Discrete-time Fourier Transform (DTFT)
4.1 DTFT and its Inverse

Forward DTFT: The DTFT is a transformation that maps Discrete-time (DT) signal x[n] into a complex valued
function of the real variable w, namely:

¥ . n A
X(w)= ax[ne ™, wl A (4.1)
n=-¥

Note nis a discrete-time instant, but w represent the continuous real-valued frequency as in the
continuous Fourier transform. This is also known as the analysis equation.

In general X(W)1 C
X(w+2np)=XWwW) b wi {-p,p} is sufficient to describe everything. (4.2)
X(w) is normally called the spectrum of X[ n] with:

b} | X(w) || MagnitudeSpectrum

X(w) =[ X (w) | "X | (4.3)
1D X(w) : Phase Spectrum angle
The magnitude spectrum is almost all the time expressed in decibels (dB):
| X(W) |gs = 20.10g,4 | X (W) | (4.4)

Inverse DTFT: Let X(w) be the DTFT of x[n]. Then its inverse is inverse Fourier integral of X(w) in the
interval {-p,p).

X[ ] :Zi I[()‘)X (w)e"dw (4.5)

P-p
This is also called the synthesis equation.

p .
Derivation: Utilizing a special integral: ¢e'""dw = 2pd[n] we write:
-p
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’ jwn sk - Wk pjwn 4
oX(we™dw= o{ a qkle ™}e™dw= a
-p -p k=-¥ Kk=-

p . ¥
X[k] gg” ™MnKldw=2p & x[k]d[n- k] =2p.Xqn]
- k=-¥

¥ p
Note that since x[n] can be recovered uniquely from its DTFT, they form Fourier Pair: xin] U X (w).

¥ .
Convergence of DTFT: In order DTFT to exist, the series 34 x[nJe”’™ must converge. In other words:
n=-¥

M .
Xy (W) = & x[n]e” ™ must converge to a limit X(w) as M ® ¥. (4.6)
n=-M

Convergence of X, (w) for three difference signal types have to be studied:

¥
Absolutely summable signals: x[n] is absolutely summable iff & |x[n] |<¥ . In this case, X(w) always
n=- ¥

exists because:

¥ . ¥ . ¥
| ax{nle’™ [£ &|xn]|.|e ™ | &|X[n]|<¥ (4.7)
n=-%¥ ¥ ¥

n=- n=-
¥
Energy signals: Remember x[n] is an energy signal iff E_° & |x[n]|* <¥. We can show that X,, (w)

n=-¥
converges in the mean-square sense to X (w):

Lim of X (W) - X,, (W) [2dw =0 (4.8)
-p

Note that mean-square sense convergence is weaker than the uniform (always) convergence of (4.7).
Power signals: x[n] is a power signal iff

N

o 2
alxn]|c <¥
Ne¥ 2N +1n:-,!| [ ]l

P, =Lim

In this case, X[n] with a finite power is expected to have infinite energy. But X,, (w) may still converge
to X(w) and have DTFT.

Examples with DTFT are: periodic signals and unit step-functions.
X(w) typically contains continuous delta functions in the variable w.
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4.2 DTFT Examples
Example 4.1 Find the DTFT of a unit-sample x[n] =d[n].

¥ . ¥ . .
X(w)= & xne™ = gd[ne™ =e°=1 (4.9)
n=-¥ n=-¥
Similarly, the DTFT of a generic unit-sample is given by:
DTFT{d[n- n,J} = Ad[n- nle ™ =g 1o (4.10)
n=- ¥

Example 4.2 Find the DTFT of an arbitrary finite duration discrete pulse signal in the interval: N; <N, :
N
= &cd[n- k|
k=- Ny
Note: x[n] is absolutely summable and DTFT exists:
: N2 - jwn N g - jwn N2 - jwk
X(w)= & { acd[n-k)}e'™= &cJ{ adn- kle'"}= &ce’ (4.11)
n=-¥ k=-N; k=-N; n=-¥ k=- N;
Example 4.3 Find the DTFT of an exponential sequence: x[n] =a"u[n] where|al<1. It is not difficult to see
that this signal is absolutely summable and the DTFT must exist.

g o ¥ . ¥ » 1
X(w)= da"unje™ =ga"e " = § (ae )" = ———
n=-¥ n=0 n=0 1_ ae” jw

Observe the plot of the magnitude spectrum for DTFT and X,, (w) for: a=0.8 and M ={2510,20,¥ = DTFT}

(4.12)
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Example 4.4 Gibbs Phenomenon: Significance of the finite size of M in (4.6).
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For small M , the approximation of a pulse by a finite harmonics have significant overshoots and
undershoots. But it gets smaller as the number of terms in the summation increases.

Example 4.5 Ideal Low-Pass Filter (LPF). Consider a frequency response defined by a DTFT with a form:

i1 |wlkw,

X(w) =i (4.13)
i0 We <w<p
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Here any signal with frequency components smaller than w. will be untouched, whereas all other frequencies

will be forced to zero. Hence, a discrete-time continuous frequency ideal LPF configuration.
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Through the computation of inverse DTFT we obtain:
We o . W, WeNn
= ¢ e dw =2 gng e
2P -w P p
(4.14)
: sin(px) . :
where Singx) = . The spectrum and its inverse transform for w. =p /2 has been depicted above.
X

4.3 Properties of DTFT
4.3.1 Real and Imaginary Parts:

X[ = Xg[n] + jx, [1] U XW)=XgW) + X, (w) (4.15)
4.3.2 Even and Odd Parts:
X[n] = Xev[n] + Xodd [n] u X(W) = Xev(W) + Xodd (W) (416&)
xev[n]:1/2.{x[n]+x*[—n]}:x;,[—n] U] X (W)=1/2.{ X (W) + X [-w]} = X;,[—w] (4.16b)
Xoaa [N =1/ 2¢N] - X[~ NI} == Xq[- ] U X (W) =1/ 2 X (W) - X7 (- W)} = - X (- W) (4.16¢)

4.3.3 Real and Imaginary Signals:
If x[n]T A then X(w)= X (-); even symmetry and it implies:
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| X(W) = X(-wW) [} DX(wW) =-DX(-w) (4.17a)
XegW)=Xg(w); X, (w)=-X,(-w) (4.17b)
If xin]T A (purely imaginary) then X(w)=- X" (- w); odd symmetry (anti-symmetry.)

4.3.4 Linearity:
a. Zero-in zero-out and

b. Superposition principle applies: Ax[n] +B.y[n] U  AX(w) + B.X(w) (4.18)
4.3.5 Time-Shift (Delay) Property:
xn- D] U e " X(w) (4.19)
4.3.6 Frequency-Shift (Modulation) Property:
X[w- w.] 0 e M xn] (4.20)

Example 4.6 Consider a first-order system:
yinl = Ko.X[n] + K, {n- 1]
Then Y(w) = (K, + K,.e" )X (w) and the frequency response:
H(jw)=Y(W)/XW) =K, +K e ™
4.3.7 Convolution Property:
x[n*hn U  X(w).H(W) (4.21)
4.3.8 Multiplication Property:

Xn.yin O % SX ()Y (w- T )df (4.22)
-p
4.3.9 Differentiation in Frequency:
i XM o g (4.23)
dw
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4.3.10 Parseval’s and Plancherel’s Theorems:
3‘ 2 1 P 2
a |[¥qdn]|*=— g X(w) [“dw (4.24)
n=-¥ 20 -p

Ifx[n] and/or y[n] complex then

& Xnl.y' [n] :% X W)Y (Wydw (4.25)
¥ -p

Example 4.7 Find the DTFT of a generic discrete-time periodic sequence x[n].
Let us write the Fourier series expansion of a generic periodic signal:

N-1 :
x(nl =& ae'""" where w, =2
k=0 N
N-1 jkwpn N-1 TN N-1
X(w)=DTFT{X{n]} =DTFT{ & a.e™")= & a .DTFTHe/") = g'a,.20d(w- kw,) (4.26)
k=0 k=0 k=0

Therefore, DTFT of a periodic sequence is a set of delta functions placed at multiples of kw, with heights a, .

4.4 DTFT Analysis of Discrete LTI Systems

x[n] X H { a Mn)

The input-output relationship of an LTI system is governed by a convolution process:
y[n] =x[n] * h[n] where h[n] is the discrete time impulse response of the system.

Then the frequency-response is simply the DTFT of h[n]:

A~

H(w) = _é¥l'{n].e' mnwl A (4.27)
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If the LTI system is stable then h[n] must be absolutely summable and DTFT exists and is continuous.
We can recover h[n] from the inverse DTFT:

h[n] = IDTET{H (W)} = 2% SH (w).e" dw (4.28)
-p

We call |H(w) | as the magnitude response and DH (w) the phase response

Example 4.8 Let
h[n] = (%)”-U[n] and xn] = (%)”-U[n]

Let us find the output from this system.
1. Via Convolution:

¥
Virl = X[ * Hn] = & (%)".u[k].(%)”"‘.u[n -k b Notso easy.
k=-¥
2. Via Fast Convolution or DFTF from Example 4.3 or Equation(4.12):

H (W) :; and X(W) :;
1- Ee‘ jw 1- Ee‘ jw
2 3
1 3 2

Y(w) = X (w).H(w) = = -
1- }e- JW).(]__ le- JW) 1- le- w1 }
3 2 2

- jw
and the inverse DTFT will result in:
1 1

yin] = 3(5)”-U[n] - 2(5)”-U[n]

Example 4.9 Causal moving average system:
1 M-1
nj=— ax[n- k
Ml == 8 Xn- K]

If the input were a unit-impulse: x[n] =d[n] then the output would be the discrete -time impulse response:
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i =2 K pn- =M OENSM L )
M k i 0 Otherwise M

The frequency response:

H(W) :iMé-le_ jwn :ie_ jwm l:ie-jlez g WM /2 ojwM/2 i o - 1),2.sm(wM /2)
M n=0 MeW.1 M ez giwz_gwz sn(w/ 2)

X(e") £ X
12 T T T I T T T T T T T
2
0.8 _
;I'[_
06} OR;
0.4} Rl
-2 N
0.2 Y :
—in/d -4
% g 3 w3 . e, S In

Notes:
1. Magnitude response Zeros at w= K where —sr.1(wM '2)
sin(w/w)
2. Level of first sidelobe » - 13dB
3. Phase response with a negative slope of - (M - 1)/2
2pk where sn(wM / 2)

4. Jumps of p at w= _
sn(w/w)

changes its sign.
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TABLE: 4.1 DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal DTFT
d[n] 1
1 2p d(w)
glWen 2pd(w- wg)
N-1

8 a, """ with Nw.=2p
k=0

N-1
ké 2p a d(w- kwe)
=0

a".u[n]; |n|k1 1

1- ae "
a.; |nk1 1- a?

1- 2a.cosw+ a’
na"un]; |nl<1 ae ™

(1- ae V)?

] +
rect[ﬂ] sm[vy(N 1/ 2)]

N snfw/ 2]
Snw:n rectfw/2w]
pn
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TABLE 4.2 PROPERTIES OF DTFT

1. Linearity Ax,[n] + B.x,[n] AX (w)+ B.X,(w)
2. Time-Shift (Delay) | X[n- N] e "N X (w)
3. Frequency-Shift x[n].el"e" X(w- we)
4. Linear Convolution | X[n]* h[n] X(w).H (w)
5. Modulation x[n].p[n] i X ).H(w- h)dh
<2p>
6. Periodic Signals x(n]=x{n+N] k_g 2p.a,d(w- kw,)
— m — 1 o - jkwen
w. =3 a, =— & xnle
N =8

Example 4.10 Response of an LTI system with H(w) = DTFT{h[n]} : Given x[n] =e""; a complex harmonic.
y[n] =& hK].x[n - k] =& h[k].e™(™*) ={3 h[k].e ™} e™M =H(w).qn] (4.29)
k k k

Note that this is the ONLY time frequency-domain variable w and the time-domain variable n appear on the
same side of the equation. In all other cases, we have time domain variable in the time-domain and vice

versa. In calculus jargon, e acts as the Eigenvector of the system.
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4.5 FREQUENCY-SELECTIVE DISCRETE-TIME FILTERS

4.5.1 Ideal Low-Pass and High-Pass Filters

& H @l g Hil
1 _ 1 -
—é -, £ ; :ﬂ?' -x - i, v o®
il if [wlkw, i0  if |[wikw
HeoW={_ . ¢ HyppW) =7 . ¢ (4.30a-d)
70 if we <lwj<p 11 if we Jwl<p
We . WeN We . W.N
h p[n] =—=.Singd—-) hye[n]=d[n] - h p[n] =d[n] - —=.Sinc(—)
Y P P Y
4.5.2 |deal Band-Pass and Band-Stop Filters
H ) g H i)
B
|| _ 1 _
E

11 ifjw-w.[<B/2
Hego (W) =] )
10 elsewherein(-p,p)

hgs [N] = 2.cos( WCn)'hLP[n]|WC:B/2

10 if jw- w. [<B/2
Hgs(w) =| :
i1 elsewherein(-p,p)

hes[n]=d[n] - hgp[n] =d[n] - 2.cos(wen).he[n]

(4.31a-d)

WC:BIZ
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All of these ideal filters are non-causal and hence, non-realizable.
They form benchmark for implementable real-life filters.

4.6 Phase delay and group delay

Consider an integer system, for which the input-output relationship is given by:

y[n]=x[n- k], kI Integer (4.32a)
The frequency response is computed:
Y(w)=e ™ X(w) b HWw?° YW _ e Ik (4.32b)
X(w)

The phase response of this system:
PH (W) = - wk (4.33)
IS a linear function of the frequency variable w.

Phase delay t , is defined by:
_BH(w)
w

For integer systems, this simplifies to:
_ BH(w) _ K

w

(o]

(4.34)

U

Group Delay is more meaningful and defined by:
_dbH(w)

dw
It is useful for dealing with narrow-band input signal x[n] is centered around a carrier frequency w,.

x[n] =g n].e/%"
where gn] is a slowly-varying envelope. Typical digital communication task, as shown below.

(o]

(4.35)

e
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The corresponding system output is approximated by:
y[n] »[H(Wp) [.S[n- t g (w)].eMolnten(Wo)] (4.36)

It is easy to see that the phase delay t ., contributes a phase shift to the carrier e!"" whereas the group
delay t ; causes a delay to the envelope {n].
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Pure delay, or All-Pass Filter:
When a system is a pure delay; i.e., its magnitude response is unity for all w and the phase is a linear

function of the delay t .

[HW EL t gy (W)=t g(w)=1 (4.37)
If the phase is linear but the magnitude may depend on w, then the system is labeled as a linear Phase
system:

H(w) = H(w)|.e®HW (4.38a)
where

BH (w) = - wt (4.38Db)
where the phase is a linear function of w with a slope - t.
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