Chapter 4: Discrete-time Fourier Transform (DTFT)
 4.1 DTFT and its Inverse

Forward DTFT: The DTFT is a transformation that maps Discrete-time (DT) signal $x[n]$ into a complex valued function of the real variable w, namely:

$$
\begin{equation*}
X(w)=\sum_{n=-\infty}^{\infty} x[n] e^{-j w n}, \quad w \in \mathfrak{R} \tag{4.1}
\end{equation*}
$$

- Note n is a discrete-time instant, but w represent the continuous real-valued frequency as in the continuous Fourier transform. This is also known as the analysis equation.
- In general $X(w) \in C$
- $X(w+2 n \pi)=X(w) \Rightarrow w \in\{-\pi, \pi\}$ is sufficient to describe everything.
- $\quad X(w)$ is normally called the spectrum of $x[n]$ with:

$$
X(w)=|X(w)| \cdot e^{j \angle X(w)} \Rightarrow\left\{\begin{array}{l}
|X(w)|: \text { MagnitudeSpectrum } \tag{4.3}\\
\angle X(w): \text { Phase Spectrum, angle }
\end{array}\right.
$$

- The magnitude spectrum is almost all the time expressed in decibels (dB):

$$
\begin{equation*}
|X(w)|_{d B}=20 \cdot \log _{10}|X(w)| \tag{4.4}
\end{equation*}
$$

Inverse DTFT: Let $X(w)$ be the DTFT of $x[n]$. Then its inverse is inverse Fourier integral of $X(w)$ in the interval $\{-\pi, \pi$).

$$
\begin{equation*}
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(w) e^{j w n} d w \tag{4.5}
\end{equation*}
$$

This is also called the synthesis equation.
Derivation: Utilizing a special integral: $\int_{-\pi}^{\pi} e^{j w n} d w=2 \pi \delta[n]$ we write:

$$
\int_{-\pi}^{\pi} X(w) e^{j w n} d w=\int_{-\pi}^{\pi}\left\{\sum_{k=-\infty}^{\infty} x[k] e^{-j w k}\right\} e^{j w n} d w=\sum_{k=-\infty}^{\infty} x[k] \int_{-\pi}^{\pi} e^{-j w[n-k]} d w=2 \pi \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]=2 \pi \cdot x[n]
$$

Note that since $\mathrm{x}[\mathrm{n}]$ can be recovered uniquely from its DTFT, they form Fourier Pair: $x[n] \Leftrightarrow X(w)$.
Convergence of DTFT: In order DTFT to exist, the series $\sum_{n=-\infty}^{\infty} x[n] e^{-j w n}$ must converge. In other words:

$$
\begin{equation*}
X_{M}(w)=\sum_{n=-M}^{M} x[n] e^{-j w n} \text { must converge to a limit } X(w) \text { as } M \rightarrow \infty . \tag{4.6}
\end{equation*}
$$

Convergence of $X_{m}(w)$ for three difference signal types have to be studied:

- Absolutely summable signals: $x[n]$ is absolutely summable iff $\sum_{n=-\infty}^{\infty}|x[n]|<\infty$. In this case, $X(w)$ always exists because:

$$
\begin{equation*}
\left|\sum_{n=-\infty}^{\infty} x[n] e^{-j w n}\right| \leq \sum_{n=-\infty}^{\infty}|x[n]| \cdot\left|e^{-j w n}\right|=\sum_{n=-\infty}^{\infty}|x[n]|<\infty \tag{4.7}
\end{equation*}
$$

- Energy signals: Remember $x[n]$ is an energy signal iff $E_{x} \equiv \sum_{n=-\infty}^{\infty}|x[n]|^{2}<\infty$. We can show that $X_{M}(w)$ converges in the mean-square sense to $X(w)$:

$$
\begin{equation*}
\operatorname{Lim}_{M \rightarrow \infty} \int_{-\pi}^{\pi}\left|X(w)-X_{M}(w)\right|^{2} d w=0 \tag{4.8}
\end{equation*}
$$

Note that mean-square sense convergence is weaker than the uniform (always) convergence of (4.7).

- Power signals: $x[n]$ is a power signal iff

$$
P_{x}=\operatorname{Lim}_{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N}|x[n]|^{2}<\infty
$$

- In this case, $x[n]$ with a finite power is expected to have infinite energy. But $X_{M}(w)$ may still converge to $X(w)$ and have DTFT.
- Examples with DTFT are: periodic signals and unit step-functions.
- $X(w)$ typically contains continuous delta functions in the variable w.

4.2 DTFT Examples

Example 4.1 Find the DTFT of a unit-sample $x[n]=\delta[n]$.

$$
\begin{equation*}
X(w)=\sum_{n=-\infty}^{\infty} x[n] e^{-j w n}=\sum_{n=-\infty}^{\infty} \delta[n] e^{-j w n}=e^{-j 0}=1 \tag{4.9}
\end{equation*}
$$

Similarly, the DTFT of a generic unit-sample is given by:

$$
\begin{equation*}
\operatorname{DTFT}\left\{\delta\left[n-n_{0}\right]\right\}=\sum_{n=-\infty}^{\infty} \delta\left[n-n_{0}\right] e^{-j w n}=e^{-j w n_{0}} \tag{4.10}
\end{equation*}
$$

Example 4.2 Find the DTFT of an arbitrary finite duration discrete pulse signal in the interval: $N_{1}<N_{2}$:

$$
x[n]=\sum_{k=-N_{1}}^{N_{2}} c_{k} \delta[n-k]
$$

Note: $x[n]$ is absolutely summable and DTFT exists:

$$
\begin{equation*}
X(w)=\sum_{n=-\infty}^{\infty}\left\{\sum_{k=-N_{1}}^{N_{2}} c_{k} \delta[n-k]\right\} e^{-j w n}=\sum_{k=-N_{1}}^{N_{2}} c_{k}\left\{\sum_{n=-\infty}^{\infty} \delta[n-k] e^{-j w n}\right\}=\sum_{k=-N_{1}}^{N_{2}} c_{k} e^{-j w k} \tag{4.11}
\end{equation*}
$$

Example 4.3 Find the DTFT of an exponential sequence: $x[n]=a^{n} u[n] \quad$ where $|a|<1$. It is not difficult to see that this signal is absolutely summable and the DTFT must exist.

$$
\begin{equation*}
X(w)=\sum_{n=-\infty}^{\infty} a^{n} . u[n] e^{-j w n}=\sum_{n=0}^{\infty} a^{n} \cdot e^{-j w n}=\sum_{n=0}^{\infty}\left(a e^{-j w}\right)^{n}=\frac{1}{1-a e^{-j w}} \tag{4.12}
\end{equation*}
$$

Observe the plot of the magnitude spectrum for DTFT and $X_{M}(w)$ for: $a=0.8$ and $M=\{2,5,10,20, \infty=D T F T\}$

Example 4.4 Gibbs Phenomenon: Significance of the finite size of M in (4.6).

For small M, the approximation of a pulse by a finite harmonics have significant overshoots and undershoots. But it gets smaller as the number of terms in the summation increases.

Example 4.5 Ideal Low-Pass Filter (LPF). Consider a frequency response defined by a DTFT with a form:

$$
X(w)=\left\{\begin{array}{cc}
1 & |w|<w_{C} \tag{4.13}\\
0 & w_{C}<w<\pi
\end{array}\right.
$$

Here any signal with frequency components smaller than w_{C} will be untouched, whereas all other frequencies will be forced to zero. Hence, a discrete-time continuous frequency ideal LPF configuration.

Through the computation of inverse DTFT we obtain:

$$
\begin{equation*}
x[n]=\frac{1}{2 \pi} \int_{-w_{C}}^{w_{C}} e^{j w n} d w=\frac{w_{C}}{\pi} \operatorname{Sinc}\left(\frac{w_{C} n}{\pi}\right) \tag{4.14}
\end{equation*}
$$

where $\operatorname{Sinc}(x)=\frac{\sin (\pi x)}{\pi x}$. The spectrum and its inverse transform for $w_{C}=\pi / 2$ has been depicted above.

4.3 Properties of DTFT

4.3.1 Real and Imaginary Parts:

$$
\begin{equation*}
x[n]=x_{R}[n]+j x_{I}[n] \tag{4.15}
\end{equation*}
$$

$\Leftrightarrow \quad X(w)=X_{R}(w)+j X_{I}(w)$

4.3.2 Even and Odd Parts:

$$
\begin{array}{lll}
x[n]=x_{e v}[n]+x_{\text {odd }}[n] & \Leftrightarrow & X(w)=X_{e v}(w)+X_{o d d}(w) \\
x_{e v}[n]=1 / 2 .\left\{x[n]+x^{*}[-n]\right\}=x_{e v}^{*}[-n] \Leftrightarrow & X_{e v}(w)=1 / 2 .\left\{X(w)+X^{*}[-w]\right\}=X_{e v}^{*}[-w] \\
x_{\text {odd }}[n]=1 / 2 .\left\{x[n]-x^{*}[-n]\right\}=-x_{o d d}^{*}[-n] & \Leftrightarrow X_{o d d}(w)=1 / 2 .\left\{X(w)-X^{*}(-w)\right\}=-X_{o d d}^{*}(-w)
\end{array}
$$

4.3.3 Real and Imaginary Signals:

If $x[n] \in \Re$ then $X(w)=X^{*}(-)$; even symmetry and it implies:

$$
\begin{array}{cc}
|X(w)=|X(-w)| ; \quad \angle X(w)=-\angle X(-w) \\
X_{R}(w)=X_{R}(-w) ; \quad X_{I}(w)=-X_{I}(-w) \tag{4.17b}
\end{array}
$$

If $x[n] \in \mathfrak{I}$ (purely imaginary) then $X(w)=-X^{*}(-w)$; odd symmetry (anti-symmetry.)

4.3.4 Linearity:

a. Zero-in zero-out and
b. Superposition principle applies: $A \cdot x[n]+B . y[n] \Leftrightarrow A \cdot X(w)+B . X(w)$

4.3.5 Time-Shift (Delay) Property:

$$
\begin{equation*}
x[n-D] \Leftrightarrow e^{-j w D} \cdot X(w) \tag{4.18}
\end{equation*}
$$

4.3.6 Frequency-Shift (Modulation) Property:

$$
\begin{equation*}
X\left[w-w_{C}\right] \Leftrightarrow e^{-j w_{C} n} . x[n] \tag{4.19}
\end{equation*}
$$

Example 4.6 Consider a first-order system:

$$
y[n]=K_{0} \cdot x[n]+K_{1} \cdot x[n-1]
$$

Then $Y(w)=\left(K_{0}+K_{1} \cdot e^{-j w}\right) X(w)$ and the frequency response:

$$
H(j w)=Y(w) / X(w)=K_{0}+K_{1} \cdot e^{-j w}
$$

4.3.7 Convolution Property:

$$
\begin{equation*}
x[n]^{*} h[n] \quad \Leftrightarrow \quad X(w) \cdot H(w) \tag{4.21}
\end{equation*}
$$

4.3.8 Multiplication Property:

$$
\begin{equation*}
x[n] \cdot y[n] \Leftrightarrow \frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\phi) \cdot Y(w-\phi) d \phi \tag{4.22}
\end{equation*}
$$

4.3.9 Differentiation in Frequency:

$$
\begin{equation*}
j \cdot \frac{d X(w)}{d w} \Leftrightarrow n \cdot x[n] \tag{4.23}
\end{equation*}
$$

4.3.10 Parseval's and Plancherel's Theorems:

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}|x[n]|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|X(w)|^{2} d w \tag{4.24}
\end{equation*}
$$

If $x[n]$ and/or $y[n]$ complex then

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} x[n] \cdot y^{*}[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(w) \cdot Y^{*}(w) d w \tag{4.25}
\end{equation*}
$$

Example 4.7 Find the DTFT of a generic discrete-time periodic sequence $x[n]$.
Let us write the Fourier series expansion of a generic periodic signal:

$$
\begin{align*}
& x[n]=\sum_{k=0}^{N-1} a_{k} e^{j k w_{0} n} \text { where } w_{0}=\frac{2 \pi}{N} \\
& X(w)=\operatorname{DTFT}\{x[n]\}=\operatorname{DTFT}\left\{\sum_{k=0}^{N-1} a_{k} e^{j k w_{0} n}\right)=\sum_{k=0}^{N-1} a_{k} \cdot \operatorname{DTFT}\left\{e^{j k w_{0} n}\right)=\sum_{k=0}^{N-1} a_{k} \cdot 2 \pi \delta\left(w-k w_{0}\right) \tag{4.26}
\end{align*}
$$

Therefore, DTFT of a periodic sequence is a set of delta functions placed at multiples of $k w_{0}$ with heights a_{k}.

4.4 DTFT Analysis of Discrete LTI Systems

The input-output relationship of an LTI system is governed by a convolution process:

$$
y[n]=x[n] * h[n] \text { where } h[n] \text { is the discrete time impulse response of the system. }
$$

Then the frequency-response is simply the DTFT of $h[n]$:

$$
\begin{equation*}
H(w)=\sum_{n=-\infty}^{\infty} h[n] \cdot e^{-j w n}, \quad w \in \mathfrak{R} \tag{4.27}
\end{equation*}
$$

- If the LTI system is stable then $h[n]$ must be absolutely summable and DTFT exists and is continuous.
- We can recover $h[n]$ from the inverse DTFT:

$$
\begin{equation*}
h[n]=\operatorname{IDTFT}\{H(w)\}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} H(w) \cdot e^{j w n} d w \tag{4.28}
\end{equation*}
$$

- We call $|H(w)|$ as the magnitude response and $\angle H(w)$ the phase response

Example 4.8 Let

$$
h[n]=\left(\frac{1}{2}\right)^{n} \cdot u[n] \text { and } x[n]=\left(\frac{1}{3}\right)^{n} \cdot u[n]
$$

Let us find the output from this system.

1. Via Convolution:

$$
y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty}\left(\frac{1}{3}\right)^{k} \cdot u[k] \cdot\left(\frac{1}{2}\right)^{n-k} \cdot u[n-k] \Rightarrow \text { Not so easy. }
$$

2. Via Fast Convolution or DFTF from Example 4.3 or Equation(4.12):

$$
\begin{aligned}
& H(w)=\frac{1}{1-\frac{1}{2} e^{-j w}} \text { and } X(w)=\frac{1}{1-\frac{1}{3} e^{-j w}} \\
& Y(w)=X(w) \cdot H(w)=\frac{1}{\left(1-\frac{1}{3} e^{-j w}\right) \cdot\left(1-\frac{1}{2} e^{-j w}\right)}=\frac{3}{1-\frac{1}{2} e^{-j w}}-\frac{2}{1-\frac{1}{3} e^{-j w}}
\end{aligned}
$$

and the inverse DTFT will result in:

$$
y[n]=3\left(\frac{1}{2}\right)^{n} \cdot u[n]-2\left(\frac{1}{3}\right)^{n} \cdot u[n]
$$

Example 4.9 Causal moving average system:

$$
y[n]=\frac{1}{M} \sum_{k=0}^{M-1} x[n-k]
$$

If the input were a unit-impulse: $x[n]=\delta[n]$ then the output would be the discrete-time impulse response:

$$
h[n]=\frac{1}{M} \sum_{k=0}^{M-1} \delta[n-k]=\left\{\begin{array}{cl}
1 / M & 0 \leq n<M \\
0 & \text { Otherwise }
\end{array}=\frac{1}{M}(u[n]-n[n-M])\right.
$$

The frequency response:

$$
H(w)=\frac{1}{M} \sum_{n=0}^{M-1} e^{-j w n}=\frac{1}{M} \frac{e^{-j w M}-1}{e^{-j w}-1}=\frac{1}{M} \frac{e^{-j w M / 2}}{e^{-j w / 2}} \frac{e^{-j w M / 2}-e^{j w M / 2}}{e^{-j w / 2}-e^{j w / 2}}=\frac{1}{M} \cdot e^{-j w(M-1) / 2} \cdot \frac{\sin (w M / 2)}{\sin (w / 2)}
$$

For $\mathrm{M}=6$ we plot the magnitude and the phase response of this system:

Notes:

1. Magnitude response Zeros at $w=\frac{2 \pi k}{M}$ where $\frac{\sin (w M / 2)}{\sin (w / w)}=0$
2. Level of first sidelobe $\approx-13 d B$
3. Phase response with a negative slope of $-(M-1) / 2$
4. Jumps of π at $w=\frac{2 \pi k}{M}$ where $\frac{\sin (w M / 2)}{\sin (w / w)}$ changes its sign.

TABLE: 4.1 DISCRETE-TIME FOURIER TRANSFORM PAIRS	
Signal	DTFT
$\delta[n]$	1
1	$2 \pi . \delta(w)$
$e^{j w_{C} n}$	$2 \pi . \delta\left(w-w_{C}\right)$
$\sum_{k=0}^{N-1} a_{k} \cdot e^{j k w_{C} n} \quad$ with $\quad N w_{C}=2 \pi$	$\sum_{k=0}^{N-1} 2 \pi \cdot a_{k} . \delta\left(w-k w_{C}\right)$
$a^{n} \cdot u[n] ; \quad\|n\|<1$	$\frac{1}{1-a \cdot e^{-j w}}$
$a^{\|n\|} \cdot \quad\|n\|<1$	$\frac{1-a^{2}}{1-2 a \cdot \cos w+a^{2}}$
$n \cdot a^{n} \cdot u[n] ; \quad\|n\|<1$	$\frac{a \cdot e^{-j w}}{\left(1-a \cdot e^{-j w}\right)^{2}}$
$r e c t\left[\frac{n}{N}\right]$	$\frac{\sin [w(N+1 / 2)]}{\sin [w / 2]}$
$\frac{\sin w_{C} n}{\pi n}$	$r e c t\left[w / 2 w_{C}\right]$

TABLE 4.2 PROPERTIES OF DTFT		
1. Linearity	$A \cdot x_{1}[n]+B \cdot x_{2}[n]$	$A \cdot X_{1}(w)+B \cdot X_{2}(w)$
2. Time-Shift (Delay)	$x[n-N]$	$e^{-j w N} \cdot X(w)$
3. Frequency-Shift	$x[n] \cdot e^{j w_{C} n}$	$X\left(w-w_{C}\right)$
4. Linear Convolution	$x[n] * h[n]$	$X(w) \cdot H(w)$
5. Modulation	$x[n] \cdot p[n]$	$\frac{1}{2 \pi} \int_{<2 \pi} X(\eta) \cdot H(w-\eta) d \eta$
6. Periodic Signals	$x[n]=x[n+N]$	$\sum_{k=-\infty}^{\infty} 2 \pi \cdot a_{k} \cdot \delta\left(w-k w_{C}\right)$
	$w_{C}=\frac{2 \pi}{N}$	$a_{k}=\frac{1}{N} \sum_{<N>} x[n] \cdot e^{-j k w_{C} n}$

Example 4.10 Response of an LTI system with $H(w)=\operatorname{DTFT}\{h[n]\}$: Given $x[n]=e^{j w n}$; a complex harmonic.

$$
\begin{equation*}
y[n]=\sum_{k} h[k] \cdot x[n-k]=\sum_{k} h[k] \cdot e^{j w(n-k)}=\left\{\sum_{k} h[k] \cdot e^{-j w k}\right\} \cdot e^{j w n}=H(w) \cdot x[n] \tag{4.29}
\end{equation*}
$$

Note that this is the ONLY time frequency-domain variable w and the time-domain variable n appear on the same side of the equation. In all other cases, we have time domain variable in the time-domain and vice versa. In calculus jargon, $e^{j w n}$ acts as the Eigenvector of the system.

4.5 FREQUENCY-SELECTIVE DISCRETE-TIME FILTERS

4.5.1 Ideal Low-Pass and High-Pass Filters

$$
\begin{align*}
& H_{L P}(w)=\left\{\begin{array}{lc}
1 & \text { if }|w|<w_{C} \\
0 & \text { if } w_{C}<|w|<\pi
\end{array}\right. \tag{4.30a-d}\\
& h_{L P}[n]=\frac{w_{C}}{\pi} \cdot \operatorname{Sinc}\left(\frac{w_{C} n}{\pi}\right)
\end{align*}
$$

$$
H_{H P}(w)=\left\{\begin{array}{lc}
0 & \text { if }|w|<w_{C} \\
1 & \text { if } w_{C}<|w|<\pi
\end{array}\right.
$$

$$
h_{H P}[n]=\delta[n]-h_{L P}[n]=\delta[n]-\frac{w_{C}}{\pi} \cdot \operatorname{Sinc}\left(\frac{w_{C} n}{\pi}\right)
$$

4.5.2 Ideal Band-Pass and Band-Stop Filters

$H_{B P}(w)=\left\{\begin{array}{l}1 \quad \text { if } \mid w-w_{C}<B / 2 \\ 0 \quad \text { elsewhere in }(-\pi, \pi)\end{array}\right.$
$h_{B P}[n]=\left.2 \cdot \cos \left(w_{C} n\right) \cdot h_{L P}[n]\right|_{w_{C}=B / 2}$

$$
H_{B S}(w)=\left\{\begin{array}{lc}
0 & \text { if }\left|w-w_{C}\right|<B / 2 \tag{4.31a-d}\\
1 & \text { elsewhere in }(-\pi, \pi)
\end{array}\right.
$$

$h_{B S}[n]=\delta[n]-h_{B P}[n]=\delta[n]-\left.2 \cdot \cos \left(w_{C} n\right) \cdot h_{L P}[n]\right|_{w_{C}=B / 2}$

- All of these ideal filters are non-causal and hence, non-realizable.
- They form benchmark for implementable real-life filters.

4.6 Phase delay and group delay

Consider an integer system, for which the input-output relationship is given by:

$$
\begin{equation*}
y[n]=x[n-k], \quad k \in \text { Integer } \tag{4.32a}
\end{equation*}
$$

The frequency response is computed:

$$
\begin{equation*}
Y(w)=e^{-j w k} \cdot X(w) \Rightarrow H(w) \equiv \frac{Y(w)}{X(w)}=e^{-j w k} \tag{4.32b}
\end{equation*}
$$

The phase response of this system:

$$
\begin{equation*}
\angle H(w)=-w k \tag{4.33}
\end{equation*}
$$

is a linear function of the frequency variable w.
Phase delay $\tau_{P H}$ is defined by:

$$
\begin{equation*}
\tau_{P H} \equiv-\frac{\angle H(w)}{w} \tag{4.34}
\end{equation*}
$$

For integer systems, this simplifies to:

$$
-\frac{\angle H(w)}{w}=k
$$

Group Delay is more meaningful and defined by:

$$
\begin{equation*}
\tau_{G} \equiv-\frac{d \angle H(w)}{d w} \tag{4.35}
\end{equation*}
$$

It is useful for dealing with narrow-band input signal $x[n]$ is centered around a carrier frequency w_{0}.

$$
x[n]=s[n] \cdot e^{j w_{0} n}
$$

where $s[n]$ is a slowly-varying envelope. Typical digital communication task, as shown below.

The corresponding system output is approximated by:

$$
\begin{equation*}
y[n] \approx\left|H\left(w_{0}\right)\right| \cdot s\left[n-\tau_{G}(w)\right] \cdot e^{j w_{0}\left[n-\tau_{P H}\left(w_{0}\right)\right]} \tag{4.36}
\end{equation*}
$$

It is easy to see that the phase delay $\tau_{P H}$ contributes a phase shift to the carrier $e^{j w_{0} n}$, whereas the group delay τ_{G} causes a delay to the envelope $s[n]$.

Pure delay, or All-Pass Filter:

When a system is a pure delay; i.e., its magnitude response is unity for all w and the phase is a linear function of the delay τ.

$$
\begin{equation*}
|H(w)|=1 \quad \tau_{P H}(w)=\tau_{G}(w)=1 \tag{4.37}
\end{equation*}
$$

If the phase is linear but the magnitude may depend on w, then the system is labeled as a linear Phase system:

$$
\begin{equation*}
H(w)=|H(w)| \cdot e^{j \angle H(w)} \tag{4.38a}
\end{equation*}
$$

where

$$
\begin{equation*}
\angle H(w)=-w \tau \tag{4.38b}
\end{equation*}
$$

where the phase is a linear function of w with a slope $-\tau$.

