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Chapter 4: Discrete-time Fourier Transform (DTFT) 
4.1 DTFT and its Inverse 

Forward DTFT: The DTFT is a transformation that maps Discrete-time (DT) signal x[n] into a complex valued 
function of the real variable w, namely: 
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• Note n is a discrete-time instant, but w represent the continuous real-valued frequency as in the 
continuous Fourier transform. This is also known as the analysis equation. 

• In general CwX ∈)(  

• },{)()2( πππ −∈⇒=+ wwXnwX  is sufficient to describe everything.    (4.2) 

• )(wX  is normally called the spectrum of ][nx  with: 
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• The magnitude spectrum is almost all the time expressed in decibels (dB): 

|)(|log.20|)(| 10 wXwX dB =            (4.4) 
 
Inverse DTFT: Let )(wX  be the DTFT of ].[nx  Then its inverse is inverse Fourier integral of )(wX  in the 
interval ).,{ ππ−  
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This is also called the synthesis equation. 

Derivation: Utilizing a special integral: ][2 ndwe jwn πδ
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Note that since x[n] can be recovered uniquely from its DTFT, they form Fourier Pair: ).(][ wXnx ⇔  

Convergence of DTFT: In order DTFT to exist,  the series ∑
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Convergence of )(wX m  for three difference signal types have to be studied: 

• Absolutely summable signals: ][nx  is absolutely summable iff ∞∑ <
∞

−∞=n
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exists because: 
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• Energy signals: Remember ][nx  is an energy signal iff .|][| 2 ∞<∑≡
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converges in the mean-square sense to :)(wX  
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Note that mean-square sense convergence is weaker than the uniform (always) convergence of (4.7). 

• Power signals: ][nx  is a power signal iff  
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• In this case, ][nx  with a finite power is expected to have infinite energy. But )(wX M  may still converge 
to )(wX  and have DTFT.   

• Examples with DTFT are: periodic signals and unit step-functions. 

• )(wX  typically contains continuous delta functions in the variable .w   
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4.2 DTFT Examples 
Example 4.1 Find the DTFT of a unit-sample ].[][ nnx δ=   
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Similarly, the DTFT of a generic unit-sample is given by: 
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Example 4.2 Find the DTFT of an arbitrary finite duration discrete pulse signal in the interval: :21 NN <  
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Note: ][nx  is absolutely summable and DTFT exists: 
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Example 4.3 Find the DTFT of an exponential sequence: .1||][][ <= awherenuanx n  It is not difficult to see 
that this signal is absolutely summable and the DTFT must exist. 
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Observe the plot of the magnitude spectrum for DTFT and )(wX M  for: 8.0=a  and },20,10,5,2{ DTFTM =∞=  
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Example 4.4 Gibbs Phenomenon: Significance of the finite size of M  in (4.6). 

 
For small M , the approximation of a pulse by a finite harmonics have significant overshoots and 
undershoots. But it gets smaller as the number of terms in the summation increases.  
 
Example 4.5 Ideal Low-Pass Filter (LPF). Consider a frequency response defined by a DTFT with a form: 
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Here any signal with frequency components smaller than Cw  will be untouched, whereas all other frequencies 
will be forced to zero. Hence, a discrete-time continuous frequency ideal LPF configuration. 

   
Through the computation of inverse DTFT we obtain: 
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where .
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x
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=  The spectrum and its inverse transform for 2/π=Cw  has been depicted above. 

 
4.3 Properties of DTFT  

4.3.1 Real and Imaginary Parts: 
 ][][][ njxnxnx IR +=       ⇔      )()()( wjXwXwX IR +=        (4.15) 
4.3.2 Even and Odd Parts: 
 ][][][ nxnxnx oddev +=      ⇔      )()()( wXwXwX oddev +=               (4.16a) 

 ][]}[][.{2/1][ ** nxnxnxnx evev −=−+=   ⇔     ][]}[)(.{2/1)( ** wXwXwXwX evev −=−+=        (4.16b) 

 ][]}[][.{2/1][ ** nxnxnxnx oddodd −−=−−=   ⇔ )()}()(.{2/1)( ** wXwXwXwX oddodd −−=−−=             (4.16c) 
4.3.3 Real and Imaginary Signals: 
If ℜ∈][nx  then  );()( * −= XwX  even symmetry and it implies: 
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 )()(|;)(|)(| wXwXwXwX −−∠=∠−=           (4.17a) 
 )()();()( wXwXwXwX IIRR −−=−=           (4.17b) 

If ℑ∈][nx  (purely imaginary) then )()( * wXwX −−= ; odd symmetry (anti-symmetry.) 
 
4.3.4 Linearity:  
 a. Zero-in zero-out and  
 b. Superposition principle applies: )(.)(.][.][. wXBwXAnyBnxA +⇔+     (4.18) 
4.3.5 Time-Shift (Delay) Property:  
  )(.][ wXeDnx jwD−⇔−            (4.19) 
4.3.6 Frequency-Shift (Modulation) Property:  
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Example 4.6 Consider a first-order system: 
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Then )().()( 10 wXeKKwY jw−+=  and the frequency response: 
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4.3.7 Convolution Property:  

  )().(][*][ wHwXnhnx ⇔            (4.21) 

4.3.8 Multiplication Property: 
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4.3.9 Differentiation in Frequency: 
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4.3.10 Parseval’s and Plancherel’s Theorems:  
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If ][nx  and/or ][ny  complex then 
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Example 4.7 Find the DTFT of a generic discrete-time periodic sequence ].[nx  
Let us write the Fourier series expansion of a generic periodic signal: 
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Therefore, DTFT of a periodic sequence is a set of delta functions placed at multiples of 0kw  with heights .ka  
 

4.4 DTFT Analysis of Discrete LTI Systems  

 
The input-output relationship of an LTI system is governed by a convolution process: 

  ][*][][ nhnxny =  where ][nh  is the discrete time impulse response of the system. 

Then the frequency-response  is simply the DTFT of :][nh  
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• If the LTI system is stable then ][nh  must be absolutely summable and DTFT exists and is continuous. 

• We can recover ][nh  from the inverse DTFT: 
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• We call |)(| wH  as the magnitude response and  )(wH∠  the phase response 

 
Example 4.8 Let 
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Let us find the output from this system. 
1. Via Convolution: 
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2. Via Fast Convolution or DFTF from Example 4.3 or Equation(4.12): 
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and the inverse DTFT will result in: 

  ][.)
3
1(2][.)

2
1(3][ nununy nn −=  

Example 4.9 Causal moving average system: 
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If the input were a unit-impulse: ][][ nnx δ=  then the output would be the discrete-time impulse response: 
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The frequency response: 
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For M=6 we plot the magnitude and the phase response of this system: 
    

 
Notes: 

1. Magnitude response Zeros at 0
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2. Level of first sidelobe dB13−≈  
3. Phase response with a negative slope of 2/)1( −− M  
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TABLE: 4.1 DISCRETE-TIME FOURIER TRANSFORM PAIRS 
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TABLE 4.2 PROPERTIES OF DTFT 

1. Linearity ][.][. 21 nxBnxA +  )(.)(. 21 wXBwXA +  

2. Time-Shift (Delay) ][ Nnx −  )(. wXe jwN−  

3. Frequency-Shift  njwCenx ].[  )( CwwX −  

4. Linear Convolution ][*][ nhnx  )().( wHwX  

5. Modulation ][].[ npnx  
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Example 4.10 Response of an LTI system with :]}[{)( nhDTFTwH =  Given jwnenx =][ ; a complex harmonic. 
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Note that this is the ONLY time frequency-domain variable w and the time-domain variable n  appear on the 
same side of the equation. In all other cases, we have time domain variable in the time-domain and vice 
versa. In calculus jargon, jwne  acts as the Eigenvector of the system. 
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4.5 FREQUENCY-SELECTIVE DISCRETE-TIME FILTERS 
4.5.1 Ideal Low-Pass and High-Pass Filters 
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4.5.2 Ideal Band-Pass and Band-Stop Filters 
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• All of these ideal filters are non-causal and hence, non-realizable. 

• They form benchmark for implementable real-life filters. 

 
4.6 Phase delay and group delay 

 
Consider an integer system, for which the input-output relationship is given by: 
  Integerkknxny ∈−= ],[][            (4.32a) 
The frequency response is computed: 
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The phase response of this system: 
  wkwH −=∠ )(              (4.33) 
is a linear function of the frequency variable .w   
 
Phase delay PHτ  is defined by: 
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For integer systems, this simplifies to: 
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Group Delay is more meaningful and defined by: 
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It is useful for dealing with narrow-band input signal ][nx  is centered around a carrier frequency .0w  

  njwensnx 0].[][ =  
where ][ns  is a slowly-varying envelope. Typical digital communication task, as shown below. 
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The corresponding system output is approximated by: 
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It is easy to see that the phase delay PHτ  contributes a phase shift to the carrier njwe 0 , whereas the group 
delay Gτ  causes a delay to the envelope ].[ns  
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Pure delay, or All-Pass Filter: 
When a system is a pure delay; i.e., its magnitude response is unity for all w and the phase is a linear 
function of the delay τ .   
  1)()(1|)(| === wwwH GPH ττ           (4.37) 
If the phase is linear but the magnitude may depend on w, then the system is labeled as a linear Phase 
system:  
  )(.|)(|)( wHjewHwH ∠=             (4.38a) 
where  
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where the phase is a linear function of w with a slope .τ−  
 

 


