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A Tour of C++: The Basics

The first thing we do, let´s
kill all the language lawyers.

– Henry VI, part II

• Introduction
• The Basics

Hello, World!; Types, Variables, and Arithmetic; Constants; Tests and Loops; Point-
ers, Arrays, and Loops

• User-defined Types
Structures; Classes; Enumerations

• Modularity
Separate Compilation; Namespaces; Error Handling

• Postscript
• Advice

2.1 Introduction [tour1.intro]

The aim of this chapter and the next three is to give you an idea of what C++ is, without
going into a lot of details. This chapter informally presents the notation of C++, C++’s
model of memory and computation, and the basic mechanisms for organizing code into a
program. These are the language facilities supporting the styles most often seen in C and
sometimes called procedural programming. Chapter 3 follows up by presenting C++’s
abstraction mechanisms. Chapter 4 and Chapter 5 give examples of standard-library facil-
ities.

The assumption is that you have programmed before. If not, please consider reading a
textbook, such as Programming: Principles and Practice using C++ [Stroustrup, 2009],
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40 A Tour of C++: The Basics Chapter 2

before continuing here. Even if you have programmed before, the language you used or
the applications you wrote may be very different from the style of C++ presented here. If
you find this ‘‘lightning tour’’ confusing, skip to the more systematic presentation starting
in Chapter 6.

This chapter and the next three save us from a strictly bottom-up presentation of lan-
guage and library facilities by enabling the use of a rich set of facilities even in early chap-
ters. For example, loops are not discussed in detail until Chapter 10, but they will be used
in obvious ways long before that. Similarly, the detailed description of classes, templates,
free-store use and the standard library are spread over many chapters, but standard-library
types, such as vv eeccttoorr, ssttrr iinngg, ccoommppllee xx, mmaapp, uunniiqquuee__ppooiinntteerr, and oossttrreeaamm, are used freely where
needed to improve code examples.

As an analogy, think of a short sightseeing tour of a city, such as Copenhagen or New
York. In just a few hours, you are given a quick peek at the major attractions, told a few
background stories, and usually given some suggestions about what to see next. You do
not know the city after such a tour. You do not understand all you have seen and heard.
To really know a city, you have to liv e in it, often for years. However, with a bit of luck,
you will have gained a bit of an overview, a notion of what might be special about the city,
and ideas of what might be of interest to you. After the tour, the real exploration can
begin.

2.2 The Basics [tour1.basics]

C++ is a compiled language. That means that for a program to run, its source text has to
be processed by a compiler, producing object files, which are combined by a linker yield-
ing an executable program. A C++ program typically consists of many source code files
(typically simply called ‘‘source files’’). An executable program is created for a specific
hardware/system combination; it is not portable, say, from a Mac to a Windows PC.
When we talk about portability of C++ programs, we usually mean portability of source
code; that is, the source code can be successfully compiled and run on a variety of sys-
tems.

The ISO C++ standard defines two kinds of entities:
• Core language features, such as built-in types (e.g., cchhaarr and iinntt) and loops (e.g., ff oorr-

statements and wwhhiillee-statements)
• Standard-library components, such as containers (e.g., vv eeccttoorr and mmaapp) and I/O

operations (e.g., <<<< and ggeettlliinnee(()))
The standard-library components are mostly perfectly ordinary C++ code that happens to
be provided by every C++ implementation. That is, the C++ standard library can be
implemented in C++ itself (and is with very minor uses of machine code for things such as
thread context switching). This implies that C++ is sufficiently expressive and efficient
for the most demanding systems programming tasks.

C++ is a statically typed language. That is, the type of every entity (e.g., object, value,
name, and expression) must be known to the compiler at its point of use. The type of an
object determines the set of operations applicable to it.
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Section 2.2.1 Hello, World! 41

2.2.1 Hello, World! [tour1.hello]

The minimal C++ program is

iinntt mmaaiinn(()) {{ }} //// the minimal C++ program

This defines a function called mmaaiinn, which takes no arguments and does nothing (§15.4).
Curly braces, {{ }}, express grouping in C++. Here, they indicate the start and end of the

function body. The double slash, ////, begins a comment that extends to the end of the line.
A comment is for the human reader; the compiler ignores comments.

Every C++ program must have exactly one global function named mmaaiinn(()). The program
starts by executing that function. The iinntt value returned by mmaaiinn(()), if any, is the program’s
return value to ‘‘the system.’’ If no value is returned, the system will receive a value indi-
cating successful completion. A nonzero value from mmaaiinn(()) indicates failure. Not ev ery
operating system and execution environment make use of that return value: Linux/Unix-
based environments often do, but Windows-based environments rarely do.

Typically, a program produces some output. Here is a program that writes HHeelllloo ,, WWoorrlldd!!:

##iinncclluuddee <<iioossttrreeaamm>>

iinntt mmaaiinn(())
{{

ssttdd::::ccoouutt <<<< ""HHeelllloo,, WWoorrlldd!!\\nn"";;
}}

The line ##iinncclluuddee <<iioossttrreeaamm>> instructs the compiler to include the declarations of the stan-
dard stream I/O facilities as found in iioossttrreeaamm. Without these declarations, the expression

ssttdd::::ccoouutt <<<< ""HHeelllloo,, WWoorrlldd!!\\nn""

would make no sense. The operator <<<< (‘‘put to’’) writes its second argument onto its first.
In this case, the string literal ""HHeelllloo ,, WWoorrlldd!!\\nn"" is written onto the standard output stream
ssttdd::::ccoouutt. A string literal is a sequence of characters surrounded by double quotes. In a
string literal, the backslash character \\ followed by another character denotes a single
‘‘special character.’’ In this case, \\nn is the newline character, so that the characters written
are HHeelllloo ,, WWoorrlldd!! followed by a newline.

The ssttdd:::: specifies that the name ccoouutt is to be found in the standard-library namespace
(§2.4.2, Chapter 14).

Essentially all executable code is placed in functions and called directly or indirectly
from mmaaiinn(()). For example:

##iinncclluuddee <<iioossttrreeaamm>>

ddoouubb llee ssqquuaarree((ddoouubbllee xx)) //// square a double precision floating-point number
{{

rreettuurr nn xx∗∗xx;;
}}
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42 A Tour of C++: The Basics Chapter 2

vv ooiidd pprriinntt__ssqquuaarree((ddoouubbllee xx))
{{

ssttdd::::ccoouutt <<<< ""tthhee ssqquuaarree ooff "" <<<< xx <<<< "" iiss "" <<<< ssqquuaarree((xx)) <<<< ’’\\nn’’;;
}}

iinntt mmaaiinn(())
{{

pprr iinntt__ssqquuaarree((11..223344));; //// pr int: the square of 1.234 is 1.52276
pprr iinntt__ssqquuaarree((55..555555));; //// pr int: the square of 5.555 is 30.858

}}

A ‘‘return type’’ vv ooiidd indicates that a function does not return a value.

2.2.2 Types, Variables, and Arithmetic [tour1.var]

Every name and every expression has a type that determines the operations that may be
performed on it. For example, the declaration

iinntt iinncchh;;

specifies that iinncchh is of type iinntt; that is, iinncchh is an integer variable.
A declaration is a statement that introduces a name into the program. It specifies a

type for the named entity:
• A type defines a set of possible values and a set of operations (for an object).
• An object is some memory that holds a value of some type.
• A value is a set of bits interpreted according to a type.
• A variable is a named object.

C++ offers a variety of fundamental types, which correspond directly to hardware facili-
ties. For example:

bbooooll //// Boolean, possible values are true and false
cchhaarr //// character, for example, ’a’, ’z’, and ’9’
iinntt //// integer, for example, 1, 42, and 1066
ddoouubb llee //// double-precision floating-point number, for example, 3.14 and 299793.0

Each of the fundamental types has a fixed size that determines the range of values that can
be stored in them (for integers) or the precision and range of those values (for floating
point numbers). A cchhaarr variable is of the natural size to hold a character on a given
machine (typically an 8-bit byte), and the sizes of other types are quoted in multiples of
the size of a cchhaarr. The size of a type is implementation defined (i.e., it can vary among dif-
ferent machines) and can be obtained by the ssiizz eeooff operator; for example ssiizz eeooff((cchhaarr)) equals
11 and ssiizz eeooff((iinntt)) is often 44. We can represent sizes graphically:
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Section 2.2.2 Types, Variables, and Arithmetic 43

bbooooll:

cchhaarr:

iinntt:

ddoouubb llee:

The arithmetic operators can be used for appropriate combinations of these types:

xx++yy //// plus
++xx //// unar y plus
xx−−yy //// minus
−−xx //// unar y minus
xx∗∗yy //// multiply
xx//yy //// divide
xx%%yy //// remainder (modulus) for integers

So can the comparison operators:

xx====yy //// equal
xx!!==yy //// not equal
xx<<yy //// less than
xx>>yy //// greater than
xx<<==yy //// less than or equal
xx>>==yy //// greater than or equal

In assignments and in arithmetic operations, C++ performs all meaningful conversions
(§10.5.3) between the basic types so that they can be mixed freely:

vv ooiidd ssoommee__ffuunnccttiioonn(()) //// function that doesn’t return a value
{{

ddoouubb llee dd == 22..22;; //// initialize floating-point number
iinntt ii == 77;; //// initialize integer
dd == dd++ii;; //// assign sum to d
ii == dd∗∗ii;; //// assign product to i (truncating the double to an int)

}}

Note that == is the assignment operator and ==== tests equality.
C++ offers a variety of notations for expressing initialization, such as the == used above,

and a universal form based on curly brace delimited initializer lists:

ddoouubb llee dd11 == 22..33;;
ddoouubb llee dd22 {{22..33}};;
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44 A Tour of C++: The Basics Chapter 2

ccoommppllee xx<<ddoouubbllee>> zz == 11;; //// a complex number with double-precision floating-point scalars
ccoommppllee xx<<ddoouubbllee>> zz22 {{dd11,,dd22}};;
ccoommppllee xx<<ddoouubbllee>> zz33 == {{11,,22}};; //// the = is optional with { ... }

vv eeccttoorr<<iinntt>> vv {{11,,22,,33,,44,,55,,66}};; //// a vector of ints

The == form is traditional and dates back to C, but if in doubt, use the general {{}}-list form
(§6.3.5.2). If nothing else, it saves you from conversions that lose information (narrowing
conversions; §10.5):

iinntt ii11 == 77..22;; //// i1 becomes 7
iinntt ii22 {{77..22}};; //// error : floating-point to integer conversion

A constant (§2.2.3) cannot be left uninitialized and a variable should only be left uninitial-
ized in extremely rare circumstances. Don’t introduce a name until you have a suitable
value for it. User-defined types (such as, ssttrr iinngg, vv eeccttoorr, MMaattrr iixx, and OOrrcc) can be defined to be
implicitly initialized (§3.2.1.1).

When defining a variable, you don’t actually need to state its type explicitly when it
can be deduced from the initializer:

aauuttoo bb == ttrruuee;; //// a bool
aauuttoo cchh == ’’xx’’;; //// a char
aauuttoo ii == 112233;; //// an int
aauuttoo dd == 11..22;; //// a double
aauuttoo zz == ssqqrrtt((yy));; //// z has the type of whatever sqr t(y) retur ns

With aauuttoo, we use the == syntax because there is no type conversion involved that might
cause problems (§6.3.6.2).

We use aauuttoo where we don’t hav e a specific reason to mention the type explicitly.
‘‘Specific reasons’’ include

• The definition is in a large scope where we want to make the type clearly visible to
readers of our code

• We want to be explicit about a variable’s range or precision (e.g., lloonngg ddoouubb llee rather
than ddoouubb llee).

Using aauuttoo, we avoid redundancy and typing long type names. This is especially impor-
tant in generic programming where the exact type of an object can be hard for the pro-
grammer to know and the type names can be quite long (§4.5.1).

In addition to the conventional arithmetic and logical operators (§10.3), C++ offers
more specific operations for modifying a variable:

xx++==yy //// x = x+y
++++xx //// increment: x = x+1
xx−−==yy //// x = x-y
−−−−xx //// decrement: x = x-1
xx∗∗==yy //// scaling: x = x*y
xx//==yy //// scaling: x = x/y
xx%%==yy //// x = x%y

These operators are concise, convenient, and very frequently used.
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Section 2.2.3 Constants 45

2.2.3 Constants [tour1.const]

C++ supports two notions of immutability (§7.5):
• ccoonnsstt: meaning roughly ‘‘I promise not to change this value’’ (§7.5). This is used

primarily to specify interfaces, so that data can be passed to functions without fear
of it being modified. The compiler enforces the promise made by ccoonnsstt.

• ccoonnssttee xxpprr: meaning roughly ‘‘to be evaluated at compile time’’ (§10.4). This is used
primarily to specify constants, to allow placement of data in memory where it is
unlikely to be corrupted, and for performance.

For example:

ddoouubb llee ssuumm((ccoonnsstt vveeccttoorr<<ddoouubbllee>>&&));; //// sum will not modify its argument
ccoonnsstt iinntt ddmmvv == 1177;; //// dmv is a named constant
ccoonnssttee xxpprr ddoouubbllee mmaaxx11 == 11..44∗∗ssqquuaarree((ddmmvv));; //// OK if square(17) is a constant expression
ccoonnsstt ddoouubbllee mmaaxx22 == 11..44∗∗ssqquuaarree((ddmmvv));; //// OK, may be evaluated at run time
vv eeccttoorr<<ddoouubbllee>> vv {{ 11..22,, 33..44,, 44..55 }};; //// v is not a constant
ccoonnsstt ddoouubbllee ss11 == ssuumm((vv));; //// OK: evaluated at run time
ccoonnssttee xxpprr ddoouubbllee ss22 == ssuumm((vv));; //// error : sum(v) not constant expression

For a function to be useful in a constant expression, that is, in an expression that will be
evaluated by the compiler, it must be defined ccoonnssttee xxpprr. For example,

ccoonnssttee xxpprr ddoouubbllee ssqquuaarree((ddoouubbllee xx)) {{ rreettuurrnn xx∗∗xx;; }}

To be ccoonnssttee xxpprr a function must be rather simple: just a return statement computing a
value. A ccoonnssttee xxpprr function can be used for non-constant arguments, but when that is done
the result is not a constant expression. We allow a ccoonnssttee xxpprr function to be called with
non-constant-expression arguments in contexts that do not require constant expressions, so
that we don’t hav e to define essentially the same function twice: once for constant expres-
sions and once for variables.

In a few places, constant expressions are required by language rules (e.g., array bounds
(§2.2.5, §7.3), case labels (§2.2.4, §9.4.2), and some template arguments (§25.2). In other
cases, compile-time evaluation is important for performance. Independently of perfor-
mance issues, the notion of immutability (of an object with an unchangeable state) is an
important design concern (§10.4).

2.2.4 Tests and Loops [tour1.loop]

C++ provides a conventional set of statements for expressing selection and looping. For
example, here is a simple function that prompts the user and returns a Boolean indicating
the response:

bbooooll aacccceepptt(())
{{

ccoouutt <<<< ""DDoo yyoouu wwaanntt ttoo pprroocceeeedd ((yy oorr nn))??\\nn"";; //// wr ite question

cchhaarr aannsswweerr == 00;;
cciinn >>>> aannsswweerr;; //// read answer
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46 A Tour of C++: The Basics Chapter 2

iiff ((aannsswweerr ==== ’’yy’’)) rreettuurrnn ttrruuee;;
rreettuurr nn ffaallssee;;

}}

To match the <<<< output operator (‘‘put to’’), the >>>> operator (‘‘get from’’) is used for input;
cciinn is the standard input stream. The type of the right-hand operand of >>>> determines what
input is accepted and its right-hand operand is the target of the input operation. The \\nn
character at the end of the output string represents a newline (§2.2.1).

The example could be slightly improved by taking an nn (for ‘‘no’’) answer into
account:

bbooooll aacccceepptt22(())
{{

ccoouutt <<<< ""DDoo yyoouu wwaanntt ttoo pprroocceeeedd ((yy oorr nn))??\\nn"";; //// wr ite question

cchhaarr aannsswweerr == 00;;
cciinn >>>> aannsswweerr;; //// read answer

ss wwiittcchh ((aannsswweerr)) {{
ccaassee ’’yy’’::

rreettuurr nn ttrruuee;;
ccaassee ’’nn’’::

rreettuurr nn ffaallssee;;
ddeeff aauulltt::

ccoouutt <<<< ""II’’llll ttaakkee tthhaatt ffoorr aa nnoo..\\nn"";;
rreettuurr nn ffaallssee;;

}}
}}

A ss wwiittcchh-statement tests a value against a set of constants. The case constants must be dis-
tinct, and if the value tested does not match any of them, the ddeeff aauulltt is chosen. The pro-
grammer need not provide a ddeeff aauulltt. If there is no ddeeff aauulltt, no action is taken if the value
doesn’t match any case constant.

Few programs are written without loops. In this case, we might like to giv e the user a
few tries:

bbooooll aacccceepptt33(())
{{

iinntt ttrr iieess == 11;;
wwhhiillee ((ttrriieess<<44)) {{

ccoouutt <<<< ""DDoo yyoouu wwaanntt ttoo pprroocceeeedd ((yy oorr nn))??\\nn"";; //// wr ite question
cchhaarr aannsswweerr == 00;;
cciinn >>>> aannsswweerr;; //// read answer
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ss wwiittcchh ((aannsswweerr)) {{
ccaassee ’’yy’’::

rreettuurr nn ttrruuee;;
ccaassee ’’nn’’::

rreettuurr nn ffaallssee;;
ddeeff aauulltt::

ccoouutt <<<< ""SSoorrrryy,, II ddoonn’’tt uunnddeerrssttaanndd tthhaatt..\\nn"";;
++++ttrr iieess;; //// increment

}}
}}
ccoouutt <<<< ""II’’llll ttaakkee tthhaatt ffoorr aa nnoo..\\nn"";;
rreettuurr nn ffaallssee;;

}}

The wwhhiillee-statement executes until its condition becomes ff aallssee.

2.2.5 Pointers, Arrays and Loops [tour1.ptr]

An array of elements of type cchhaarr can be declared like this:

cchhaarr vv[[66]];; //// array of 6 characters

Similarly, a pointer can be declared like this:

cchhaarr∗∗ pp;; //// pointer to character

In declarations, [[]] means ‘‘array of’’ and ∗∗ means ‘‘pointer to.’’ All arrays have 00 as their
lower bound, so vv has six elements, vv[[00]] to vv[[55]]. The size of an array must be a constant
expression (§2.2.3). A pointer variable can hold the address of an object of the appropri-
ate type:

cchhaarr∗∗ pp == &&vv[[33]];; //// p points to v’s four th element
iinntt xx == ∗∗pp;; //// read the value of what p points to

In an expression, prefix unary ∗∗ means ‘‘contents of’’ and prefix unary && means ‘‘address
of.’’ We can represent the result of that initialized definition graphically:

pp:

vv:
0: 1: 2: 3: 4: 5:

Consider copying ten elements from one array to another:

vv ooiidd ccooppyy__ffcctt(())
{{

iinntt vv11[[1100]];;
iinntt vv22[[1100]] == {{00,,11,,22,,33,,44,,55,,66,,77,,88,,99}};;
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ff oorr ((aauuttoo ii==00;; ii<<1100;; ++++ii))
vv11[[ii]]==vv22[[ii]];;

//// ...
}}

This ff oorr-statement can be read as ‘‘set ii to zero; while ii is less than 1100, copy the iith element
and increment ii.’’ When applied to an integer variable, the increment operator ++++ simply
adds 11. C++ also offers a simpler ff oorr-statement, called a range-ff oorr-statement, for loops that
traverse a sequence in the simplest way:

vv ooiidd pprriinntt(())
{{

iinntt vv[[]] == {{00,,11,,22,,33,,44,,55,,66,,77,,88,,99}};;

ff oorr ((aauuttoo xx :: vv)) //// for each x in v
ccoouutt <<<< xx <<<< ’’\\nn’’;;

ff oorr ((aauuttoo xx :: {{1100,,2211,,3322,,4433,,5544,,6655}}))
ccoouutt <<<< xx <<<< ’’\\nn’’;;

//// ...
}}

This range-ff oorr-statement can be read as ‘‘for every element of vv, from the first to the last,
place a copy in xx and print it.’’ Note that we don’t hav e to specify an array bound when
we initialize it with a list. The range-ff oorr-statement can be used for any sequence of ele-
ments (§3.4.1).

If we didn’t want to copy the values from vv into the variable xx, but rather just have xx
refer to an element, we could write:

vv ooiidd iinnccrreemmeenntt(())
{{

iinntt vv[[]] == {{00,,11,,22,,33,,44,,55,,66,,77,,88,,99}};;

ff oorr ((aauuttoo&& xx :: vv))
++++xx;;

//// ...
}}

In a declaration, the unary suffix && means ‘‘reference to.’’ A reference is similar to a
pointer, except that you don’t need to use a prefix ∗∗ to get to the value referred to by the
reference. When used in declarations, operators (such as ∗∗ and [[]]) are called declarator
operators:

TT aa[[nn]];; //// T[n]: array of n Ts (§7.3)
TT∗∗ pp;; //// T*: pointer to T (§7.2)
TT&& rr;; //// T&: reference to T (§7.7)
TT ff((AA));; //// T(A): function taking an argument of type A returning a result of type T (§2.2.1)

We try to ensure that a pointer always points to an object, so that dereferencing it is valid.
When we don’t hav e an object to point to or if we need to represent the notion of ‘‘no
object available’’ (e.g. for an end of a list), we give the pointer the value nn uullllppttrr (‘‘the null
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pointer’’). There is only one nn uullllppttrr shared by all pointer types:

ddoouubb llee∗∗ ppdd == nnuullllppttrr;;
LLiinnkk<<RReeccoorrdd>>∗∗ llsstt == nnuullllppttrr;;

It is often wise to check whether a pointer argument actually points to something:

iinntt ccoouunntt__xx((cchhaarr∗∗ pp ,, cchhaarr xx)) //// count the number of occurrences of x in p[]
//// p is assumed to point to a zero-ter minated array of char (or to nothing)

{{
iiff ((pp====nnuullllppttrr)) rreettuurrnn 00;;

iinntt ccoouunntt == 00;;
ff oorr ((;; ∗∗pp!!==00;; ++++pp))

iiff ((∗∗pp====xx))
++++ccoouunntt;;

rreettuurr nn ccoouunntt;;
}}

Note how we can move a pointer to point to the next element of an array using ++++ and that
we can leave out the initializer in a ff oorr-statement if we don’t need it.

The definition of ccoouunntt__xx(()) assumes that the cchhaarr∗∗ is a C-style string; that is, that the
pointer points to a zero-terminated array of cchhaarr.

In older code, 00 or NNUULLLL is typically used instead of nn uullllppttrr (§7.2.2). However, using
nn uullllppttrr eliminates potential confusion between integers (such as 00 or NNUULLLL) and pointers,
(such as nn uullllppttrr).

2.3 User-defined Types [tour1.udt]

We call the types that can be built out of the fundamental types (§2.2.2), the ccoonnsstt modifier
(§2.2.3), and the declarator operators (§2.2.5) built-in types. C++’s set of built-in types
and operations is rich, but deliberately low-level. They directly and efficiently reflect the
capabilities of conventional computer hardware. However, they don’t provide the pro-
grammer with high-level facilities to conveniently write advanced applications. Instead,
C++ augments the built-in types and operations with a sophisticated set of abstraction
mechanisms out of which programmers can build such high-level facilities. The C++
abstraction mechanisms are primarily designed to let programmers design and implement
their own types, with suitable representations and operations, and for programmers to sim-
ply and elegantly use such types. Types built out of the built-in types using C++’s abstrac-
tion mechanisms are called user-defined types. They are referred to as classes and enu-
merations. Most of this book is devoted to the design, implementation, and use of user-
defined types. The rest of this chapter presents the simplest and most fundamental facili-
ties for that. Chapter 3 is a more complete description of the abstraction mechanisms and
the programming styles they support. Chapter 4 and Chapter 5 present an overview of the
standard library, and since the standard library mainly consists of user-defined types, they
provide examples of what can be built using the language facilities and programming tech-
niques presented in Chapter 2 and Chapter 3.
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2.3.1 Structures [tour1.struct]

The first step in building a new type is often to organize the elements it needs into a data
structure, a ssttrr uucctt:

ssttrr uucctt VVeeccttoorr {{
iinntt sszz;; //// number of elements
ddoouubb llee∗∗ eelleemm;; //// pointer to elements

}};;

This VV eeccttoorr consists of an iinntt and a ddoouubb llee∗∗. A variable of type VV eeccttoorr can be defined like
this:

VV eeccttoorr vv;;

However, by itself that is not of much use because the eelleemm pointer doesn’t point to any
elements. To be useful, we must give vv some elements to point to. For example, we can
construct a VV eeccttoorr like this:

vv ooiidd vveeccttoorr__iinniitt((VVeeccttoorr&& vv,, iinntt ss))
{{

vv ..eelleemm == nneeww ddoouubbllee[[ss]];; //// allocate an array of s doubles
vv ..sszz == ss;;

}}

That is, vv’s eelleemm member gets a pointer produced by the nnee ww operator and vv’s ssiizz ee member
gets the number of elements. The && in VV eeccttoorr&& indicates that we pass vv by non-ccoonnsstt refer-
ence; that way, vv eeccttoorr__iinniitt(()) can modify the vector passed to it.

The nnee ww operator allocates memory from an area called ‘‘the free store’’ (also known
as ‘‘dynamic memory’’ and ‘‘heap’’; §11.2).

A simple use of VV eeccttoorr looks like this:

ddoouubb llee rreeaadd__aanndd__ssuumm((iinntt ss))
{{

VV eeccttoorr vv;;
vv eeccttoorr__iinniitt((vv,,ss));; //// allocate s elements for v
ff oorr ((iinntt ii==00;; ii<<ss;; ++++ii))

cciinn>>>>vv ..eelleemm[[ii]];; //// read into elements

ddoouubb llee ssuumm == 00;;
ff oorr ((iinntt ii==00;; ii<<ss;; ++++ii))

ssuumm++==vv ..eelleemm[[ii]];; //// take the sum of the elements
rreettuurr nn ssuumm;;

}}

There is a long way to go before our VV eeccttoorr is as elegant and flexible as the standard-
library vv eeccttoorr. In particular, a user of VV eeccttoorr has to know every detail of VV eeccttoorr’’ss representa-
tion. The rest of this chapter and the next gradually improve VV eeccttoorr as an example of lan-
guage features and techniques, Chapter 4 presents the standard-library vv eeccttoorr, which con-
tains all the nice improvements and more, and Chapter 31 presents the complete vv eeccttoorr in
the context of other standard-library facilities.
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I use vv eeccttoorr and other standard-library components as examples
• to illustrate language features and design techniques
• to help you learn and use the standard-library components.

Don’t re-invent standard-library components, such as vv eeccttoorr and ssttrr iinngg, use them.
We use .. (dot) to access ssttrr uucctt members through a name (and through a reference) and

−−>> to access ssttrr uucctt members through a pointer. For example:

vv ooiidd ff((VVeeccttoorr vv,, VVeeccttoorr&& rrvv,, VVeeccttoorr∗∗ ppvv))
{{

iinntt ii11 == vv..sszz;;
iinntt ii22 == rrvv..sszz;;
iinntt ii33 == ((∗∗ppvv))..sszz;; //// * means ‘‘contents of’’ (§2.2.5)
iinntt ii44 == ppvv−−>>sszz;;
iinntt ii55 == ((&&vv))−−>>sszz;; //// & means ‘‘address of’’ (§2.2.5)

}}

2.3.2 Classes [tour1.class]

Having the data specified separately from the operations on it has advantages, such as the
ability to use the data in arbitrary ways. However, a tighter connection between the repre-
sentation and the operations is needed for a user-defined type to have all the properties
expected of a ‘‘real type.’’ In particular, we often want to keep the representation inacces-
sible to users, so as to ease use, guarantee consistent use of the data, and allow us to later
improve the representation. To do that we have to distinguish between the interface to a
type (to be used by all) and its implementation (which has access to the otherwise inacces-
sible data). The language mechanism for that is called a class. A class is defined to have
a set of members, which can be data, function, or type members. The interface is defined
by the ppuubb lliicc members of a class and pprr iivvaattee members are accessible only through that
interface. For example:

ccllaassss VVeeccttoorr {{
ppuubb lliicc::

VV eeccttoorr((iinntt ss)) ::eelleemm{{nneeww ddoouubbllee[[ss]]}},, sszz{{ss}} {{ }} //// constr uct a Vector
ddoouubb llee&& ooppeerraattoorr[[]]((iinntt ii)) {{ rreettuurrnn eelleemm[[ii]];; }} //// element access: subscripting
iinntt ssiizzee(()) {{ rreettuurrnn sszz;; }}

pprr iivvaattee::
ddoouubb llee∗∗ eelleemm;; //// pointer to the elements
iinntt sszz;; //// the number of elements

}};;

Given that, we can define a variable of our new type VV eeccttoorr:

VV eeccttoorr vv((66));; //// a Vector with six elements

We can illustrate a VV eeccttoorr object graphically:
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6

VV eeccttoorr:
eelleemm:

sszz:
0: 1: 2: 3: 4: 5:

Basically, the VV eeccttoorr object is a ‘‘handle’’ containing a pointer to the elements (eelleemm)) plus
the number of elements (sszz). The number of elements (6 in the example) can vary from
VV eeccttoorr object to VV eeccttoorr object, and a VV eeccttoorr object can have a different number of elements
at different times. However, the VV eeccttoorr object itself is always the same size. This is the
basic technique for handling varying amounts of information in C++: a fixed-sized handle
referring to a variable amount of data ‘‘elsewhere’’ (e.g., on the free store allocated by
nnee ww; §11.2). How to design and use such objects is the main topic of Chapter 3.

Here, the representation of a VV eeccttoorr (the members eelleemm and sszz) is accessible only
through the interface provided by the ppuubb lliicc members: VV eeccttoorr(()), ooppeerr aattoorr[[]](()), and ssiizz ee(()). For
example:

ddoouubb llee rreeaadd__aanndd__ssuumm((iinntt ss))
{{

VV eeccttoorr vv((ss));; //// make a vector of s elements
ff oorr ((iinntt ii==00;; ii<<vv..ssiizzee(());; ++++ii)) cciinn>>>>vv[[ii]];; //// read into elements

ddoouubb llee ssuumm == 00;;
ff oorr ((iinntt ii==00;; ii<<vv..ssiizzee(());; ++++ii)) ssuumm++==vv[[ii]];; //// take the sum of the elements
rreettuurr nn ssuumm;;

}}

A ‘‘function’’ with the same name as its class is called a constructor; that is, a function
used to construct objects of a class. So, the constructor, VV eeccttoorr(()), replaces vv eeccttoorr__iinniitt(()) from
§2.3.1. Unlike an ordinary function, a constructor is guaranteed to be used to initialize
objects of its class. Thus, defining a constructor eliminates the problem of uninitialized
variables for a class.

VV eeccttoorr((iinntt)) defines how objects of type VV eeccttoorr are constructed. In particular, it states that
it needs an integer to do that. That integer is used as the number of elements. The con-
structor initializes the VV eeccttoorr members using a member initializer list:

::eelleemm{{nnee ww ddoouubbllee[[ss]]}},, sszz{{ss}}

That is, we first initialize eelleemm with a pointer to ss elements of type ddoouubb llee obtained from
the free store. Then, we initialize sszz to ss.

Access to elements are provided by a subscript function, called ooppeerr aattoorr[[]]. It returns a
reference to the appropriate element.

The ssiizz ee(()) function is supplied to give users the number of elements.
Obviously, error handling is completely missing, but we’ll return to that in §2.4.3.

Similarly, we did not provide a mechanism to ‘‘give back’’ the array of ddoouubb llees acquired
by nnee ww; §3.2.1.2 shows how to use a destructor to elegantly do that.

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T



Section 2.3.3 Enumerations 53

2.3.3 Enumerations [tour1.enum]

In addition to classes, C++ supports a simple form of user-defined type for which we can
enumerate the values:

eenn uumm ccllaassss CCoolloorr {{ rreedd,, bblluuee,, ggrreeeenn }};;
eenn uumm ccllaassss TTrraafffificc__lliigghhtt {{ ggrreeeenn,, yyeellllooww,, rreedd }};;

CCoolloorr ccooll == CCoolloorr::::rreedd;;
TT rraafffificc__lliigghhtt lliigghhtt == TTrraafffificc__lliigghhtt::::rreedd;;

Note that enumerators (e.g., rreedd) are in the scope of their eenn uumm ccllaassss, so that they can be
used repeatedly in different eenn uumm ccllaasssses without confusion. For example, CCoolloorr ::::rreedd is
CCoolloorr’s rreedd which is different from TT rraafffificc__lliigghhtt::::rreedd.

Enumerations are used to represent small sets of integer values. They are used to make
code more readable and less error-prone than it would have been had the symbolic (and
mnemonic) enumerator names not been used.

An enumeration is a user-defined type so we can define operators for it:

TT rraafffificc__lliigghhtt&& ooppeerraattoorr++++((TTrraafffificc__lliigghhtt&& tt)) //// prefix increment: ++
{{

ss wwiittcchh ((tt)) {{
ccaassee TTrraafffificc__lliigghhtt::::ggrreeeenn:: rreettuurrnn tt==TTrraafffificc__lliigghhtt::::yyeellllooww;;
ccaassee TTrraafffificc__lliigghhtt::::yyeellllooww:: rreettuurrnn tt==TTrraafffificc__lliigghhtt::::rreedd;;
ccaassee TTrraafffificc__lliigghhtt::::rreedd:: rreettuurrnn tt==TTrraafffificc__lliigghhtt::::ggrreeeenn;;
}}

}}

TT rraafffificc__lliigghhtt nneexxtt == ++++lliigghhtt;; //// next becomes Traffic_light::green

By default, an eenn uumm ccllaassss has only assignment, initialization, and comparisons (e.g., ====
and <<; §2.2.2) defined. The ccllaassss after the eenn uumm specifies that an enumeration is strongly
typed and that its enumerators are scoped. Being separate types, eenn uumm ccllaasssses help prevent
accidental misuses of constants. In particular, we cannot mix TT rraafffificc__lliigghhtt and CCoolloorr values:

CCoolloorr xx == rreedd;; //// error : which red?
CCoolloorr yy == TTrraafffificc__lliigghhtt::::rreedd;; //// error : that red is not a Color
CCoolloorr zz == CCoolloorr::::rreedd;; //// OK

Similarly, we cannot implicitly mix CCoolloorr and integer values:

iinntt ii == CCoolloorr::::rreedd;; //// error : Color ::red is not an int
CCoolloorr cc == 22;; //// error : 2 is not a Color

If you don’t want to explicitly qualify enumerator names and want enumerator values to
be iinntts (without the need for an explicit conversion), you can remove the ccllaassss from eenn uumm
ccllaassss to get a ‘‘plain eenn uumm’’ (§8.4.2).
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2.4 Modularity [tour1.module]

A C++ program consists of many separately-developed parts, such as functions (§2.2.1,
Chapter 12), user-defined types (§2.3, §3.2, Chapter 16), class hierarchies (§3.2.5, Chapter
20), and templates (§3.4, Chapter 23). The key to managing this is to clearly define the
interactions among those parts. The first and most important distinction is between the
interface to a part and its implementation. At the language level, C++ represents inter-
faces by declarations. A declaration specifies all that’s needed to use a function or a type.
For example:

ddoouubb llee ssqqrrtt((ddoouubbllee));; //// the square root function takes a double and returns a double

ccllaassss VVeeccttoorr {{
ppuubb lliicc::

VV eeccttoorr((iinntt ss));;
ddoouubb llee&& ooppeerraattoorr[[]]((iinntt ii));;
iinntt ssiizzee(());;

pprr iivvaattee::
ddoouubb llee∗∗ eelleemm;; //// elem points to an array of sz doubles
iinntt sszz;;

}};;

The key point here is that the function bodies, the function definitions, are ‘‘elsewhere.’’
For this example, we might like for the representation of VV eeccttoorr to be ‘‘elsewhere’’ also,
but we will deal with that later (abstract types; §3.2.3). The definition of ssqqrr tt(()) will look
like this:

ddoouubb llee ssqqrrtt((ddoouubbllee dd)) //// definition of sqrt()
{{

//// ... algorithm as found in math textbook ...
}}

For VV eeccttoorr, we need to define all three functions:

VV eeccttoorr::::VVeeccttoorr((iinntt ss)) //// definition of the constructor
::eelleemm{{nnee ww ddoouubbllee[[ss]]}},, sszz{{ss}}

{{
}}

ddoouubb llee&& VVeeccttoorr::::ooppeerraattoorr[[]]((iinntt ii)) //// definition of subscripting
{{

rreettuurr nn eelleemm[[ii]];;
}}

iinntt VVeeccttoorr::::ssiizzee(()) //// definition of size()
{{

rreettuurr nn sszz;;
}}

The VV eeccttoorr functions are the ones we define, but the ssqqrr tt(()) is part of the standard library.
However, that makes no difference: a library is simply some ‘‘other code we happen to be
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using’’ written using same language facilities as we use.

2.4.1 Separate Compilation [tour1.comp]

C++ supports a notion of separate compilation where user code sees only declarations of
types and functions used. The definitions of those types and functions are in separate
source files and compiled separately. This can be used to organize a program into a set of
semi-independent fragments.

Typically, we place the declarations that specify the interface to a module in a file with
a name indicating its intended use. For example:

//// Vector.h:

ccllaassss VVeeccttoorr {{
ppuubb lliicc::

VV eeccttoorr((iinntt ss));;
ddoouubb llee&& ooppeerraattoorr[[]]((iinntt ii));;
iinntt ssiizzee(());;

pprr iivvaattee::
ddoouubb llee∗∗ eelleemm;; //// elem points to an array of sz doubles
iinntt sszz;;

}};;

This declaration would be placed in a file VV eeccttoorr..hh, and users will include that file, called a
header file, like this to access that interface:

//// user.cpp:

##iinncclluuddee ""VVeeccttoorr..hh"" //// get the interface
##iinncclluuddee ""mmaatthh..hh"" //// get the interface including sqrt()

ddoouubb llee ff((VVeeccttoorr&& vv))
{{

ddoouubb llee ssuumm == 00;;
ff oorr ((iinntt ii==00;; ii<<vv..ssiizzee(());; ++++ii))

ssuumm++==ssqqrr tt((vv[[ii]]));;
rreettuurr nn ssuumm;;

}}

To help the compiler ensure consistency, the ..ccpppp file providing the implementation of
VV eeccttoorr will also include the ..hh file providing its interface:

//// Vector.cpp:

##iinncclluuddee ""VVeeccttoorr..hh"" //// get the interface

VV eeccttoorr::::VVeeccttoorr((iinntt ss)) ::eelleemm{{nneeww ddoouubbllee[[ss]]}},, sszz{{ss}} {{ }}
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ddoouubb llee&& VVeeccttoorr::::ooppeerraattoorr[[]]((iinntt ii)) {{ rreettuurrnn eelleemm[[ii]];; }}

iinntt VVeeccttoorr::::ssiizzee(()) {{ rreettuurrnn sszz;; }}

The code in uusseerr ..ccpppp and VV eeccttoorr..ccpppp shares the VV eeccttoorr interface information presented in
VV eeccttoorr..hh, but the two files are otherwise independent and can be separately compiled.
Graphically, the program fragments can be represented like this:

VV eeccttoorr interface

##iinncclluuddee ""VVeeccttoorr..hh""
use VV eeccttoorr

##iinncclluuddee ""VVeeccttoorr..hh""
define VV eeccttoorr

Vector.h:

user.cpp: Vector.cpp:

Strictly speaking, using separate compilation isn’t a  language issue; it is an issue of how
best to take advantage of a particular language implementation. However, it is of great
practical importance. The best approach is to maximize modularity, represent that modu-
larity logically through language features, and then exploit the modularity physically
through files for effective separate compilation (Chapter 14, Chapter 15).

2.4.2 Namespaces [tour1.namespace]

In addition to functions (§2.2.1, Chapter 12), classes (Chapter 16), and enumerations
(§2.3.3, §8.4), C++ offers namespaces (Chapter 14) as a mechanism for expressing that
some declarations belong together and that their names shouldn’t clash with other names.
For example, I might want to experiment with my own complex number type (§3.2.1.1,
§18.3, §39.4):

nnaammeessppaaccee MMyy__ccooddee {{
ccllaassss ccoommppllee xx {{ //** ... **// }};;
ccoommppllee xx ssqqrrtt((ccoommpplleexx));;
//// ...
iinntt mmaaiinn(());;

}}

iinntt MMyy__ccooddee::::mmaaiinn(())
{{

ccoommppllee xx zz {{11,,22}};;
aauuttoo zz22 == ssqqrrtt((zz));;
ssttdd::::ccoouutt <<<< ’’{{’’ <<<< zz22..rreeaall(()) <<<< ’’,,’’ <<<< zz22..iimmaagg(()) <<<< ""}}\\nn"";;
//// ...

}};;
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iinntt mmaaiinn(())
{{

rreettuurr nn MMyy__ccooddee::::mmaaiinn(());;
}}

By putting my code into the namespace MMyy__ccooddee, I make sure that my names do not con-
flict with the standard-library names in namespace ssttdd (§4.1.2). The precaution is wise,
because the standard library does provide support for ccoommppllee xx arithmetic (§3.2.1.1, §39.4).

The simplest way to access a name in another namespace is to qualify it with the
namespace name (e.g., ssttdd::::ccoouutt and MMyy__ccooddee::::mmaaiinn). The ‘‘real mmaaiinn(())’’ is defined in the
global namespace; that is, not local to a defined namespace, class, function, etc. To gain
access to all the names in the standard-library namespace, we can use a uussiinngg-directive
(§14.2.3):

uussiinngg nnaammeessppaaccee ssttdd;;

Namespaces are primarily used to organize larger program components, such as libraries.
They simplify the composition of a program out of separately developed parts.

2.4.3 Error Handling [tour1.error]

Error handling is a large and complex topic with concerns and ramifications that go far
beyond language facilities into programming techniques and tools. However, C++ pro-
vides a few features to help. The major tool is the type system itself. Instead of painstak-
ingly building up our applications from the built-in types (e.g. cchhaarr, iinntt,, and ddoouubb llee) and
statements (e.g., iiff, wwhhiillee ,, and ff oorr), we build more types that are appropriate for our applica-
tion (e.g. ssttrr iinngg, mmaapp, and rreeggee xx) and algorithms (e.g., ssoorr tt(()), fifinndd__iiff(()),, and ddrr aaww__aallll(())). Such
higher level constructs simplify our programming, limit our opportunities for mistakes
(e.g., you are unlikely to try to apply a tree traversal to a dialog box) and increase the com-
piler’s chances to catch such errors. The majority of C++ constructs are dedicated to the
design and implementation of elegant and efficient abstractions (e.g., user-defined types
and algorithms using them). One effect of this modularity and abstraction (in particular,
the use of libraries) is that the point where a run-time error can be detected is separated
from the point where it can be handled. As programs grow, and especially when libraries
are used extensively, standards for handling errors become important.

2.4.3.1 Exceptions [tour1.exception]

Consider again the VV eeccttoorr example. What ought to be done when we try to access an ele-
ment that is out of range for the vector from §2.3.2?

• The writer of VV eeccttoorr doesn’t know what the user would like to hav e done in this case
(the writer of VV eeccttoorr typically doesn’t even know in which program the vector will
be running).

• The user of VV eeccttoorr cannot consistently detect the problem (if the user could, the out-
of-range access wouldn’t happen in the first place).

The solution is for the VV eeccttoorr implementer to detect the attempted out-of-range access and
then tell the user about it. The user can then take appropriate action. For example,
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VV eeccttoorr::::ooppeerraattoorr[[]](()) can detect an attempted out-of-range access and throw an oouutt__ooff__rr aannggee
exception:

ddoouubb llee&& VVeeccttoorr::::ooppeerraattoorr[[]]((iinntt ii))
{{

iiff ((ii<<00 |||| ssiizzee(())<<==ii)) tthhrrooww oouutt__ooff__rraannggee{{""VVeeccttoorr::::ooppeerraattoorr[[]]""}};;
rreettuurr nn eelleemm[[ii]];;

}}

The tthhrroo ww transfers control to a handler for exceptions of type oouutt__ooff__rr aannggee in some func-
tion that directly or indirectly called VV eeccttoorr::::ooppeerraattoorr[[]](()). To do that, the implementation will
unwind the function call stack as needed to get back to the context of that caller (§13.5.1).
For example:

vv ooiidd ff((VVeeccttoorr&& vv))
{{

//// ...
ttrr yy {{ //// exceptions here are handled by the handler defined below

vv[[vv ..ssiizzee(())]] == 77;; //// tr y to access beyond the end of v
}}
ccaattcchh ((oouutt__ooff__rraannggee)) {{ //// oops: out_of_range error

//// ... handle range error ...
}}
//// ...

}}

We put code for which we are interested in handling exceptions into a ttrr yy-block. That
attempted assignment to vv[[vv ..ssiizzee(())]] will fail. Therefore, the ccaattcchh-clause providing a handler
for oouutt__ooff__rr aannggee will be entered. The oouutt__ooff__rr aannggee type is defined in the standard library
and is in fact used by some standard-library container access functions.

Use of the exception-handling mechanisms can make error handling simpler, more sys-
tematic, and more readable. See Chapter 13 for further discussion, details, and examples.

2.4.3.2 Invariants [tour1.invariant]

The use of exceptions to signal out-of-range access is an example of a function checking
its argument and refusing to operate because a basic assumption, a precondition, didn’t
hold. Had we formally specified VV eeccttoorr’s subscript operator, we would have said some-
thing like ‘‘the index must be in the [00:ssiizz ee(())) range,’’ and that was in fact what we tested in
our ooppeerr aattoorr[[]](()). Whenever we define a function, we should consider what its preconditions
are and if feasible test them (see §12.4, §13.4).

However, ooppeerr aattoorr[[]](()) operates on objects of type VV eeccttoorr and nothing it does makes any
sense unless the members of VV eeccttoorr have ‘‘reasonable’’ values. In particular, we did say
‘‘elem points to an array of sz doubles’’ but we only said that in a comment. Such a state-
ment of what is assumed to be true for a class is called a class invariant, or simply an
invariant. It is the job of a constructor to establish the invariant for its class (so that the
member functions can rely on it) and for the member functions to make sure that the
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invariant holds when they exit. Unfortunately, our VV eeccttoorr constructor only partially did its
job. It properly initialized the VV eeccttoorr members, but it failed to check that the arguments
passed to it made sense. Consider:

VV eeccttoorr vv((−−2277));;

This is likely to cause chaos. Here is a more appropriate definition:

VV eeccttoorr::::VVeeccttoorr((iinntt ss))
{{

iiff ((ss<<00)) tthhrrooww lleennggtthh__eerrrroorr{{}};;
eelleemm == nneeww ddoouubbllee[[ss]];;
sszz == ss;;

}}

I use the standard-library exception lleennggtthh__eerrrroorr to report a non-positive number of ele-
ments because some standard-library operations use that exception to report problems of
this kind. If operator nnee ww can’t find memory to allocate, it throws a ssttdd::::bbaadd__aalllloocc. We can
now write

vv ooiidd tteesstt(())
{{

ttrr yy {{
VV eeccttoorr vv((−−2277));;

}}
ccaattcchh ((ssttdd::::lleennggtthh__eerrrroorr)) {{

//// handle negative size
}}
ccaattcchh ((ssttdd::::bbaadd__aalllloocc)) {{

//// handle memory exhaustion
}}

}}

You can define your own classes to be used as exceptions and have them carry arbitrary
information from a point where an error is detected to a point where it can be handled
(§13.5).

Often, a function has no way of completing its assigned task after an exception is
thrown. Then, ‘‘handling’’ an exception simply means doing some minimal local cleanup
and rethrowing the exception (§13.5.2.1).

The notion of invariants is central to the design of classes and preconditions serve a
similar role in the design of functions:

• It helps us to understand precisely what we want.
• It forces us to be specific; that gives us better chance of getting our code correct

(after debugging and testing).
More concretely, the notion of invariants underlies C++’s notions of resource management
supported by constructors (§2.3.2) and destructors (§3.2.1.2, §5.2). See also §13.4,
§16.3.1, and §17.2.
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2.4.3.3 Static Assertions [tour1.assert]

Exceptions report errors found at run time. If an error can be found at compile time, it is
usually preferable to do so. That’s what much of the type system and the facilities for
specifying the interfaces to user-defined types are for. Howev er, we can also perform sim-
ple checks on other properties that are known at compile time and report failures as com-
piler error messages. For example:

ssttaattiicc__aasssseerr tt((44<<==ssiizzeeooff((iinntt)),, ""iinntteeggeerrss aarree ttoooo ssmmaallll""));; //// check integer size

This will write iinntteeggeerrss aarree ttoooo ssmmaallll if 44<<==ssiizz eeooff((iinntt)) does not hold; that is, if an iinntt on this
system does not have at least 4 bytes. Such statements of expectations are called asser-
tions.

The ssttaattiicc__aasssseerr tt mechanism can be used for anything that can be expressed in terms of
constant expressions (§2.2.3, §10.4). For example:

ccoonnssttee xxpprr ddoouubbllee CC == 229999779922..445588;; //// km/s

vv ooiidd ff((ddoouubbllee ssppeeeedd))
{{

ccoonnsstt ddoouubbllee llooccaall__mmaaxx == 116600∗∗6600∗∗6600;; //// 160 km/h

ssttaattiicc__aasssseerr tt((ssppeeeedd<<CC,,""ccaann’’tt ggoo tthhaatt ffaasstt""));; //// error : speed must be a constant
ssttaattiicc__aasssseerr tt((llooccaall__mmaaxx<<CC,,""ccaann’’tt ggoo tthhaatt ffaasstt""));; //// OK

//// ...
}}

In general, ssttaattiicc__aasssseerr tt((AA,,SS)) prints SS as a compiler error message if AA is not ttrr uuee.
The most important uses of ssttaattiicc__ccaasstt come when we to make assertions about types

used as parameters in generic programming (§5.4.2, §24.3).

2.5 Postscript [tour1.postscript]

The topics covered in this chapter roughly correspond to the contents of Part II (Chapters
5-15). Those are the parts of C++ that underlie all programming techniques and styles
supported by C++. Experienced C and C++ programmers, please note that this foundation
does not closely correspond to the C or C++98 subsets of C++ (that is, C++11).

2.6 Advice [tour1.advice]

[1] Don’t panic! All will become clear in time; §2.1.
[2] You don’t hav e to know every detail of C++ to write good programs; §1.3.1.
[3] Focus on programming techniques, not on language features; §2.1.
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A Tour of C++: Abstraction Mechanisms

Don´t Panic!
– Douglas Adams

• Introduction
• Classes

Concrete Types; Initializing Containers; Abstract Types; Virtual Functions; Class
Hierarchies

• Copy and Move
Copying Containers; Moving Containers; Preventing Copy and Move

• Templates
Parameterized Types; Function Templates; Function Objects; Variadic Templates;
Aliases

• Advice

3.1 Introduction [tour2.intro]

This chapter aims to give you an idea of C++’s support for abstraction and resource man-
agement without going into a lot of detail. This chapter informally presents ways of defin-
ing and using new types (user-defined types). In particular, it presents the basic properties,
implementation techniques, and language facilities used for concrete classes, abstract
classes, and class hierarchies. Templates are introduced as a mechanism for parameteriz-
ing types and algorithms with (other) types and algorithms. Computations on user-defined
and built-in types are represented as functions, sometimes generalized to template func-
tions and function objects. These are the language facilities supporting the programming
styles known as object-oriented programming and generic programming. The next two
chapters follow up by presenting examples of standard-library facilities and their use.
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The assumption is that you have programmed before. If not, please consider reading a
textbook, such as Programming: Principles and Practice using C++ [Stroustrup, 2009],
before continuing here. Even if you have programmed before, the language you used or
the applications you wrote may be very different from the style of C++ presented here. If
you find this ‘‘lightning tour’’ confusing, skip to the more systematic presentation starting
in Chapter 6.

3.2 Classes [tour2.class]

The central language feature of C++ is the class. A class is a user-defined type provided
to represent a concept in the code of a program. Whenever our design for a program has a
useful concept, idea, entity, etc., we try to represent it as a class in the program so that the
idea is there in the code, rather than just in our head, in a design document, or in some
comments. A program built out of a well chosen set of classes is far easier to understand
and get right than one that builds everything directly in terms of the built-in types. In par-
ticular, classes are often what libraries offer.

Essentially all language facilities beyond the fundamental types, operators, and state-
ments exist to help define better classes or to use them more conveniently. By ‘‘better,’’ I
mean more correct, easier to maintain, more efficient, more elegant, easier to use, easier to
read, and easier to reason about. Most programming techniques rely on the design and
implementation of specific kinds of classes. The needs and tastes of programmers vary
immensely. Consequently, the support for classes is extensive. Here, we will just consider
the basic support for three important kinds of classes:

• concrete classes (§3.2.1)
• abstract classes (§3.2.3)
• classes in class hierarchies (§3.2.5)

An astounding number of useful classes turn out to be of these three kinds. Even more
can be seen as simple variants of these are implemented using combinations of the tech-
niques used for these.

3.2.1 Concrete Types [tour2.concrete]

The basic idea of concrete classes is that they behave ‘‘just like built-in types.’’ For exam-
ple, a complex number type and an infinite-precision integer are much like built-in int,
except of course that they hav e their own semantics and sets of operations. Similarly, a
vector and a str ing are much like built-in arrays, except that they are better behaved (§4.2,
§4.3.3, §4.4.1).

The defining characteristic of a concrete type is that its representation is part of its defi-
nition. That allows implementations to be optimally efficient in time and space. In partic-
ular, it allows us to

• place objects of concrete types on the stack, in statically allocated memory, and in
other objects.

• refer to objects directly (and not just through pointers or references).
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Section 3.2.1 Concrete Types 63

• initialize objects immediately and completely (e.g., by using constructors; §2.3.2).
• copy objects (§3.3).

The representation can be private (as it is for Vector; §2.3.2) and accessible only through
the member functions, but it is present. Therefore, if the representation changes in any
significant way, a user must recompile. This is the price to pay for having concrete types
behave exactly like built-in types. For types that don’t change often, and where local vari-
ables provide much-needed clarity and efficiency, this is acceptable and often ideal. To
increase flexibility, a concrete type can keep major parts of its representation on the free
store and access them through the part stored in the class object itself. That’s the way
vector and str ing are implemented; they can be considered resource handles with carefully
crafted interfaces.

3.2.1.1 An Arithmetic Type [tour2.complex]

The ‘‘classical user-defined arithmetic type’’ is complex:

class complex {
double re, im; // representation: two doubles

public:
complex(double r, double i) :re{r}, im{i} {} // constr uct complex from two scalar s
complex(double r) :re{r}, im{0} {} // constr uct complex from one scalar
complex() :re{0}, im{0} {} // default complex: {0,0}

double real() const { retur n re; }
void real(double d) { re=d; }
double imag() const { retur n im; }
void imag(double d) { im=i; }

complex opera tor+=(complex z) { retur n {re+=z.re, im+=z.im}; } // add to re and im
// and retur n the result

complex opera tor−=(complex z) { retur n {re−=z.re, im−=z.im}; }
complex opera tor∗=(complex); // defined out-of-class somewhere
complex opera tor/=(complex); // defined out-of-class somewhere

};

This is a slightly simplified version of the standard library complex (§3.2.1.1, §39.4). The
class definition itself contains only the operations requiring access to the representation.
Complex has a simple and conventional representation (which for practical reasons has to
be compatible with what Fortran provided 50 years ago) and a lot of conventional opera-
tors. In addition to the logical demands, complex must also be efficient or it will remain
unused. This implies that simple operations must be inlined. That is, simple operations
(such as constructors, +, and imag()) must be implemented without function calls in the
generated machine code. Functions defined in a class are inlined by default. An industrial
strength complex (like the standard library one) would be carefully implemented to do
appropriate inlining.

A constructor that can be invoked without an argument is called a default constructor.
Thus, complex() is complex’s default constructor. By defining a default constructor you
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eliminate the possibility of unintialized variables of that type.
Note the const specifier on the functions returning the real and imaginary parts. There,

const is used to indicate that a function may not modify the object for which it was
invoked.

Other useful operations can be defined separately from the class definition:

complex opera tor+(complex a, complex b) { retur n a+=b; }
complex opera tor−(complex a, complex b) { retur n a−=b; }
complex opera tor−(complex a) { retur n {−a.real(), −a.imag()}; } // unar y minus
complex opera tor∗(complex a, complex b) { retur n a∗=b; }
complex opera tor/(complex a, complex b) { retur n a/=b; }

bool operator==(complex a, complex b) // equal
{

retur n a.real()==b.real() && a.imag()==b.imag();
}

bool operator!=(complex a, complex b) // not equal
{

retur n !(a==b);
}

complex sqr t(complex);

// ...

Class complex can be used like this:

void f(complex z)
{

complex a {2.3};
complex b {1/a};
complex c {a+z∗complex{1,2.3}};
// ...
if (c != b) c = −(b/a)+2∗b;

}

The compiler converts operators involving complex numbers into appropriate function
calls. For example, c!=b means opera tor!=(c,b) and 1/a means opera tor/(complex{1},a).

User-defined operators (‘‘overloaded operators’’) should be used cautiously and con-
ventionally. The syntax is fixed by the language, so you can’t define a unary /. Also, it is
not possible to change the meaning of an operator for built-in types, so you can’t re-define
+ to subtract ints.

3.2.1.2 A Container [tour2.container]

A container is an object holding a collection of elements, so we call a type like Vector a
container because it is the type of container objects. As defined in §2.3.2, Vector isn’t an
unreasonable container of doubles: it is simple to understand, establishes a useful invariant
(§2.4.3.2), provides range-checked access (§2.4.3.1), and provides size() to allow us to
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iterate over its elements. However, it does have a fatal flaw: it allocates elements using
new, but never deallocates them. That’s not a good idea because although C++ defines an
interface for a garbage collector (§34.8), it is not guaranteed that one is available or will
run to make unused memory available for new objects. In some environments you can’t
use a collector and sometimes you prefer more detailed control of construction and de-
struction (§13.6.4) for logical or performance reasons. We need a mechanism to ensure
that the memory allocated by the constructor is deallocated; that mechanism is a de-
structor:

class Vector {
pr ivate:

double∗ elem; // elem points to an array of sz doubles
int sz;

public:
Vector(int s) :elem{new double[s]}, sz{s} // constr uctor: acquire resources
{

for (int i=0;i<s; ++i) elem[i]=0; // initialize elements
}
˜Vector() { delete[] elem; } // destr uctor: release resources

double& operator[](int i);
int size() const;

};

The name of a destructor is the complement operator, ˜, followed by the name of the class;
it is the complement of a constructor. The constructor allocates some memory on the free
store (also called the heap or dynamic store) using the new operator. The destructor cleans
up by freeing that memory using the delete operator. This is all done without intervention
by users of Vector. The users simply create and use Vectors much as they would variables
of built-in types. For example:

void fct(int x)
{

Vector v(x);
// use v
{

Vector v2(2∗x);
// use v and v2

} // v2 is destroyed here
// use v

} // v is destroyed here

The Vector obeys the same rules for naming, scope, allocation, lifetime, etc., as does a
built-in type, such as int and char. For details on how to control the lifetime of an object,
see §6.4.

The constructor/destructor combination is the basis of many elegant techniques and is
in particular the basis for most C++ general resource management techniques (§5.2,
§13.3). Consider a graphical illustration of a Vector:
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6

Vector:
elem:

sz: 0 0 0 0 0 0
0: 1: 2: 3: 4: 5:

The constructor allocates the elements and initializes the Vector members appropriately.
The destructor deallocates the elements. This handle-to-data model is very commonly
used to manage data that can vary in size during the lifetime of an object. The technique
of acquiring resources in a constructor and releasing them in the destructor technique,
known as Resource Acquisition Is Initialization or RAII, allows us to eliminate ‘‘naked
new operations;’’ that is, to avoid allocations in general code and keep them buried inside
the implementation of well-behaved abstractions. Similarly ‘‘naked delete operations’’
should be avoided. Avoiding naked new and naked delete makes code far less error-prone
and far easier to keep free of resource leaks (§5.2).

3.2.2 Initializing Containers [tour2.initializer_list]

A container exists to hold elements, so obviously we need convenient ways of getting ele-
ments into a container. We can handle that by creating a Vector with an appropriate num-
ber of elements and then assign to them, but typically other ways are more elegant. Here,
I mention two favorites:

• initializer-list constructor: initialize with a list of elements
• push_back(): add a new element at the end (at the back of the sequence)

These can be declared like this:

class Vector {
// ...
Vector(std::initializer_list<double>); // initialize with a list
// ...
void push_back(double); // add element at end increasing the size by one
// ...

};

The push_back() is particularly useful for input of arbitrary numbers of elements. For
example:

Vector read(istream& is)
{

Vector v;
for (double d; is>>d;) v.push_back(d);
retur n v;

}

The input loop is terminated by an end-of-file or a formatting error. Until that happens,
each number read is added to the Vector so that at the end, v’s size is the number of ele-
ments read. I used a for-statement rather than the more conventional while-statement to
keep the scope of d limited to the loop. The implementation of push_back() is discussed in
§13.6.4.3. The way to provide Vector with a move constructor, so that returning a
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potentially huge amount of data from read() is cheap, is explained in §3.3.2.
The std::initializer_list used to define the initializer-list constructor is a standard library

type known to the compiler: When we use a { }-list, such as {1,2,3,4}, the compiler will cre-
ate an object of type initializer_list to give to the program. So, we can write:

Vector v1 = {1,2,3,4,5}; // v1 has 5 elements
Vector v2 = { 1.23, 3.45, 6.7, 8 }; // v2 has 4 elements

Vector’s initializer-list constructor might be defined like this:

Vector::Vector(std::initializer_list<double> lst) // initialize with a list
:elem{new double[lst.size()]}, sz{lst.size()}

{
copy(lst.beg in(),lst.end(),elem); // copy from lst into elem

}

3.2.3 Abstract Types [tour2.abstract]

Types such as complex and Vector are called concrete types because their representation is
part of their definition. In that, they resemble built-in types. In contrast, an abstract type
is a type that completely insulates a user from implementation details. To do that, we
must decouple the interface from the representation and give up genuine local variables.
Since we don’t know anything about the representation of an abstract type (not even its
size) we must allocate objects on the free store (§3.2.1.2, §11.2) and access them through
references or pointers (§2.2.5, §7.2, §7.7).

First, we define the interface of a class Container which we will design as a more
abstract version of our Vector:

class Container {
public:

vir tual double& operator[](int) = 0; // pure vir tual function
vir tual int size() const = 0; // const member function (§3.2.1.1)
vir tual ˜Container() {} // destr uctor (§3.2.1.2)

};

This class is a pure interface to specific containers defined later. The word vir tual means
‘‘may be redefined later in a class derived from this one.’’ A class derived from Container
provides an implementation for the Container interface. The curious =0 syntax says the
function is pure virtual; that is, some class derived from Container must define the func-
tion. Thus, it is not possible to define an object that is just a Container; a Container can
only serve as the interface to a class that implements its opera tor[]() and size() functions. A
class with a pure virtual function is called an abstract class.

This Container can be used like this:
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void use(Container& c)
{

const int sz = c.size();

for (int i=0; i<sz; ++i)
cout << c[i] << ’\n’;

}

Note how use() uses the Container interface in complete ignorance of implementation
details. It uses size() and [] without any idea of exactly which type provides their imple-
mentation. A class that provides the interface to a variety of other classes is often called a
polymorphic type (§20.3.2).

As is common for abstract classes, Container does not have a constructor. After all, it
does not have any data to initialize. On the other hand, Container does have a destructor
and that destructor is vir tual. Again, that is common for abstract classes because they tend
to be manipulated through references or pointers and someone destroying a Container
through a pointer has no idea what resources are owned by its implementation; see also
§3.2.5.

Not surprisingly, the implementation could consist of everything from the concrete
class Vector:

class Vector_container : public Container {// Vector_container implements Container
Vector v;

public:
Vector_container(int s) : v(s) { } // Vector of s elements
˜Vector_container() {}

double& operator[](int i) { retur n v[i]; }
int size() const { retur n v.size(); }

};

The ‘‘:public’’ can be read as ‘‘is derived from’’ or ‘‘is a subtype of.’’ Class Vector_con-
tainer is said to be derived from class Container, and class Container is said to be a base of
class Vector_container. An alternative terminology calls Vector_container and Container sub-
class and superclass, respectively. The derived class is said to inherit members from its
base class, so the use of base and derived classes is commonly referred to as inheritance.

The members opera tor[]() and size() are said to override the corresponding members in
the base class Container (§20.3.2). The destructor (˜Vector_container()) overrides the base
class destructor (˜Container()). Note that the member destructor (˜Vector()) is implicitly
invoked by its class’ destructor (˜Vector_container()).

For a function like use(Container&) to use a Container in complete ignorance of imple-
mentation details, some other function will have to make an object on which it can oper-
ate. For example:
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void g()
{

Vector_container vc(200);
// fill vc
use(vc);

}

Since use() doesn’t know about Vector_containers but only knows the Container interface, it
will work just as well for a different implementation of a Container. For example:

class List_container : public Container { // List_container implements Container
std::list<double> ld; // (standard librar y) list of doubles (§4.4.2)

public:
List_container() { } // empty List
List_container(initializer_list<double> il) : ld{il} { }
˜List_container() {}

double& operator[](int i);
int size() const { retur n ld.size(); }

};

double& List_container::operator[](int i)
{

for (auto& x : ld) {
if (i==0) retur n x;
−−i;

}
throw out_of_range("List container");

}

Here, the representation is a standard-library list<double>. Usually, I  would not implement
a container with a subscript operation using a list, because performance of list subscripting
is atrocious compared to vector subscripting. However, here I just wanted to show an
implementation that is radically different from the usual one.

A function can create a List_container and have use() use it:

void h()
{

List_container lc = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
use(lc);

}

The key point is that use(Container&) has no idea if its argument is a Vector_container, a
List_container, or some other kind of container; it doesn’t need to know. It can use any kind
of Container. It knows only the interface defined by Container. Consequently, use(Con-
tainer&) needn’t be recompiled if the implementation of List_container changes or a brand
new class derived from Container is used.

The flip side of this flexibility is that objects must be manipulated through pointers or
references (§3.3).
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3.2.4 Virtual Functions [tour2.virtual]

Consider again the use of Container:

void use(Container& c)
{

const int sz = c.size();

for (int i=0; i<sz; ++i)
cout << c[i] << ’\n’;

}

How is the call c[i] in use() resolved to the right opera tor[]()? When use() is called from h(),
List_container::opera tor[]() must be called. When use() is called from g(), Vector_con-
tainer::opera tor[]() must be called. To achieve this resolution, a Container object must con-
tain information to allow it to select the right function to call at run-time. The usual
implementation technique is for the compiler to convert the name of a vir tual function into
an index into a table of pointers to functions. That table is usually called the virtual func-
tion table or simply, the vtbl. Each class with virtual functions has its own vtbl identifying
its virtual functions. This can be represented graphically like this:

v
Vector_container::opera tor[]()

Vector_container::size()

Vector_container::˜Vector_container()

vtbl:Vector_container:

ld

List_container::opera tor[]()

List_container::size()

List_container::˜List_container()

vtbl:List_container:

The functions in the vtbl allow the object to be used correctly even when the size of the
object and the layout of its data are unknown to the caller. The implementation of the call-
er needs only to know the location of the pointer to the vtbl in a Container and the index
used for each virtual function. This virtual call mechanism can be made almost as effi-
cient as the ‘‘normal function call’’ mechanism (within 25%). Its space overhead is one
pointer in each object of a class with virtual functions plus one vtbl for each such class.

3.2.5 Class Hierarchies [tour2.hier]

The Container example is a very simple example of a class hierarchy. A class hierarchy is
a set of classes ordered in a lattice created by derivation (e.g. : public). We use class hier-
archies to represent concepts that have hierarchical relationships, such as ‘‘a fire engine is
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a kind of a truck which is a kind of a vehicle’’ and ‘‘a smiley face is a kind of a circle
which is a kind of a shape.’’ Huge hierarchies, with hundreds of classes, that are both
deep and wide are common. As a semi-realistic classic example, let’s consider shapes on
a screen:

Sha pe

Circle Tr iangle

Smiley

The arrows represent inheritance relationships. For example, class Circle is derived from
class Sha pe. To represent that simple diagram in code, we must first specify a class that
defines the general properties of all shapes:

class Shape {
public:

vir tual Point center() const =0; // pure vir tual
vir tual void move(Point to) =0;

vir tual void draw() const = 0; // draw on current "Canvas"
vir tual void rota te(int angle) = 0;

vir tual ˜Sha pe() {}
// ...

};

Naturally, this interface is an abstract class: as far as representation is concerned, nothing
(except the location of the pointer to the vtbl) is common for every Sha pe. Giv en this defi-
nition, we can write general functions manipulating vectors of pointers to shapes:

void rota te_all(vector<Sha pe∗>& v, int angle) // rotate v’s elements by angle degrees
{

for (auto p : v)
p−>rota te(angle);

}

To define a particular shape, we must say that it is a Sha pe and specify its particular prop-
erties (including its virtual functions):
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class Circle : public Shape {
pr ivate:

Point x; // center
int r; // radius

public:
Circle(Point p, int rr); // constr uctor

Point center() const { retur n x; }
void move(Point to) { x=to; }

void draw() const;
void rota te(int) {} // nice simple algorithm

};

So far, the Sha pe and Circle example provides nothing new compared to the Container and
Vector_container example, but we can build further:

class Smiley : public Circle {  // use the circle as base for a face
pr ivate:

vector<Sha pe∗> eyes; // usually two eyes
Sha pe∗ mouth;

public:
Smiley(Point p, int r) : Circle{p,r}, mouth{nullptr} { }
// ...
˜Smiley()
{

delete mouth;
for(auto p : eyes) delete p;

}

void move(Point to);

void draw() const;
void rota te(int);

void add_eye(Sha pe∗ s) { eyes.push_back(s); }
void set_mouth(Shape∗ s);
vir tual void wink(int i); // wink eye number i

};

The push_back() member function adds its argument to the vector (here, eyes), increasing
that vector’s size by one.

We can now define Smiley::draw() using calls to Smiley’s base and member draw()s:
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void Smiley::draw()
{

Circle::draw();
for (auto p : eyes) p−>draw();
mouth−>draw();

}

Note the way that Smiley keeps its eyes in a standard library vector and deletes them in its
destructor. Sha pe’s destructor is vir tual and Smiley’s destructor overrides it. A virtual de-
structor is essential for an abstract class because an object of a derived class may be
deleted through a pointer to a base class. Then, the virtual function call mechanism
ensures that the proper destructor is called. That destructor then implicitly invokes the
destructors of its bases and members.

In this simplified example, it is the programmer’s task to place the eyes and mouth
appropriately within the circle representing the face.

We can add data members, operations, or both as we define a new class by derivation.
This gives great flexibility with corresponding opportunities for confusion and poor
design. See Chapter 21. A class hierarchy offers two kinds of benefits:

• Interface inheritance: An object of a derived class can be used wherever an object
of a base class is required. That is, the base class acts as an interface for the derived
class. The Container and Sha pe classes are examples. Such classes are often
abstract classes.

• Implementation inheritance: A base class provides functions or data that simplifies
the implementation of derived classes. Smiley’s use of Circle’s constructor and of Cir-
cle::draw() are examples. Such base classes often have data members and construc-
tors.

Concrete classes – especially classes with small representations – are much like built-in
types: we define them as local variables, access them using their names, copy them
around, etc. Classes in class hierarchies are different: we tend to allocate them on the free
store using new and we access them through pointers or references. For example, consider
a function that reads data describing shapes from an input stream and constructs the appro-
priate Sha pe objects:

enum class Kind { circle, triangle, smiley };

Sha pe∗ read_sha pe(istream& is) // read shape descriptions from input stream is
{

// read shape header from is and find its Kind k

switch (k) {
case Kind::circle:

// read circle data {Point,int} into p and r
retur n new Circle{p,r};

case Kind::triangle:
// read triangle data {Point,Point,Point} into p1, p2, and p3
retur n new Triangle{p1,p2,p3};
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case Kind::smiley:
// read smiley data {Point,int,Sha pe,Sha pe,Sha pe} into p, r, e1 ,e2, and m
Smiley∗ ps = new Smiley{p,r};
ps−>add_eye(e1);
ps−>add_eye(e2);
ps−>set_mouth(m);
retur n ps;

}
}

A program may use that shape reader like this:

void user()
{

std::vector<Sha pe∗> v;
while (cin)

v.push_back(read_sha pe(cin));
draw_all(v); // call draw() for each element
rota te_all(v,45); // call rorate(45) for each element
for (auto p : v) delete p; // remember to delete elements

}

Obviously, the example is simplified – especially with respect to error handling – but it
vividly illustrates that user() has absolutely no idea of which kinds of shapes it manipu-
lates. The user() code can be compiled once and later used for new Sha pes added to the
program. Note that there are no pointers to the shapes outside user(), so user is responsible
for deallocating them. This is done with the delete operator and relies critically on
Sha pe’s virtual destructor. Because that destructor is virtual, delete invokes the destructor
for the most derived class. This is crucial because a derived class may have acquired all
kinds of resources (such as file handles, locks, and output streams) that need to be
released. In this case, a Smiley deletes its eyes and mouth objects.

Experienced programmers will notice that I left open two obvious opportunities for
mistakes:

• A user might fail to place the pointer returned by read_sha pe into a container and
also forget to delete it.

• The owner of the container of Sha pe pointers might forget to delete the objects
pointed to.

In that sense, functions returning a pointer to an object allocated on the free store are dan-
gerous. One solution to both problems is to return a standard-library unique_ptr (§5.2.1)
rather than a ‘‘naked pointer’’ and store unique_ptrs in the container:
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unique_ptr<Sha pe> read_sha pe(istream& is) // read shape descriptions from input stream is
{

// read shape header from is and find its Kind k

switch (k) {
case Kind::circle:

// read circle data {Point,int} into p and r
retur n unique_ptr<Sha pe>{new Circle{p,r}}; // §5.2.1

// ...
}

void user()
{

std::vector<unique_ptr<Sha pe>> v;
while (cin)

v.push_back(read_sha pe(cin));
draw_all(v); // call draw() for each element
rota te_all(v,45); // call rorate(45) for each element

} // all Shapes implicitly destroyed

Now the object is owned by the unique_ptr which will delete it when needed.
For the unique_ptr version of user() to work, we need versions of draw_all() and

rota te_all() that accept vector<unique_ptr<Sha pe>>s. Writing many such _all() functions
could become tedious, so §3.4.3 shows an alternative.

3.3 Copy and Move [tour2.copy]

By default, objects can be copied. This is true for objects of user-defined types as well as
for built-in types. The default meaning of copy is memberwise copy: copy each member.
For example, using complex from (§3.2.1.1):

complex z1 {1,2};
complex z2 {z1}; // copy initialization
complex z3;
z3 = z2; // copy assignment

Now z1, z2, and z3 each have the same value because both the assignment and the initial-
ization copied both members.

When we design a class, we must always consider if and how an object might be
copied. For simple concrete types, memberwise copy is often exactly the right semantics
for copy. For some sophisticated concrete types, such as Vector, memberwise copy is not
the right semantics for copy and for abstract types it almost never is.

3.3.1 Copying Containers [tour2.copy.container]

When a class is a resource handle; that is, it is responsible for an object accessed through
a pointer, the default memberwise copy is typically a disaster. Memberwise copy would
violate the resource handle’s inv ariant (§2.4.3.2). For example, the default copy would
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leave a copy of a Vector referring to the same elements as the original:

Vector v1(4);
Vector v2 = v1;
v1[0] = 2; // v2[0] is now also 2!
v2[1] = 3; // v1[1] is now also 3!

Graphically:

4
v1:

4
v2:

2 3

Fortunately, the fact that Vector has a destructor is a strong hint that the default (member-
wise) copy semantics is wrong and the compiler should at least warn against this example
(§17.6). We need to define a better copy semantics. Copying is defined by two functions:
a copy constructor and a copy assignment:

class Vector {
pr ivate:

// elem points to an array of sz doubles
double∗ elem;
int sz;

public:
Vector(int s); // constr uctor: esta blish invariant, acquire resources
˜Vector() { delete[] elem; } // destr uctor: release resources

Vector(const Vector& a); // copy constr uctor
Vector& operator=(const Vector& a); // copy assignment

double& operator[](int i);
const double& operator[](int i) const;

int size() const;
};

A suitable definition of Vector copy for a container simply copies the elements:

Vector::Vector(const Vector& a) // copy constr uctor
:sz(a.sz)

{
elem = new double[sz];
for (int i=0; i<sz; ++i)

elem[i] = a.elem[i];
}

The result of the v2=v1 example can now be presented as:
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4
v1:

4
v2:

32

Of course, we need a copy assignment in addition to the copy constructor:

Vector& Vector::opera tor=(const Vector& a) // copy assignment
{

double∗ p = new double[a.sz];
for (int i=0; i<a.sz; ++i)

p[i] = a.elem[i];
delete[] elem; // delete old elements
elem = p;
sz = a.sz;
retur n ∗this;

}

The name this is predefined in every member function and points to the object for which
the member function is called.

A copy constructor and a copy assignment for a class X are typically declared to take
an argument of type const X&.

3.3.2 Moving Containers [tour2.copy.move]

We can control copying by defining a copy constructor and a copy assignment, but copy-
ing can be costly for large containers. Consider:

Vector operator+(const Vector& a, const Vector& b)
{

if (a.size()!=b.size())
throw Vector_size_misma tch{};

Vector res(a.size());
for (int i=0; i<a.size(); ++i)

res[i]=a[i]+b[i];
retur n res;

}

Returning from a + involves copying the result out of the local variable res and into some
place where the caller can access it. We might use this + like this:
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void f(const Vector& x, const Vector& y, const Vector& z)
{

Vector r;
// ...
r = x+y+z;
// ...

}

That would be copying a Vector at least twice (one for each use of the + operator). If a
Vector is large, say 10000 doubles, that could be embarrassing. The most embarrassing
part is that res is never used again after the copy. We didn’t really want a copy, we just
wanted to get the result out of a function: we wanted to move a Vector rather than to copy
it. Fortunately, we can state that intent:

class Vector {
pr ivate:

// elem points to an array of sz doubles
double∗ elem;
int sz;

public:
// ...

Vector(const Vector& a); // copy constr uctor
Vector& operator=(const Vector& a); // copy assignment

Vector(Vector&& a); // move constr uctor
Vector& operator=(Vector&& a); // move assignment

// ...
};

Given that, the compiler will choose the move constructor to implement the transfer of the
return value out of the function. This means that the r=x+y+z will involve no copying of
Vectors. Instead, Vectors are just moved.

As is typical, Vector’s move constructor is trivial to define:

Vector::Vector(Vector&& a)
{

elem = a.elem; // "grab the elements" from a
sz = a.sz;
a.elem = nullptr; // now a has no elements
a.sz = 0;

}

The && means ‘‘rvalue reference’’ and is a reference to which we can bind an rvalue
(§6.4.1). The word ‘‘rvalue’’ is intended to complement ‘‘lvalue,’’ which roughly means
‘‘something that can appear on the left hand of an assignment.’’ So an rvalue is – to a first
approximation – a value that you can’t assign to, such as an integer returned by a function
call, and an rvalue reference is a reference to something that nobody else can assign to.
Note that a move constructor does not take a const argument: after all, a move constructor
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is supposed to remove the value from its argument. A move assignment is defined simi-
larly.

A move operation is applied when an rvalue reference is used as an initializer or as the
rght-hand side of an assignment.

After a move, an object should be in a state that allows a destructor to be run. Typi-
cally, we should also allow assignment to a moved-from object (§17.5, §17.6.2).

In cases where the programmer knows that a value will not be used again, but the com-
piler can’t be expected to be smart enough to figure that out, the programmer can be spe-
cific:

Vector f()
{

Vector x(1000);
Vector y(1000);
Vector z(1000);
// ...
z = x; // we get a copy
y = std::move(x); // we get a move
// ...
retur n z; // we get a move

};

The standard-library function move() returns an rvalue reference to its argument.
Just before the retur n we have:

nullptr 0
x:

1000
y:

1000
z:

1 2 ...1 2 ...

By the time z is destroyed, it too has been moved from (by the retur n) so that, like x, it
holds no elements.

3.3.3 Resource Management [tour2.copy.resource]

By defining constructors, copy operations, move operations, and a destructors, a program-
mer can provide complete control of the lifetime of a contained resource (such as the ele-
ments of a container). In particular, a move constructor allows an object to move simply
and cheaply from one scope to another. That way, we can move objects that we cannot or
would not want to copy out of a scope. Consider a standard-library thread representing a
concurrent activity (§5.3.1) and a Vector of a million doubles. We can’t copy the former
and don’t want to copy the latter.
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std::vector<thread> my_threads;

Vector init()
{

thread t {heartbea t}; // run hear tbeat concurrently (on its own thread)
my_threads .push_back(move(t)); // move t into my_threads

Vector<double> vec;
// ... fill vec ...
retur n vec; // move res out of run()

}

auto v = init(); // star t hear tbeat and initialize v

This makes resource handles, such as Vector and thread an alternative to using pointers in
many cases. In fact, the standard-library ‘‘smart pointers’’ such as unique_ptr, are them-
selves such resource handles (§5.2.1).

I used the standard-library vector because we don’t get to parameterize Vector with an
element type until §3.4.1.

3.3.4 Prev enting Copy and Move [tour2.copy.hier]

Using the default copy or move for a class in a hierarchy is typically a disaster: Given only
a pointer to a base, we simply don’t know what members the derived class has (§3.3.3), so
we can’t know how to copy them. So, the best thing to do is usually to delete the default
copy and move operations; that is, to eliminate to default definitions of those two opera-
tions:

class Shape {
public:

Sha pe(const Sha pe&) =delete; // no copy operations
Sha pe& opera tor=(const Sha pe&) =delete;

Sha pe(Sha pe&&) =delete; // no move operations
Sha pe& opera tor=(Shape&&) =delete;

˜Sha pe();
// ...

};

Now an attempt to copy a Sha pe will be caught by the compiler. If you need to copy an
object in a class hierarchy, write some kind of clone function (§22.2.4).

In case you forgot to delete a copy or move operation, no harm is done. A move opera-
tion is not implicitly generated for a class where the user has explicitly declared a de-
structor. Furthermore, the generation of copy operations are deprecated in this case
(§42.2.3). This can be a good reason to explicitly define a destructor even where the com-
piler would have implicitly provided one (§17.2.3).
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A base class in a class hierarchy is just one example of an object we wouldn’t want to
copy. A resource handle generally can’t be copied just by copying its members (§5.2,
§17.2.2).

3.4 Templates [tour2.generic]

Someone who wants a vector is unlikely always to want a vector of doubles. A vector is a
general concept, independent of the notion of a floating-point number. Consequently, the
element type of a vector ought to be represented independently. A template is a class or a
function that we parameterize with a set of types or values. We use templates to represent
concepts that are best understood as something very general from which we can generate
specific types and functions by specifying arguments, such as the element type double.

3.4.1 Parameterized Types [tour2.containers]

We can generalize our vector-of-doubles type to a vector-of-anything type by making it a
templa te and replacing the specific type double with a parameter. For example:

templa te<typename T>
class Vector {
pr ivate:

T∗ elem; // elem points to an array of sz elements of type T
int sz;

public:
Vector(int s); // constr uctor: esta blish invariant, acquire resources
˜Vector() { delete[] elem; } // destr uctor: release resources

// copy and move operations

T& operator[](int i);
const T& operator[](int i) const;
int size() const { retur n sz; }

};

The templa te<typename T> prefix makes T a parameter of the declaration it prefixes. It is
C++’s version of the mathematical ‘‘for all T’’ or more precisely ‘‘for all types T.’’

The member functions might be defined similarly:

templa te<typename T>
Vector<T>::Vector(int s)
{

if (s<0) throw Neg ative_size{};
elem = new T[s];
sz = s;

}
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templa te<typename T>
const T& Vector<T>::opera tor[](int i) const
{

if (i<0 || size()<=i) throw out_of_range{"Vector::opera tor[]"};
retur n elem[i];

}

Given these definitions, we can define Vectors like this:

Vector<char> vc(200); // vector of 200 character s
Vector<str ing> vs(17); // vector of 17 integers
Vector<list<int>> vli(45); // vector of 45 lists of integers

The >> in Vector<list>> terminates the nested template arguments; it is not a misplaced input
operator. It is not (as in C++98) necessary to place a space between the two >s.

We can use Vectors like this:

void f(const Vector<str ing>& vs) // Vector of some strings
{

for (int i = 0; i<vs.size(); ++i))
cout << vs[i] << ’\n’;

}

If we also want to use the range-for loop for our Vector, we must define suitable beg in() and
end():

templa te<typename T>
T∗ beg in(Vector<T>& x)
{

retur n &x[0]; // pointer to first element
}

templa te<typename T>
T∗ end(Vector<T>& x)
{

retur n x.beg in()+x.size(); // pointer to one-past-last element
}

Given those, we can write:

void f2(const Vector<str ing>& vs) // Vector of some strings
{

for (auto s : vs)
cout << s << ’\n’;

}

Similarly, we can define lists, vectors, maps (that is, associative arrays), etc., as templates
(§4.4, §23.2, Chapter 31).

Templates are a compile-time mechanism, so their use incurs no run-time overhead
compared to ‘‘hand-written code’’ (§23.2.2).
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3.4.2 Function Templates [tour2.algorithms]

Templates have many more uses than simply parameterizing a container with an element
type. In particular, they are extensively used for parameterization of both types and algo-
rithms in the standard library (§3.4.1, §3.4.2). For example, we can write a function that
calculates the sum of the element values of any container like this:

templa te<typename Container, typename Value>
Value sum(const Container& c, Value v)
{

for (auto x : c) v+=x;
retur n v;

}

The Value template argument and the function argument v are there to allow the caller to
specify the type and initial value of the accumulator (the variable in which to accumulate
the sum):

void user(Vector<int>& vi, std::list<double>& ld, std::vector<complex<double>>& vc)
{

int x = sum(vi,0); // the sum of a vector (add ints)
double d = sum(vi,0.0); // the sum of a vector (add doubles)
double dd = sum(ld,0.0); // the sum of a list of doubles
auto z = sum(vc,complex<double>{}); // the sum of a vector of complex<double>

}

The point of adding ints in a double would be to gracefully handle a number larger than the
largest int. Note how the types of the template arguments for sum<T,V> are deduced from
the function arguments.

This sum() is a simplified version of the standard-library accumula te() (§39.6).

3.4.3 Function Objects [tour2.functionobjects]

One particularly useful kind of template is the function object (sometimes called a func-
tor), which is used to define objects that can be called like functions. For example:

templa te<typename T>
class Less_than {

const T& val; // value to compare against
public:

Less_than(const T& v) :val(v) { }
bool operator()(const T& x) const { retur n x<val; } // call operator

};

The function called opera tor() implements the ‘‘function call,’’ ‘‘call,’’ or ‘‘application’’
operator ().

We can define named variables of type Less_than for some argument type:

Less_than<int> lti {42}; // will compare to 42 (using <)
Less_than<str ing> lts {"Backus"}; // will compare to "Backus" (using <)

We can call such an object, just as we call a function:
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void fct(int n, const string & s)
{

bool b1 = lti(n); // tr ue if n<42
bool b2 = lts(s); // tr ue if s<"Backus"
// ...

}

Such function objects are widely used as arguments to algorithms. For example, we can
count the occurrences of values for which a predicate returns tr ue:

templa te<typename C, typename P>
int count(const C& c, P pred)
{

int cnt = 0;
for (const auto& x : c)

if (pred(x)) ++cnt;
retur n cnt;

}

A predicate is something that we can invoke to return tr ue or false. For example:

void f(const Vector<int>& vec, const list<string>& lst, int x, const string& s)
{

cout << "number of values less than " << x
<< ": " << count(vec,Less_than<int>{x})
<< ’\n’;

cout << "number of values less than " << s
<< ": " << count(lst,Less_than<string>{s})
<< ’\n’;

}

Here, Less_than<int>{x} constructs an object for which the call operator compares to the int
called x; Less_than<str ing>{s} constructs an object that compares to the str ing called s. The
beauty of these function objects is that they carry the value to be compared against with
them. We don’t hav e to write a separate function for each value (and each type) and we
don’t hav e to introduce nasty global variables to hold values. Also, for a simple function
object like Less_than inlining is simple so that a call of Less_than is far more efficient than
an indirect function call. The ability to carry data plus their efficiency makes function
objects particularly useful as arguments to algorithms.

Function objects that is used to specify the meaning of key operations of a an general
algorithm (such as Less_than for count()) are often referred to a policy objects.

We hav e to define Less_than separately from its use. That could be seen as incon-
venient. Consequently, there is a notation for implicitly generating function objects:
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void f(const Vector<int>& vec, const list<string>& lst, int x, const string& s)
{

cout << "number of values less than " << x
<< ": " << count(vec,[&](int a){ retur n a<x; })
<< ’\n’;

cout << "number of values less than " << s
<< ": " << count(lst,[&](const string& a){ retur n a<s; })
<< ’\n’;

}

The notation [&](int a){ retur n a<x; } is called a lambda expression (§11.4). It generates a
function object exactly like Less_than<int>. The [&] is a capture list specifying that local
names used (such as x) will be passed by reference. Had we wanted to ‘‘capture’’ only x,
we could have said so: [&x]. Had we wanted to give the generated object a copy of x, we
could have said so: [=x]. Capture nothing is [], capture all local names used by references
is [&], and capture all local names used by value is [=].

Using lambdas can be convenient and terse, but also obscure. For non-trivial actions
(say, more than a simple expression), I prefer to name the operation so as to more clearly
state its purpose and to make it available for use in several places in a program.

In §3.2.5, we noticed the annoyance of having to write many functions to perform
operations on elements of vectors of pointers and unique_ptrs, such as draw_all() and
rota te_all(). Function objects (in particular, lambdas) can help by allowing us to separate
the traversal of the container from the specification of what is to be done with each ele-
ment.

First we need a function that applies an operation to each object pointed to by the ele-
ments of a container of pointers:

templa te<class C, class Oper>
void for_all(C& c, Oper op) // assume that C is a container of pointers
{

for (auto& x : c) op(∗x); // pass op() a reference to each element pointed to
}

Now we can write a version of user() from §3.2.5 without writing a set of _all functions:

void user()
{

vector<unique_ptr<Sha pe>> v;
while (cin)

v.push_back(read_sha pe(cin));
for_all(v,[](Sha pe& s){ s.draw(); }); // draw_all()
for_all(v,[](Sha pe& s){ s.rota te(45); }); // rotate_all(45)

}

I pass a reference to Sha pe to a lambda so that the lambdas don’t hav e to care exactly how
the objects are stored in the container. In particular, those for_all() calls would still work if
I changed v to a vector<Sha pe∗>.
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3.4.4 Variadic Templates [tour2.variadic]

A template can be defined to accept an arbitrary number of arguments of arbitrary types.
Such a template is called a variadic template. For example:

templa te<typename T, typename... Tail>
void f(T head, Tail... tail)
{

g(head); // do someting to head
f(tail...); // tr y again with tail

}

void f() { } // do nothing

The key to implementing a variadic template is to note that when you pass a list of argu-
ments to it, you can separate the first argument from the rest. Here, we do something to
the first argument (the head) and then recursively call f() with the rest of the arguments
(the tail). The ellipses, ..., is used to indicate ‘‘the rest’’ of a list. Eventually, of course, the
tail will become empty and we need a separate function to deal with that.

We can call this f() like this:

int main()
{

cout << "first: ";
f(1,2.2,"hello");

cout << "\nsecond: "
f(0.2,’c’,"yuck!",0,1,2);
cout << "\n";

}

This would call f(1,2.2,"hello"), which will call f(2.2,"hello"), which will call f("hello"), which
will call f(). What might g() do? Obviously, in a real program it will do whatever we
wanted done to each argument. For example, we could make it write its argument to out-
put:

templa te<typename T>
void g(T x)
{

cout << x << " ";
}

Given that, the output will be:

fir st: 1 2.2 hello
second: 0.2 c yuck! 0 1 2

It seems that f() is a simple variant of pr intf() printing arbitrary lists or values – imple-
mented in three lines of code plus their surrounding declarations.

The strength of variadic templates (sometimes just called variadics) is that they can
accept any arguments you care to give them. The weakness is that the type checking of
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the interface is a possibly elaborate template program. For details, see §28.6. For exam-
ples, see §34.2.4.2 (N-tuples) and Chapter 29 (N-dimensional matrices).

3.4.5 Aliases [tour2.alias]

Surprisingly often, it is useful to introduce a synonym for a type or a template (§6.5). For
example, the standard header <cstddef> contains a definition of the alias size_t, maybe:

using size_t = unsigned int;

The actual type named size_t is implementation dependent, so in another implementation
size_t may be an unsigned long. Having the alias size_t allows the programmer to write por-
table code.

It is very common for a parameterized type to provide an alias for types related to their
template arguments. For example:

templa te<typename T>
class Vector {
public:

using value_type = T;
// ...

};

In fact, every standard library container provides value_type as the name of their value type
(§31.3.1). This allows us to write code that will work for every container that follows this
convention. For example:

templa te<typename C>
using Element_type = typename C::value_type;

templa te<typename Container>
void algo(Container& c)
{

Vector<Element_type<Container>> vec; // keep results here
// ...

}

The aliasing mechanism can be used to define a new template by binding some or all tem-
plates arguments. For example:

templa te<typename Ke y, typename Value>
class Map {

// ...
};

templa te<typename Value>
using String_ma p = Map<str ing,Value>;

Str ing_ma p<int> m; // m is a Map<str ing,int>

See §23.6.

The C++ Programming Language, 4th edition ©2012 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T

ewaadex
高亮



88 A Tour of C++: Abstraction Mechanisms Chapter 3

3.5 Advice [tour2.advice]

[1] Express ideas directly in code; §3.2.
[2] Define classes to represent application concepts directly in code; §3.2.
[3] Use concrete classes for simple concepts and performance critical components;

§3.2.1.
[4] Avoid ‘‘naked’’ new and delete operations; §3.2.1.2.
[5] Use resource handles and RAII to manage resources; §3.2.1.2.
[6] Use abstract classes as interfaces when complete separation of interface and imple-

mentation is needed; §3.2.3.
[7] Use class hierarchies to represent concepts with an inherent hierarchical structure;

§3.2.5.
[8] When designing a class hierarchy, distinguish between implementation inheritance

and interface inheritance; §3.2.5.
[9] Control construction, copy, move, and destruction of objects; §3.3.
[10] Use containers, defined as resource handle templates, to hold collections of values

of the same type; §3.4.1.
[11] Use function templates to represent general algorithms; §3.4.2.
[12] Use function objects, including lambdas, to represent policies and actions; §3.4.3.
[13] Use type and template aliases to provide a uniform notation for types that may vary

among similar types or among implementations; §3.4.5.
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4
A Tour of C++: Containers and Algorithms

Why waste time learning
when ignorance is instantaneous?

– Hobbes

• Libraries
Standard Library Overview; The Standard-library Headers and Namespace

• Strings
• Stream I/O

Output; Input; ssttrr iinngg I/O; I/O of User-defined Types
• Containers

vv eeccttoorr; lliisstt; mmaapp; uunnoorrddeerreedd__mmaapp; Container Overview
• Algorithms

Use of Iterators; Iterator Types; Stream Iterators; Predicates; Algorithm Overview;
Container Algorithms

• Advice

4.1 Libraries [tour3.lib]

No significant program is written in just a bare programming language. First, a set of sup-
porting libraries is developed. These then form the basis for further work. Most programs
are tedious to write in the bare language, whereas just about any task can be rendered sim-
ple by the use of good libraries.

Continuing from Chapter 2 and Chapter 3, this chapter and the next give a quick tour
of key standard-library facilities. The assumption is that you have programmed before. If
not, please consider reading a textbook, such as Programming: Principles and Practice
using C++ [Stroustrup, 2009], before continuing here. Even if you have programmed
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before, the libraries you used or the applications you wrote may be very different from the
style of C++ presented here. If you find this ‘‘lightning tour’’ confusing, another approach
could be to skip to the more systematic and bottom up language presentation starting in
Chapter 6. Similarly, a more systematic description of the standard library starts in Chap-
ter 30.

I very briefly present useful standard-library types, such as ssttrr iinngg, oossttrreeaamm, vv eeccttoorr, mmaapp
(this chapter), uunniiqquuee__ppttrr, tthhrreeaadd, rreeggee xx, and ccoommppllee xx (Chapter 5), as well as the most com-
mon ways of using them. Doing this allows me to give better examples in the following
chapters. As in Chapter 2 and Chapter 3, you are strongly encouraged not to be distracted
or discouraged by an incomplete understanding of details. The purpose of this chapter is
to give you a taste of what is to come and to convey a basic understanding of the most use-
ful library facilities.

The standard library facilities described in this book are part of every complete C++
implementation. In addition to the standard C++ library, most implementations offer
‘‘graphical user interface’’ systems (GUIs), Web interfaces, database interfaces, etc. Simi-
larly, most application development environments provide ‘‘foundation libraries’’ for cor-
porate or industrial ‘‘standard’’ dev elopment and/or execution environments. Here, I do
not describe such systems and libraries. The intent is to provide a self-contained descrip-
tion of C++ as defined by the standard and to keep the examples portable, except where
specifically noted. Naturally, a programmer is encouraged to explore the more extensive
facilities available on most systems.

4.1.1 Standard-library Overview [tour3.post]

The facilities provided by the standard library can be classified like this:
[1] Basic run-time language support (e.g., for allocation and run-time type informa-

tion); see §30.3.
[2] The C standard library (with very minor modifications to minimize violations of

the type system); see Chapter 41.
[3] Strings and I/O streams (with support for international character sets and local-

ization); see Chapter 35, Chapter 37, and Chapter 38. I/O streams is an extensi-
ble framework to which users can add their own streams, buffering strategies,
and character sets.

[4] A framework of containers (such as vv eeccttoorr, lliisstt, and mmaapp) and algorithms (such as
fifinndd(()), ssoorr tt(()), and mmeerrggee(())); see §4.4, §4.5 ,Chapter 31, Chapter 32, and Chapter 33.
This framework, conventionally called the STL [Stepanov,1994], is extensible so
that users can easily add their own containers and algorithms.

[5] Support for numerical computation (such as standard mathematical functions,
complex numbers, vectors with arithmetic operations, and random number gen-
erators); see §3.2.1.1 and Chapter 39.

[6] Support for regular expression matching; see §5.5 and Chapter 36.
[7] Support for concurrent processing, including tthhrreeaadds and lloocc kks; see §5.3 and

Chapter 40. The concurrency support is foundational so that users can add sup-
port for new models of concurrency as libraries.
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[8] Utilities to support template metaprogramming (e.g., type traits; §5.4.2, §28.2.4,
§34.7), STL-style generic programming (e.g., ppaaiirr; §5.4.3, §34.2.4.1), and gen-
eral programming (e.g., cclloocc kk; §5.4.1, §34.6).

[9] ‘‘Smart pointers’’ for resource management (e.g., uunniiqquuee__ppttrr and sshhaarreedd__ppttrr;
§5.2.1, §34.3) and an interface to garbage collectors (§34.8).

[10] Special-purpose containers, such as aarrrr aayy (§34.2.1), bbiittsseett (§34.2.2), and ttuuppllee
(§34.2.4.2).

The main criterion for including a class in the library was that it would somehow be used
by almost every C++ programmer (both novices and experts), that it could be provided in
a general form that did not add significant overhead compared to a simpler version of the
same facility, and that simple uses should be easy to learn (relative to the inherent com-
plexity of the task performed). Essentially, the C++ standard library provides the most
common fundamental data structures together with the fundamental algorithms used on
them.

4.1.2 The Standard-library Headers and Namespace [tour3.name]

Every standard library facility is provided through some standard header. For example:

##iinncclluuddee<<ssttrr iinngg>>
##iinncclluuddee<<lliisstt>>

This makes the standard ssttrr iinngg and lliisstt available.
The standard library is defined in a namespace (§2.4.2, §14.3.1) called ssttdd. To use

standard library facilities, the ssttdd:::: prefix can be used:

ssttdd::::ssttrr iinngg ss {{""FFoouurr lleeggss GGoooodd;; ttwwoo lleeggss BBaaaaaadd!!""}};;
ssttdd::::lliisstt<<ssttdd::::ssttrr iinngg>> ssllooggaannss {{""WWaarr iiss ppeeaaccee"",, ""FFrreeeeddoomm iiss SSllaavveerryy"",, ""IIggnnoorraannccee iiss SSttrreennggtthh""}};;

For simplicity, I will rarely use the ssttdd:::: prefix explicitly in examples. Neither will I
always ##iinncclluuddee the necessary headers explicitly. To compile and run the program frag-
ments here, you must ##iinncclluuddee the appropriate headers (as listed in §4.4.5, §4.5.5, and
§30.2) and make the names they declare accessible. For example:

##iinncclluuddee<<ssttrr iinngg>> //// make the standard string facilities accessible
uussiinngg nnaammeessppaaccee ssttdd;; //// make std names available without std:: prefix

ssttrr iinngg ss {{""CC++++ iiss aa ggeenneerraall−−ppuurrppoossee pprrooggrraammmmiinngg llaanngguuaaggee""}};; //// ok: string is std::string

It is generally in poor taste to dump every name from a namespace into the global
namespace. However, in this book, I use the standard library almost exclusively and it is
good to know what it offers.

Here is a table of selected standard-library headers, all supplying declarations in
namespace ssttdd:
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Selected Standard Library Headers

<<aallggoorr iitthhmm>> ccooppyy(()), fifinndd(()), ssoorr tt(()) §32.2 §iso.25
<<aarrrr aayy>> aarrrraayy §34.2.1 §iso.23.3.2
<<ccmmaatthh>> ssqqrrtt(()), ppoo ww(()) §39.3 §iso.26.8
<<ccoommppllee xx>> ccoommpplleexx, ssqqrr tt(()), ppoo ww(()) §39.4 §iso.26.8
<<ffssttrreeaamm>> ffssttrreeaamm, iiffssttrreeaamm, ooffssttrreeaamm §37.2.1 §iso.27.9.1
<<ffuuttuurree>> ffuuttuurree, pprroommiissee §5.3.5 §iso.30.6
<<iioossttrreeaamm>> iissttrreeaamm, oossttrreeaamm, cciinn, ccoouutt §37.1 §iso.27.4
<<iitteerr aattoorr>> bbaacckk__iinnsseerrtteerr(()), rree vveerrssee__iitteerraattoorr, bbeeggiinn(()) §33.2 §iso.24.3
<<lliimmiittss>> nnuummeerriicc__lliimmiittss §39.2 §iso.18.3
<<lliisstt>> lliisstt §31.4.2 §iso.23.3.5
<<mmaapp>> mmaapp, mm uullttiimmaapp §31.4.3 §iso.23.4.4
<<mmeemmoorr yy>> uunniiqquuee__ppttrr, sshhaarreedd__ppttrr, aallllooccaattoorr §5.2.1 §iso.20.6
<<mm uutteexx>> mmuutteexx, ttiimmeedd__mm uutteexx, rreeccuurrssiivv ee__mmuutteexx §40.6.1 §iso.30.4
<<rreeggee xx>> rreeggeexx, ssmmaattcchh Chapter 36 §iso.28.8
<<sseett>> sseett, mm uullttiisseett §31.4.3 §iso.23.4.6
<<ssssttrreeaamm>> iissttrrssttrreeaamm, oossttrrssttrreeaamm §37.2.2 §iso.27.8
<<ssttrr iinngg>> ssttrriinngg, bbaassiicc__ssttrr iinngg Chapter 35 §iso.21.3
<<tthhrreeaadd>> tthhrreeaadd §5.3.1 §iso.30.3
<<uunnoorrddeerreedd__mmaapp>> uunnoorrddeerreedd__mmaapp, uunnoorrddeerreedd__mm uullttiimmaapp §31.4.3.2 §iso.23.5.4
<<uuttiilliittyy>> mmoovvee(()), ss wwaapp(()), ppaaiirr §34.9 §iso.20.1
<<vv aallaarrrraayy>> vvaallaarrrraayy, sslliiccee, ggsslliiccee §39.5 §iso.26.6
<<vv eeccttoorr>> vveeccttoorr §31.2 §iso.23.3.6

This listing is far from complete, see §30.2 for more information.

4.2 Strings [tour3.string]

The standard library provides a ssttrr iinngg type to complement the string literals. The ssttrr iinngg
type provides a variety of useful string operations, such as concatenation. For example:

ssttrr iinngg ccoommppoossee((ccoonnsstt ssttrriinngg&& nnaammee,, ccoonnsstt ssttrriinngg&& ddoommaaiinn))
{{

rreettuurr nn nnaammee ++ ’’@@’’ ++ ddoommaaiinn;;
}}

aauuttoo aaddddrr == ccoommppoossee((""ddmmrr"",,""bbeellll−−llaabbss..ccoomm""));;

Here, aaddddrr is initialized to the character sequence ddmmrr@@bbeellll−−llaabbss ..ccoomm. ‘‘Addition’’ of
strings means concatenation. You can concatenate a ssttrr iinngg, a string literal, a C-style string,
or a character to a ssttrr iinngg. The standard ssttrr iinngg has a move constructor so returning even long
ssttrr iinnggs by value is efficient (§3.3.2).

In many applications, the most common form of concatenation is adding something to
the end of a ssttrr iinngg. This is directly supported by the ++== operation. For example:
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vv ooiidd mm22((ssttrriinngg&& ss11,, ssttrriinngg&& ss22))
{{

ss11 == ss11 ++ ’’\\nn’’;; //// append newline
ss22 ++== ’’\\nn’’;; //// append newline

}}

The two ways of adding to the end of a ssttrr iinngg are semantically equivalent, but I prefer the
latter because it is more explicit about what it does, more concise, and possibly more effi-
ciently implemented.

A ssttrr iinngg is mutable. In addition to == and ++==, subscripting (using [[]]) and substring opera-
tions are supported. The standard-library ssttrr iinngg is described in Chapter 35. Among other
useful features, it provides the ability to manipulate substrings. For example:

ssttrr iinngg nnaammee == ""NNiieellss SSttrroouussttrruupp"";;

vv ooiidd mm33(())
{{

ssttrr iinngg ss == nnaammee..ssuubbssttrr((66,,1100));; //// s = "Stroustr up"
nnaammee ..rreeppllaaccee((00,,55,,""nniicchhoollaass""));; //// name becomes "nicholas Stroustrup"
nnaammee[[00]] == ’’NN’’;; //// name becomes "Nicholas Stroustrup"

}}

The ssuubbssttrr(()) operation returns a ssttrr iinngg that is a copy of the substring indicated by its argu-
ments. The first argument is an index into the ssttrr iinngg (a position), and the second argument
is the length of the desired substring. Since indexing starts from 00, ss gets the value SSttrroouuss--
ttrr uupp.

The rreeppllaaccee(()) operation replaces a substring with a value. In this case, the substring
starting at 00 with length 55 is NNiieellss; it is replaced by NNiicchhoollaass. Thus, the final value of nnaammee
is NNiicchhoollaass SSttrroouussttrruupp. Note that the replacement string need not be the same size as the
substring that it is replacing.

Naturally, ssttrr iinnggs can be compared against each other and against string literals. For
example:

ssttrr iinngg iinnccaannttaattiioonn;;

vv ooiidd rreessppoonndd((ccoonnsstt ssttrriinngg&& aannsswweerr))
{{

iiff ((aannsswweerr ==== iinnccaannttaattiioonn)) {{
//// perfor m magic

}}
eellssee iiff ((aannsswweerr ==== ""yyeess"")) {{

//// ...
}}
//// ...

}}

The ssttrr iinngg library is described in Chapter 35. The most common techniques for imple-
menting ssttrr iinngg are presented in the SSttrr iinngg example (§19.3).
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4.3 Stream I/O [tour3.streams]

The standard library provides formatted character input and output through the iioossttrreeaamm
library. The input operations are typed and extensible to handle user-defined types. This
section is a very brief introduction to the use of iioossttrreeaamms; Chapter 37 is a reasonably com-
plete description of the iioossttrreeaamm library facilities.

Other forms of user interaction, such as graphical I/O, are handled through libraries
that are not part of the ISO standard and therefore not described here.

4.3.1 Output [tour3.ostream]

The I/O stream library defines output for every built-in type. Further, it is easy to define
output of a user-defined type (§4.3.4). The operator <<<< (‘‘put to’’) is used as an output
operator on objects of type oossttrreeaamm; ccoouutt is the standard output stream and cceerrrr is the stan-
dard stream for reporting errors. By default, values written to ccoouutt are converted to a
sequence of characters. For example, to output the decimal number 1100, we can write:

vv ooiidd ff(())
{{

ccoouutt <<<< 1100;;
}}

This places the character 11 followed by the character 00 on the standard output stream.
Equivalently, we could write:

vv ooiidd gg(())
{{

iinntt ii {{1100}};;
ccoouutt <<<< ii;;

}}

Output of different types can be combined in the obvious way:

vv ooiidd hh((iinntt ii))
{{

ccoouutt <<<< ""tthhee vvaalluuee ooff ii iiss "";;
ccoouutt <<<< ii;;
ccoouutt <<<< ’’\\nn’’;;

}}

For hh((1100)), the output will be

tthhee vvaalluuee ooff ii iiss 1100

People soon tire of repeating the name of the output stream when outputting several
related items. Fortunately, the result of an output expression can itself be used for further
output. For example:

vv ooiidd hh22((iinntt ii))
{{

ccoouutt <<<< ""tthhee vvaalluuee ooff ii iiss "" <<<< ii <<<< ’’\\nn’’;;
}}
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This hh22(()) produces the same output as hh(()).
A character constant is a character enclosed in single quotes. Note that a character is

output as a character rather than as a numerical value. For example:

vv ooiidd kk(())
{{

iinntt bb == ’’bb’’;; //// note: char implicitly converted to int
cchhaarr cc == ’’cc’’;;
ccoouutt <<<< ’’aa’’ <<<< bb <<<< cc;;

}}

The integer value of the character ’’bb’’ is 9988 (in the ASCII encoding used on the C++ imple-
mentation that I used), so this will output aa9988cc.

4.3.2 Input [tour3.istream]

The standard library offers iissttrreeaamms for input. Like oossttrreeaamms, iissttrreeaamms deal with character
string representations of built-in types and can easily be extended to cope with user-
defined types.

The operator >>>> (‘‘get from’’) is used as an input operator; cciinn is the standard input
stream. The type of the right-hand operand of >>>> determines what input is accepted and
what is the target of the input operation. For example:

vv ooiidd ff(())
{{

iinntt ii;;
cciinn >>>> ii;; //// read an integer into i

ddoouubb llee dd;;
cciinn >>>> dd;; //// read a double-precision floating-point number into d

}}

This reads a number, such as 11223344, from the standard input into the integer variable ii and a
floating-point number, such as 1122..3344ee55, into the double-precision floating-point variable dd.

4.3.3 ssttrr iinngg I/O [tour3.stringio]

Often, we want to read a sequence of characters. A convenient way of doing that is to
read into a ssttrr iinngg. For example:

iinntt mmaaiinn(())
{{

ssttrr iinngg ssttrr;;
ccoouutt <<<< ""PPlleeaassee eenntteerr yyoouurr nnaammee\\nn"";;
cciinn >>>> ssttrr;;
ccoouutt <<<< ""HHeelllloo,, "" <<<< ssttrr <<<< ""!!\\nn"";;

}}

If you type in EErr iicc the response is

HHeelllloo ,, EErriicc!!
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By default, a whitespace character (§7.3.2), such as a space, terminates the read, so if you
enter EErr iicc BBllooooddaaxxee pretending to be the ill-fated king of York, the response is still

HHeelllloo ,, EErriicc!!

You can read a whole line (including the terminating newline character) using the ggeettlliinnee(())
function. For example:

iinntt mmaaiinn(())
{{

ccoouutt <<<< ""PPlleeaassee eenntteerr yyoouurr nnaammee\\nn"";;
ssttrr iinngg ssttrr;;
ggeettlliinnee((cciinn,,ssttrr));;
ccoouutt <<<< ""HHeelllloo,, "" <<<< ssttrr <<<< ""!!\\nn"";;

}}

With this program, the input EErr iicc BBllooooddaaxxee yields the desired output:

HHeelllloo ,, EErriicc BBllooooddaaxxee!!

The newline that terminated the line is discarded, so cciinn is ready for the next input line.
The standard strings have the nice property of expanding to hold what you put in them;

you don’t hav e to precalculate a maximum size. So, if you enter a couple of megabytes of
semicolons, the program will echo pages of semicolons back at you.

4.3.4 I/O of User-defined Types [tour3.udtio]

In addition to the I/O of built-in types and standard ssttrr iinnggs, the iioossttrreeaamm library allows pro-
grammers to define I/O for their own types. For example, consider a simple type EEnnttrr yy that
we might use to represent entries in a telephone book:

ssttrr uucctt EEnnttrryy {{
ssttrr iinngg nnaammee;;
iinntt nnuummbbeerr;;

}};;

We can define a simple output operator to write an EEnnttrr yy using a {"name",number} format
similar to the one we use for initialization in code:

oossttrreeaamm&& ooppeerraattoorr<<<<((oossttrreeaamm&& ooss,, ccoonnsstt EEnnttrryy&& ee))
{{

rreettuurr nn ooss <<<< ""{{\\"""" <<<< ee..nnaammee <<<< ""\\"",, "" <<<< ee..nnuummbbeerr <<<< ""\\""}}"";;
}}

A user-defined output operator takes its output stream (by reference) as its first argument
and returns it as its result. See §37.4.2 for details.

The corresponding input operator is more complicated because it has to check for cor-
rect formatting and deal with errors:
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iissttrreeaamm&& ooppeerraattoorr>>>>((iissttrreeaamm&& iiss,, EEnnttrryy&& ee))
//// read { "name" , number } pair. Note: for matted with { " " , and }

{{
cchhaarr cc,, cc22;;
iiff ((iiss>>>>cc &&&& cc====’’{{’’ &&&& iiss>>>>cc22 &&&& cc22====’’""’’)) {{ //// star t with a { "

ssttrr iinngg nnaammee;; //// the default value of a string is the empty string: ""
wwhhiillee ((iiss..ggeett((cc)) &&&& cc!!==’’""’’)) //// anything before a " is part of the name

nnaammee++==cc;;

iiff ((iiss>>>>cc &&&& cc====’’,,’’)) {{
iinntt nnuummbbeerr == 00;;
iiff ((iiss>>>>nnuummbbeerr>>>>cc &&&& cc====’’}}’’)) {{ //// read the number and a }

ee == {{nnaammee,,nnuummbbeerr}};; //// assign to the entry
rreettuurr nn iiss;;

}}
}}

}}
iiss ..sseettff((iiooss__bbaassee::::ffaaiillbbiitt));; //// register the failure in the stream
rreettuurr nn iiss;;

}}

An input operation returns a reference to its iissttrreeaamm which can be used to test if the opera-
tion succeeded. For example, when used as a condition cciinn>>>>cc means, did we succeed at
reading from cciinn into cc?

The iiss>>>>cc skips whitespace by default, but iiss ..ggeett((cc)) does not so that this EEnnttrr yy-input
operator ignores (skips) whitespace outside the name string, but not within it. For exam-
ple:

{{ ""JJoohhnn MMaarrwwoooodd CClleeeessee"" ,, 112233445566 }}
{{""MMiicchhaaeell EEddwwaarrdd PPaalliinn"",,998877665544}}

We can read such a pair of values from input into an EEnnttrr yy like this:

ff oorr ((EEnnttrryy eeee;; cciinn>>>>eeee;; )) //// read from cin into ee
ccoouutt <<<< eeee <<<< ’’\\nn’’;; //// wr ite ee to cout

See §37.4.1 for more technical details and techniques for writing input operators for user-
defined types. See §5.5 and Chapter 36 for a more systematic technique for recognizing
patterns in streams of characters (regular expression matching).

4.4 Containers [tour3.stl]

Much computing involves creating collections of values and then manipulating such col-
lections. Reading characters into a ssttrr iinngg and printing out the ssttrr iinngg is a simple example. A
class with the main purpose of holding objects is commonly called a container. Providing
suitable containers for a given task and supporting them with useful fundamental opera-
tions are important steps in the construction of any program.
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To illustrate the standard library containers, consider a simple program for keeping
names and telephone numbers. This is the kind of program for which different approaches
appear ‘‘simple and obvious’’ to people of different backgrounds. The EEnnttrr yy class from
§4.3.4 can be used to hold a simple phone book entry. Here, we deliberately ignore many
real-world complexities, such as the fact that many phone numbers do not have a simple
representation as a 32-bit iinntt.

4.4.1 vv eeccttoorr [tour3.vector]

The most useful standard library container is vv eeccttoorr. A vv eeccttoorr is a sequence of elements of
a giv en type. The elements are stored contiguously in memory:

6

vv eeccttoorr:
eelleemm:

sszz:
0: 1: 2: 3: 4: 5:

The VV eeccttoorr examples in §3.2.3 and §3.4 give an idea of the implementation of vv eeccttoorr and
§13.6 and §31.2 provide an exhaustive discussion.

We can initialize a vv eeccttoorr with a set of values of its element type:

vv eeccttoorr<<EEnnttrryy>> pphhoonnee__bbooookk == {{
{{""DDaa vviidd HHuummee"",,112233445566}},,
{{""KKaarr ll PPooppppeerr"",,223344556677}},,
{{""BBeerr ttrraanndd AArrtthhuurr WWiilllliiaamm RRuusssseellll"",,334455667788}}

}};;

Elements can be accessed through subscripting:

vv ooiidd pprriinntt__bbooookk((vveeccttoorr<<EEnnttrryy>>&& bbooookk))
{{

ff oorr ((iinntt ii == 00;; ii!!==bbooookk..ssiizzee(());; ++++ii))
ccoouutt <<<< bbooookk[[ii]] <<<< ’’\\nn’’;;

}}

As usual, indexing starts at 00 so that bbooookk[[00]] holds the entry for DDaa vviidd HHuummee. The vv eeccttoorr
member function ssiizz ee(()) gives the number of elements.

The elements of a vv eeccttoorr (obviously) constitute a range, so we can use the simpler
range-for loop (§2.2.5):

vv ooiidd pprriinntt__bbooookk((vveeccttoorr<<EEnnttrryy>>&& bbooookk))
{{

ff oorr ((ccoonnsstt aauuttoo&& xx :: bbooookk)) //// for "auto" see §2.2.2
ccoouutt <<<< xx <<<< ’’\\nn’’;;

}}

When we define a vv eeccttoorr, we giv e it an initial size (initial number of elements):
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vv eeccttoorr<<iinntt>> vv11 == {{11,, 22,, 33,, 44 }};; //// size is 4
vv eeccttoorr<<ssttrriinngg>> vv22;; //// size is 0;
vv eeccttoorr<<SShhaappee∗∗>> vv33((2233));; //// size is 23; initial element value: nullptr
vv eeccttoorr<<ddoouubbllee>> vv44((3322,,99..99));; //// size is 32; initial element value: 9.9

An explicit size is enclosed in ordinary parentheses, e.g., ((2233)), and by default the elements
are initialized to the element type’s default value (e.g., nn uullllppttrr for pointers and 00 for num-
bers). If you don’t want the default value, you can specify one as a second argument (e.g.,
99..99 for the 3322 elements of vv44).

The initial size can be changed. One of the most useful operations on a vv eeccttoorr is
ppuusshh__bbaacc kk(()), which adds a new element at the end of a vv eeccttoorr, increasing its size by 1. For
example:

ff oorr ((EEnnttrryy ee;; cciinn>>>>ee;;))
pphhoonnee__bbooookk..ppuusshh__bbaacc kk((ee));;

This reads EEnnttrr yys from the standard input into pphhoonnee__bbooookk until either the end of input (e.g.,
the end of a file) is reached or the input operation encounters a format error. The standard-
library vv eeccttoorr is implemented so that growing a vv eeccttoorr by repeated ppuusshh__bbaacc kk(())s is efficient.

A vv eeccttoorr is a single object that can be assigned. For example:

vv ooiidd ff((vveeccttoorr<<EEnnttrryy>>&& vv))
{{

vv eeccttoorr<<EEnnttrryy>> vv22 == pphhoonnee__bbooookk;;
vv == vv22;;
//// ...

}}

Assigning a vv eeccttoorr involves copying its elements. Thus, after the initialization and assign-
ment in ff(()), vv and vv22 each holds a separate copy of every EEnnttrr yy in the phone book. When a
vv eeccttoorr holds many elements, such innocent-looking assignments and initializations can be
prohibitively expensive. Where copying is undesirable, references or pointers (§7.2; §7.7)
or move operations (§3.3.2; §17.5.2) should be used.

4.4.1.1 Elements [tour3.elements]

Like all standard-library containers, vv eeccttoorr is a container of elements of some type TT; that
is, a vv eeccttoorr<<TT>>. Just about any type qualifies as an element type: built-in numeric types
(such as cchhaarr, iinntt, and ddoouubb llee), user-defined types (such as ssttrr iinngg, EEnnttrr yy, lliisstt<<iinntt>>, and
MMaattrr iixx<<ddoouubbllee,,22>>) and pointers (such as ccoonnsstt cchhaarr∗∗, SShhaappee∗∗, and ddoouubb llee∗∗). When you insert
a new element, its value is copied into the container. For example, when you put an inte-
ger with the value 77 into a container, the resulting element really has the value 77. The ele-
ment is not a reference or a pointer to some object containing 77. This makes for nice com-
pact containers with fast access. For people who care about memory sizes and run-time
performance this is critical.
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4.4.1.2 Range Checking [tour3.range]

The standard library vv eeccttoorr does not guarantee range checking (§31.2.2). For example:

vv eeccttoorr<<EEnnttrryy>> pphhoonnee__bbooookk((11000000));;

iinntt ii == pphhoonnee__bbooookk[[22000011]]..nnuummbbeerr;; //// 2001 is out of range

That initialization is likely to place some random value in ii rather than giving an error.
This is undesirable and out-of-range errors are a common problem. Consequently, I often
use a simple range-checking adaptation of vv eeccttoorr:

tteemmppllaattee<<ttyyppeennaammee TT>>
ccllaassss VVeecc :: ppuubblliicc ssttdd::::vveeccttoorr<<TT>> {{
ppuubb lliicc::

uussiinngg vveeccttoorr<<TT>>::::vveeccttoorr;; //// use the constructors from vector
//// (under the name Vec); see §20.3.5.1

TT&& ooppeerraattoorr[[]]((iinntt ii)) {{ rreettuurrnn vveeccttoorr<<TT>>::::aatt((ii));; }} //// range-checked
ccoonnsstt TT&& ooppeerraattoorr[[]]((iinntt ii)) ccoonnsstt {{ rreettuurrnn vveeccttoorr<<TT>>::::aatt((ii));; }} //// range-checked

//// for const objects; §3.2.1.1
}};;

VV eecc inherits everything from vv eeccttoorr except for the subscript operations that it redefines to
do range checking. The aatt(()) operation is a vv eeccttoorr subscript operation that throws an excep-
tion of type oouutt__ooff__rr aannggee if its argument is out of the vv eeccttoorr’s range (§2.4.3.1, §31.2.2).

An out-of-range access will throw an exception that the user can catch. For example:

vv ooiidd ff((VVeecc<<EEnnttrryy>>&& bbooookk))
{{

ttrr yy {{
bbooookk[[bbooookk..ssiizz ee(())]] == {{""JJooee"",,999999999999}};; //// will throw an exception

}}
ccaattcchh ((oouutt__ooff__rraannggee)) {{

ccoouutt <<<< ""rraannggee eerrrroorr\\nn"";;
}}

}}

The exception will be thrown, and then caught (§2.4.3.1; Chapter 13). If the user doesn’t
catch an exception, the program will terminate in a well-defined manner rather than pro-
ceeding or failing in an undefined manner. One way to minimize surprises from uncaught
exceptions is to use a mmaaiinn(()) with a ttrr yy-block as its body:
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iinntt mmaaiinn(())
ttrr yy {{

//// your code
}}
ccaattcchh ((oouutt__ooff__rraannggee)) {{

cceerrrr <<<< ""rraannggee eerrrroorr\\nn"";;
}}
ccaattcchh ((......)) {{

cceerrrr <<<< ""uunnkknnoowwnn eexxcceeppttiioonn tthhrroowwnn\\nn"";;
}}

This provides default exception handlers so that if we fail to catch some exception, an
error message is printed on the standard error-diagnostic output stream cceerrrr (§37.1).

Some implementations save you the bother of defining VV eecc (or equivalent) by providing
a range-checked version of vv eeccttoorr (e.g., as a compiler option).

4.4.2 lliisstt [tour3.list]

The standard-library offers a doubly-linked list called lliisstt:

4

lliisstt:

links links links links

We use a lliisstt for sequences where we want to insert and delete elements without moving
other elements. Insertion and deletion of phone book entries could be common, so a lliisstt
could be appropriate for representing a simple phone book. For example:

lliisstt<<EEnnttrr yy>> pphhoonnee__bbooookk == {{
{{""DDaa vviidd HHuummee"",,112233445566}},,
{{""KKaarr ll PPooppppeerr"",,223344556677}},,
{{""BBeerr ttrraanndd AArrtthhuurr WWiilllliiaamm RRuusssseellll"",,334455667788}}

}};;

When we use a linked list, we tend not to access elements using subscripting the way we
commonly do for vectors. Instead, we might search the list looking for an element with a
given non-zero value. To do this, we take advantage of the fact that a lliisstt is a sequence as
described in §4.5:

iinntt ggeett__nnuummbbeerr((ccoonnsstt ssttrriinngg&& ss))
{{

ff oorr ((ccoonnsstt aauuttoo&& xx :: pphhoonnee__bbooookk))
iiff ((xx..nnaammee====ss))

rreettuurr nn xx..nnuummbbeerr;;
rreettuurr nn 00;; //// use 0 to represent "number not found"

}}

The search for ss starts at the beginning of the list and proceeds until either ss is found or the
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end is reached.
Sometimes, we need to identify an element in a lliisstt. For example, we may want to

delete it or insert a new entry before it. To do that we use an iterator: a lliisstt iterator identi-
fies an element of a lliisstt and can be used to iterate through a lliisstt (hence its name). Every
standard library container provides the functions bbeeggiinn(()) and eenndd(()), which return an iterator
to the first and to one-past-the-last element, respectively (§4.5; §33.1.1). Using iterators
explicitly, we can – less elegantly – write the ggeett__nn uummbbeerr(()) function like this:

iinntt ggeett__nnuummbbeerr((ccoonnsstt ssttrriinngg&& ss))
{{

ff oorr ((aauuttoo pp == pphhoonnee__bbooookk..bbeeggiinn(());; pp!!==pphhoonnee__bbooookk..eenndd(());; ++++pp))
iiff ((pp−−>>nnaammee====ss))

rreettuurr nn pp−−>>nnuummbbeerr;;
rreettuurr nn 00;; //// use 0 to represent "number not found"

}}

In fact, this is roughly the way the terser and less error-prone range-ff oorr loop is imple-
mented by the compiler. Giv en an iterator pp, ∗∗pp is the element to which it refers, ++++pp
advances pp to refer to the next element, and when pp refers to a class with a member mm then
pp−−>>mm is equivalent to ((∗∗pp))..mm.

Adding elements to a lliisstt and removing elements from a lliisstt is easy:

vv ooiidd ff((ccoonnsstt EEnnttrryy&& eeee,, lliisstt<<EEnnttrryy>>::::iitteerraattoorr pp,, lliisstt<<EEnnttrryy>>::::iitteerraattoorr qq))
{{

pphhoonnee__bbooookk..iinnsseerr tt((pp,,eeee));; //// add ee before the element referred to by p
pphhoonnee__bbooookk..eerr aassee((qq));; //// remove the element referred to by q

}}

For a more complete description of iinnsseerr tt(()) and eerr aassee(()),, see §31.3.7.
Note that these lliisstt examples could be written identically using vv eeccttoorr and (surprisingly,

unless you understand machine architecture) perform better with a small vv eeccttoorr than with a
small lliisstt. When all we want is a sequence of elements, we have a choice between using a
vv eeccttoorr and a lliisstt. Unless you have a reason not to, use a vv eeccttoorr. A vv eeccttoorr performs better for
traversal (e.g., fifinndd(()) and ccoouunntt(())) and for sorting and searching operations (e.g., ssoorr tt(()) and
bbiinnaarr yy__sseeaarrcchh(())).

4.4.3 mmaapp [tour3.map]

Writing code to look up a name in a list of (name,number) pairs is quite tedious. In addi-
tion, a linear search is inefficient for all but the shortest lists. The standard library offers a
search tree called mmaapp:
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4

mmaapp:

links
kk eeyy:

vv aalluuee:
links

links

links

In other contexts, a mmaapp is known as an associative array or a dictionary. It is implemented
as a balanced binary tree.

The standard-library mmaapp (§31.4.3) is a container of pairs of values optimized for
lookup. For example:

mmaapp<<ssttrr iinngg,,iinntt>> pphhoonnee__bbooookk {{
{{""DDaa vviidd HHuummee"",,112233445566}},,
{{""KKaarr ll PPooppppeerr"",,223344556677}},,
{{""BBeerr ttrraanndd AArrtthhuurr WWiilllliiaamm RRuusssseellll"",,334455667788}}

}};;

When indexed by a value of its first type (called the key) a mmaapp returns the corresponding
value of the second type (called the value or the mapped type). For example:

iinntt ggeett__nnuummbbeerr((ccoonnsstt ssttrriinngg&& ss))
{{

rreettuurr nn pphhoonnee__bbooookk[[ss]];;
}}

In other words, subscripting a mmaapp is essentially the lookup we called ggeett__nn uummbbeerr(()). If a
kk eeyy isn’t found, it is entered into the mmaapp with a default value for its vv aalluuee. The default
value for an integer type is 00; the value I just happened to choose represents an invalid
telephone number.

If we wanted to avoid entering invalid numbers into our phone book, we could use
fifinndd(()) and iinnsseerr tt(()) instead of [[]] (§31.4.3.1).

4.4.4 UUnnoorrddeerreedd__mmaapp [tour3.unorderedmap]

The cost of a mmaapp lookup is OO((lloogg((nn)))) where nn is the number of elements in the mmaapp. That’s
pretty good. For example, for a mmaapp with 1,000,000 elements, we perform only about 20
comparisons and indirections to find an element. However, in many cases, we can do bet-
ter by using a hashed lookup rather than comparison using an ordering function, such as <<.
The standard library hashed containers are referred to as ‘‘unordered’’ because they don’t
require an ordering function:
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repuunnoorrddeerreedd__mmaapp:

hash table:

For example, we can use an uunnoorrddeerreedd__mmaapp from <<uunnoorrddeerreedd__mmaapp>> to implement our phone
book:

uunnoorrddeerreedd__mmaapp<<ssttrr iinngg,,iinntt>> pphhoonnee__bbooookk {{
{{""DDaa vviidd HHuummee"",,112233445566}},,
{{""KKaarr ll PPooppppeerr"",,223344556677}},,
{{""BBeerr ttrraanndd AArrtthhuurr WWiilllliiaamm RRuusssseellll"",,334455667788}}

}};;

Like for a mmaapp, we can subscript an uunnoorrddeerreedd__mmaapp:

iinntt ggeett__nnuummbbeerr((ccoonnsstt ssttrriinngg&& ss))
{{

rreettuurr nn pphhoonnee__bbooookk[[ss]];;
}}

The standard-library uunnoorrddeerreedd__mmaapp provides a default hash function for ssttrr iinnggs. If neces-
sary, you can provide your own (§31.4.3.4).

4.4.5 Container Overview [tour3.stdcontainer]

A mmaapp, a lliisstt, and a vv eeccttoorr can each be used to represent a phone book. However, each has
strengths and weaknesses. For example, subscripting and traversing a vv eeccttoorr is cheap and
easy. On the other hand, vv eeccttoorr elements are moved when we insert or remove elements;
lliisstt has exactly the opposite properties. A mmaapp resembles a lliisstt of (key,value) pairs except
that it is optimized for finding values based on keys. Please note that a vv eeccttoorr is usually
more efficient than a lliisstt for short sequences of small elements (even for iinnsseerr tt(()) and
eerr aassee(())). I recommend the standard-library vv eeccttoorr as the default type for sequences of ele-
ments: You need a reason to choose another.

The standard library provides some of the most general and useful container types to
allow the programmer to select a container that best serves the needs of an application:
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Standard Container Summary

vv eeccttoorr<<TT>> A variable-sized vector (§31.2)
lliisstt<<TT>> A doubly-linked list (§31.4.2)
ff oorrwwaarrdd__lliisstt<<TT>> A singly-linked list (§31.4.2)
sseett<<TT>> A set (§31.4.3)
mm uullttiisseett<<TT>> A set in which a value can occur many times (§31.4.3)
mmaapp<<KK,,VV>> An associative array (§31.4.3)
mm uullttiimmaapp<<KK,,VV>> A map in which a key can occur many times (§31.4.3)
uunnoorrddeerreedd__mmaapp<<KK,,VV>> A map using a hashed lookup (§31.4.3.2)
uunnoorrddeerreedd__mm uullttiimmaapp<<KK,,VV>> A multimap using a hashed lookup (§31.4.3.2)
uunnoorrddeerreedd__sseett<<TT>> A set using a hashed lookup (§31.4.3.2)
uunnoorrddeerreedd__mm uullttiisseett<<TT>> A multiset using a hashed lookup (§31.4.3.2)

The unordered containers are optimized for lookup with a key (often a string); in other
words, they are implemented using hash tables.

The standard containers are described in §31.2. The containers are defined in
namespace ssttdd and presented in headers <<vv eeccttoorr>>, <<lliisstt>>, <<mmaapp>>, etc. (§4.1.2, §30.2). In
addition, the standard library provides container adapters qquueeuuee<<TT>> (§31.5.2), ssttaacc kk<<TT>>
(§31.5.1), ddeeqquuee<<TT>> (§31.2), and pprr iioorriittyy__qquueeuuee<<TT>> (§31.5.3). The standard library also
provides more specialized container-like types, such as a fixed-sized array aarrrr aayy<<TT,,NN>>
(§34.2.1) and bbiittsseett<<NN>> (§34.2.2).

The standard containers and their basic operations are designed to be similar from a
notational point of view. Furthermore, the meanings of the operations are equivalent for
the various containers. Basic operations apply to every kind of container for which they
make sense and can be efficiently implemented. For example,

• bbeeggiinn(()) and eenndd(()) give iterators to the first and one-beyond-last elements, respectively
• ppuusshh__bbaacc kk(()) can be used (efficiently) to add elements to the end of a vv eeccttoorr as well as

for a lliisstt
• ssiizz ee(()) returns the number of elements.

This notational and semantic uniformity enables programmers to provide new container
types that can be used in a very similar manner to the standard ones. The range-checked
vector, VV eeccttoorr (§2.3.2, §2.4.3.1), is an example of that. The uniformity of container inter-
faces also allows us to specify algorithms independently of individual container types.

4.5 Algorithms [tour3.algorithms]

A data structure, such as a list or a vector, is not very useful on its own. To use one, we
need operations for basic access such as adding and removing elements (as is provided for
lliisstt and vv eeccttoorr). Furthermore, we rarely just store objects in a container. We sort them,
print them, extract subsets, remove elements, search for objects, etc. Consequently, the
standard library provides the most common algorithms for containers in addition to pro-
viding the most common container types. For example, the following sorts a vv eeccttoorr and
places a copy of each unique vv eeccttoorr element on a lliisstt:
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bbooooll ooppeerraattoorr<<((ccoonnsstt EEnnttrryy&& xx,, ccoonnsstt EEnnttrryy&& yy)) //// less than
{{

rreettuurr nn xx..nnaammee<<yy..nnaammee;; //// order Entrys by their Names
}}

vv ooiidd ff((vveeccttoorr<<EEnnttrryy>>&& vveecc,, lliisstt<<EEnnttrryy>>&& llsstt))
{{

ssoorr tt((vveecc..bbeeggiinn(()),,vveecc..eenndd(())));; //// use < for order
uunniiqquuee__ccoopp yy((vveecc..bbeeggiinn(()),,vveecc..eenndd(()),,llsstt..bbeeggiinn(())));; //// don’t copy adjacent equal elements

}}

The standard algorithms are described in Chapter 32. They are expressed in terms of
sequences of elements. A sequence is represented by a pair of iterators specifying the first
element and the one-beyond-the-last element:

elements:

begin() end()iterators:

In the example, ssoorr tt(()) sorts the sequence from vv ee..bbeeggiinn(()) to vv ee..eenndd(()) – which just happens to
be all the elements of a vv eeccttoorr. For writing, you need only to specify the first element to be
written. If more than one element is written, the elements following that initial element
will be overwritten. Thus, to avoid errors, llsstt must have at least as many elements as there
are unique values in vv eecc.

If we wanted to place the unique elements in a new container, we could have written:

lliisstt<<EEnnttrr yy>> ff((vveeccttoorr<<EEnnttrryy>>&& vveecc))
{{

lliisstt<<EEnnttrr yy>> rreess;;
ssoorr tt((vveecc..bbeeggiinn(()),,vveecc..eenndd(())));;
uunniiqquuee__ccoopp yy((vveecc..bbeeggiinn(()),,vveecc..eenndd(()),,bbaacckk__iinnsseerrtteerr((rreess))));; //// append to res
rreettuurr nn rreess;;

}}

A bbaacc kk__iinnsseerr tteerr(()) adds elements at the end of a container, extending the container to make
room for them (§33.2.2). Thus, the standard containers plus bbaacc kk__iinnsseerr tteerr(())s eliminate the
need to use error-prone, explicit C-style memory management using rreeaalllloocc(()) (§31.5.1).
The standard-library lliisstt has a move constructor (§3.3.2 ,§17.5.2) that makes returning rreess
by value efficient (even for lliisstts of thousands of elements).

If you find the pair-of-iterators style of code, such as ssoorr tt((vvee..bbeeggiinn(()),,vvee..eenndd(()))) tedious,
you can define container version of the algorithms and write ssoorr tt((vvee)) (§4.5.6).
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4.5.1 Use of Iterators [tour3.iteruse]

When you first encounter a container, a  few iterators referring to useful elements can be
obtained; bbeeggiinn(()) and eenndd(()) are the best examples of this. In addition, many algorithms
return iterators. For example, the standard algorithm fifinndd looks for a value in a sequence
and returns an iterator to the element found:

bbooooll hhaass__cc((ccoonnsstt ssttrriinngg&& ss,, cchhaarr cc)) //// does s contain the character c?
{{

aauuttoo pp == fifinndd((ss..bbeeggiinn(()),,ss..eenndd(()),,cc));;
iiff ((pp!!==ss..eenndd(())))

rreettuurr nn ttrruuee;;
eellssee

rreettuurr nn ffaallssee;;
}}

Note that fifinndd returns eenndd(()) to indicate ‘‘not found.’’ An equivalent, shorter, definition of
hhaass__cc(()) is:

bbooooll hhaass__cc((ccoonnsstt ssttrriinngg&& ss,, cchhaarr cc)) //// does s contain the character c?
{{

rreettuurr nn fifinndd((ss..bbeeggiinn(()),,ss..eenndd(()),,cc))!!==ss..eenndd(());;
}}

A more interesting exercise would be to find the location of all occurrences of a character
in a string. We can return the set of occurrences as a vv eeccttoorr of ssttrr iinngg iterators. Assuming
that we would like to modify the locations found, we pass a non-const string:

vv eeccttoorr<<ssttrriinngg::::iitteerraattoorr>> fifinndd__aallll((ssttrriinngg&& ss,, cchhaarr cc)) //// find all occurrences of c in s
{{

vv eeccttoorr<<ssttrriinngg::::iitteerraattoorr>> rreess;;
ff oorr ((aauuttoo pp == ss..bbeeggiinn(());; pp!!==ss..eenndd(());; ++++pp))

iiff ((∗∗pp====cc))
rreess ..ppuusshh__bbaacckk((pp));;

rreettuurr nn rreess;;
}}

We iterate through the string using a conventional loop, moving the iterator pp forward one
element at a time using ++++ and looking at the elements using the dereference operator ∗∗.
We could test fifinndd__aallll(()) like this:

vv ooiidd tteesstt(())
{{

ssttrr iinngg mm {{""MMaarryy hhaadd aa lliittttllee llaammbb""}};;
ff oorr ((aauuttoo pp :: fifinndd__aallll((mm,,’’aa’’))))

iiff ((∗∗pp!!==’’aa’’))
cceerrrr <<<< ""aa bbuugg!!\\nn"";;

}}

That call of fifinndd__aallll(()) could be graphically represented like this:
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M a r y h a d a l i t t l e l a m b

The arrows indicate the values of the result vv eeccttoorr.
Iterators and standard algorithms will work equivalently on every standard container

for which their use makes sense. Consequently, we could generalize fifinndd__aallll(()):

tteemmppllaattee<<ttyyppeennaammee CC,, ttyyppeennaammee VV>>
vv eeccttoorr<<ttyyppeennaammee CC::::iitteerraattoorr>> fifinndd__aallll((CC&& cc,, VV vv)) //// find all occurrences of v in c
{{

vv eeccttoorr<<ttyyppeennaammee CC::::iitteerraattoorr>> rreess;;
ff oorr ((aauuttoo pp == cc..bbeeggiinn(());; pp!!==cc..eenndd(());; ++++pp))

iiff ((∗∗pp====vv))
rreess ..ppuusshh__bbaacckk((pp));;

rreettuurr nn rreess;;
}}

The ‘‘ttyyppeennaammee’’ is needed to inform the compiler that CC’s iitteerr aattoorr is supposed to be a type
and not a value of some type, say, the integer 77. We can hide this implementation detail by
introducing a type alias (§3.4.5) for IItteerr aattoorr:

tteemmppllaattee<<ttyyppeennaammee TT>>
uussiinngg IItteerraattoorr<<TT>> == ttyyppeennaammee TT::::iitteerraattoorr;;

tteemmppllaattee<<ttyyppeennaammee CC,, ttyyppeennaammee VV>>
vv eeccttoorr<<IItteerraattoorr<<CC>>>> fifinndd__aallll((CC&& cc,, VV vv)) //// find all occurrences of v in c
{{

vv eeccttoorr<<IItteerraattoorr<<CC>>>> rreess;;
ff oorr ((aauuttoo pp == cc..bbeeggiinn(());; pp!!==cc..eenndd(());; ++++pp))

iiff ((∗∗pp====vv))
rreess ..ppuusshh__bbaacckk((pp));;

rreettuurr nn rreess;;
}}

We can now write:

vv ooiidd tteesstt(())
{{

ssttrr iinngg mm {{""MMaarryy hhaadd aa lliittttllee llaammbb""}};;
ff oorr ((aauuttoo pp :: fifinndd__aallll((mm,,’’aa’’)))) //// p is a str ing::iterator

iiff ((∗∗pp!!==’’aa’’))
cceerrrr <<<< ""ssttrriinngg bbuugg!!\\nn"";;

lliisstt<<ddoouubb llee>> lldd {{11..11,, 22..22,, 33..33,, 11..11}};;
ff oorr ((aauuttoo pp :: fifinndd__aallll((lldd,,11..11))))

iiff ((∗∗pp!!==11..11))
cceerrrr <<<< ""lliisstt bbuugg!!\\nn"";;
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vv eeccttoorr<<ssttrriinngg>> vvss {{ ""rreedd"",, ""bblluuee"",, ""ggrreeeenn"",, ""ggrreeeenn"",, ""oorraannggee"",, ""ggrreeeenn"" }};;
ff oorr ((aauuttoo pp :: fifinndd__aallll((vvss,,""ggrreeeenn""))))

iiff ((∗∗pp!!==""gg rreeeenn""))
cceerrrr <<<< ""vveeccttoorr bbuugg!!\\nn"";;

ff oorr ((aauuttoo pp :: fifinndd__aallll((vvss,,""ggrreeeenn""))))
∗∗pp == ""vveerrtt"";;

//// ...
}}

Iterators are used to separate algorithms and containers. An algorithm operates on its data
through iterators and knows nothing about the container in which the elements are stored.
Conversely, a container knows nothing about the algorithms operating on its elements; all
it does is to supply iterators upon request (e.g., bbeeggiinn(()) and eenndd(())). The result is very gen-
eral and flexible software.

4.5.2 Iterator Types [tour3.iter]

What are iterators really? Any particular iterator is an object of some type. There are,
however, many different iterator types, because an iterator needs to hold the information
necessary for doing its job for a particular container type. These iterator types can be as
different as the containers and the specialized needs they serve. For example, a vv eeccttoorr’s
iterator could be an ordinary pointer, because a pointer is quite a reasonable way of refer-
ring to an element of a vv eeccttoorr:

P i e t H e i nvector:

piterator:

Alternatively, a vv eeccttoorr iterator could be implemented as a pointer to the vv eeccttoorr plus an
index:

P i e t H e i nvector:

(start == p, position == 3)iterator:

Using such an iterator would allow range checking.
A lliisstt iterator must be something more complicated than a simple pointer to an element

because an element of a lliisstt in general does not know where the next element of that lliisstt is.
Thus, a lliisstt iterator might be a pointer to a link:
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link link link link ...list:

piterator:

P i e telements:

What is common for all iterators is their semantics and the naming of their operations.
For example, applying ++++ to any iterator yields an iterator that refers to the next element.
Similarly, ∗∗ yields the element to which the iterator refers. In fact, any object that obeys a
few simple rules like these is an iterator (§33.1.4). Furthermore, users rarely need to know
the type of a specific iterator; each container ‘‘knows’’ its iterator types and makes them
available under the conventional names iitteerr aattoorr and ccoonnsstt__iitteerr aattoorr. For example,
lliisstt<<EEnnttrr yy>>::::iitteerraattoorr is the general iterator type for lliisstt<<EEnnttrr yy>>. We rarely have to worry about
the details of how that type is defined.

4.5.3 Stream Iterators [tour3.ioiterators]

Iterators are a general and useful concept for dealing with sequences of elements in con-
tainers. However, containers are not the only place where we find sequences of elements.
For example, an input stream produces a sequence of values and we write a sequence of
values to an output stream. Consequently, the notion of iterators can be usefully applied to
input and output.

To make an oossttrreeaamm__iitteerr aattoorr, we need to specify which stream will be used and the type
of objects written to it. For example, we can define an iterator that refers to the standard
output stream, ccoouutt:

oossttrreeaamm__iitteerr aattoorr<<ssttrriinngg>> oooo {{ccoouutt}};;

The effect of assigning to ∗∗oooo is to write the assigned value to ccoouutt.. For example:

iinntt mmaaiinn(())
{{

∗∗oooo == ""HHeelllloo,, "";; //// meaning cout<<"Hello, "
++++oooo;;
∗∗oooo == ""wwoorrlldd!!\\nn"";; //// meaning cout<<"wor ld!\n"

}}

This is yet another way of writing the canonical message to standard output. The ++++oooo is
done to mimic writing into an array through a pointer.

Similarly, an iissttrreeaamm__iitteerr aattoorr is something that allows us to treat an input stream as a
read-only container. Again, we must specify the stream to be used and the type of values
expected:

iissttrreeaamm__iitteerr aattoorr<<ssttrriinngg>> iiii {{cciinn}};;

Input iterators are used in pairs representing a sequence, so we must provide an
iissttrreeaamm__iitteerr aattoorr to indicate the end of input. This is the default iissttrreeaamm__iitteerr aattoorr:
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iissttrreeaamm__iitteerr aattoorr<<ssttrriinngg>> eeooss {{}};;

Typically, iissttrreeaamm__iitteerr aattoorrs and oossttrreeaamm__iitteerr aattoorrs are not used directly. Instead, they are pro-
vided as arguments to algorithms. For example, we can write a simple program to read a
file, sort the words read, eliminate duplicates, and write the result to another file:

iinntt mmaaiinn(())
{{

ssttrr iinngg ffrroomm,, ttoo;;
cciinn >>>> ffrroomm >>>> ttoo;; //// get source and target file names

iiffssttrreeaamm iiss {{ffrroomm}};; //// input stream for file "from"
iissttrreeaamm__iitteerr aattoorr<<ssttrriinngg>> iiii {{iiss}};; //// input iterator for stream
iissttrreeaamm__iitteerr aattoorr<<ssttrriinngg>> eeooss {{}};; //// input sentinel

ooffssttrreeaamm ooss{{ttoo}};; //// output stream for file "to"
oossttrreeaamm__iitteerr aattoorr<<ssttrriinngg>> oooo {{ooss,,""\\nn""}};; //// output iterator for stream

vv eeccttoorr<<ssttrriinngg>> bb {{iiii,,eeooss}};; //// b is a vector initialized from input [ii:eos)
ssoorr tt((bb..bbeeggiinn(()),,bb..eenndd(())));; //// sor t the buffer

uunniiqquuee__ccoopp yy((bb..bbeeggiinn(()),,bb..eenndd(()),,oooo));; //// copy buffer to output, discard replicated values

rreettuurr nn !!iiss..eeooff(()) |||| !!ooss;; //// retur n error state (§2.2.1, §37.3)
}}

An iiffssttrreeaamm is an iissttrreeaamm that can be attached to a file, and an ooffssttrreeaamm is an oossttrreeaamm that can
be attached to a file. The oossttrreeaamm__iitteerr aattoorr’s second argument is used to delimit output val-
ues.

Actually, this program is longer than it needs to be. We read the strings into a vv eeccttoorr,
then we ssoorr tt(()) them, and then we write them out eliminating duplicates. A more elegant
solution is not to store duplicates at all. This can be done by keeping the ssttrr iinnggs in a sseett,
which does not keep duplicates and keeps its elements in order (§31.4.3). That way, we
could replace the two lines using a vv eeccttoorr with one using a sseett and replace uunniiqquuee__ccoopp yy(())
with the simpler ccoopp yy(()):

sseett<<ssttrr iinngg>> bb {{iiii,,eeooss}};; //// collect strings from input
ccoopp yy((bb..bbeeggiinn(()),,bb..eenndd(()),,oooo));; //// copy buffer to output

We used the names iiii, eeooss, and oooo only once after their definition, so we could further
reduce the size of the program:

iinntt mmaaiinn(())
{{

ssttrr iinngg ffrroomm,, ttoo;;
cciinn >>>> ffrroomm >>>> ttoo;; //// get source and target file names

iiffssttrreeaamm iiss {{ffrroomm}};; //// input stream for file "from"
ooffssttrreeaamm ooss {{ttoo}};; //// output stream for file "to"
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sseett<<ssttrr iinngg>> bb {{iissttrreeaamm__iitteerraattoorr<<ssttrriinngg>>{{iiss}},,iissttrreeaamm__iitteerraattoorr<<ssttrriinngg>>{{}}}};; //// read input
ccoopp yy((bb..bbeeggiinn(()),,bb..eenndd(()),,oossttrreeaamm__iitteerraattoorr<<ssttrriinngg>>{{ooss,,""\\nn""}}));; //// copy to output

rreettuurr nn !!iiss..eeooff(()) |||| !!ooss;; //// retur n error state (§2.2.1, §37.3)
}}

It is a matter of taste and experience whether or not this last simplification improves read-
ability. If your tastes lean toward the very terse, you can further eliminate the name ooss.

4.5.4 Predicates [tour3.predicates]

In the examples above, the algorithms have simply ‘‘built in’’ the action to be done for
each element of a sequence. However, we often want to make that action a parameter to
the algorithm. For example, the fifinndd algorithm (§32.3) provides a convenient way of look-
ing for a specific value. A more general variant looks for an element that fulfills a speci-
fied requirement, a predicate (§3.4.2). For example, we might want to search a mmaapp for
the first value larger than 4422. A mmaapp allows us to access its elements as a sequence of
(key,value) pairs, so we can search a mmaapp<<ssttrr iinngg,,iinntt>>’s sequence for a ppaaiirr<<ccoonnsstt ssttrriinngg,,iinntt>>
where the iinntt is greater than 4422:

vv ooiidd ff((mmaapp<<ssttrriinngg,,iinntt>>&& mm))
{{

aauuttoo pp == fifinndd__iiff((mm..bbeeggiinn(()),,mm..eenndd(()),,GGrreeaatteerr__tthhaann{{4422}}));;
//// ...

}}

Here, GGrreeaatteerr__tthhaann is a function object (§3.4.3) holding the value (4422) to be compared
against:

ssttrr uucctt GGrreeaatteerr__tthhaann {{
iinntt vvaall;;
GGrreeaatteerr__tthhaann((iinntt vv)) :: vvaall{{vv}} {{ }}
bbooooll ooppeerraattoorr(())((ccoonnsstt ppaaiirr<<ssttrriinngg,,iinntt>>&& rr)) {{ rreettuurrnn rr..sseeccoonndd>>vvaall;; }}

}};;

Alternatively, we could use a lambda expression (§3.4.3):

iinntt ccxxxx == ccoouunntt__iiff((mm..bbeeggiinn(()),, mm..eenndd(()),,
[[]]((ccoonnsstt ppaaiirr<<ssttrriinngg,,iinntt>>&& rr)) {{ rreettuurrnn rr..sseeccoonndd>>4422;; }}));;

4.5.5 Algorithm Overview [tour3.algolist]

What is an algorithm? A general definition of an algorithm is ‘‘a finite set of rules which
gives a sequence of operations for solving a specific set of problems [and] has five impor-
tant features: Finiteness ... Definiteness ... Input ... Output ... Effectiveness’’
[Knuth,1968,§1.1]. In the context of the C++ standard library, an algorithm is a function
template operating on sequences of elements.

The standard library provides dozens of algorithms. The algorithms are defined in
namespace ssttdd and presented in the <<aallggoorr iitthhmm>> header. These standard-library algorithms
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all take sequences as inputs (§4.5). A half-open sequence from bb to ee is referred to as
[bb:ee). Here are a few I hav e found particularly useful:

Selected Standard Algorithms

pp==fifinndd((bb ,,ee,,xx)) pp is the first pp in [bb:ee) so that ∗∗pp====xx
pp==fifinndd__iiff((bb ,,ee,,ff)) pp is the first pp in [bb:ee) so that ff((∗∗pp))====ttrr uuee
nn==ccoouunntt((bb ,,ee,,xx)) nn is the number of elements ∗∗qq in [bb:ee) so that ∗∗qq====xx
nn==ccoouunntt__iiff((bb ,,ee,,ff)) nn is the number of elements ∗∗qq in [bb:ee) so that ff((∗∗qq,,xx))
rreeppllaaccee((bb ,,ee,,vv,,vv22)) Replace elements ∗∗qq in [bb:ee) so that ∗∗qq====vv by vv22
rreeppllaaccee__iiff((bb ,,ee,,ff,,vv22)) Replace elements ∗∗qq in [bb:ee) so that ff((∗∗qq)) by vv22
pp==ccoopp yy((bb,,ee,,oouutt)) Copy [bb:ee) to [oouutt:pp)
pp==ccoopp yy__iiff((bb,,ee,,oouutt,,ff)) Copy elements ∗∗qq from [bb:ee) so that ff((∗∗qq)) to [oouutt:pp)
pp==uunniiqquuee__ccoopp yy((bb,,ee,,oouutt)) Copy [bb:ee) to [oouutt:pp); don’t copy adjacent duplicates
ssoorr tt((bb,,ee)) Sort elements of [bb:ee) using << as the sorting criterion
((pp11,,pp22))==eeqquuaall__rr aannggee((bb,,ee,,vv)) [pp11:pp22) is the subsequence of the sorted sequence [bb:ee)

with the value vv; basically a binary search for vv
pp==mmeerrggee((bb ,,ee,,bb22,,ee22,,oouutt)) Merge two sorted sequences [bb:ee) and [bb22:ee22) into [oouutt:pp)

These algorithms, and many more (see Chapter 32), can be applied to elements of contain-
ers, ssttrr iinnggs, and built-in arrays.

4.5.6 Container Algorithms [tour3.container-algo]

A sequence is defined by a pair of iterators [bbeeggiinn:eenndd). This is general and flexible, but
most often, we apply an algorithm to a sequence that is the contents of a container. For
example:

ssoorr tt((vv..bbeeggiinn(()),,vv..eenndd(())));;

Why don’t we just say ssoorr tt((vv))? We can easily provide that shorthand:

nnaammeessppaaccee EEssttdd {{
uussiinngg nnaammeessppaaccee ssttdd;;

tteemmppllaattee<<ccllaassss CC>>
vv ooiidd ssoorrtt((CC&& cc))
{{

ssoorr tt((cc..bbeeggiinn(()),,cc..eenndd(())));;
}}

The C++ Programming Language, 4th edition ©2013 by Pearson Education, Inc. Reproduced in draft form with the permission of the publisher.
D R A F T



118 A Tour of C++: Containers and Algorithms Chapter 4

tteemmppllaattee<<ccllaassss CC,, ccllaassss PPrreedd>>
vv ooiidd ssoorrtt((CC&& cc,, PPrreedd pp))
{{

ssoorr tt((cc..bbeeggiinn(()),,cc..eenndd(()),,pp));;
}}

//// ...
}}

I put the container versions of ssoorr tt(()) (and other algorithms) into their own namespace EEssttdd
(‘‘extended ssttdd’’) to avoid interfering with other programmers’ uses of and extensions to
ssttdd.

4.6 Advice [tour3.advice]

[1] Don’t reinvent the wheel; use libraries; §4.1.
[2] Don’t believe in magic; understand what your libraries do, how they do it, and at

what cost they do it.
[3] When you have a choice, prefer the standard library over other libraries.
[4] Do not think that the standard library is ideal for everything.
[5] Remember to ##iinncclluuddee the headers for the facilities you use; §4.1.2.
[6] Remember that standard library facilities are defined in namespace ssttdd; §4.1.2.
[7] Prefer ssttrr iinnggs over C-style strings (a cchhaarr∗∗; §2.2.5) §4.2, §4.3.2.
[8] iioossttrreeaamms are type sensitive, type safe, and extensible; §4.3.
[9] Prefer vv eeccttoorr<<TT>>, mmaapp<<KK,,TT>>, and uunnoorrddeerreedd__mmaapp<<KK,,TT>> over TT[[]]; §4.4.
[10] Know your standard containers and their tradeoffs; §4.4.
[11] Use vv eeccttoorr as your default container; §4.4.1.
[12] Prefer compact data structures; §4.4.1.1.
[13] If in doubt, use a range-checked vector (such as VV eecc); §4.4.1.2.
[14] Use ppuusshh__bbaacc kk(()) or bbaacc kk__iinnsseerr tteerr(()) to add elements to a container; §4.4.1, §4.5.
[15] Use ppuusshh__bbaacc kk(()) on a vv eeccttoorr rather than rreeaalllloocc(()) on an array; §4.5.
[16] Catch common exceptions in mmaaiinn(()); §4.4.1.2.
[17] Know your standard algorithms and prefer them over handwritten loops; §4.5.5.
[18] If iterator use get tedious, define container algorithms; §4.5.6.
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5
A Tour of C++: Concurrency and Utilities

Programming is like sex:
It may give some concrete results,

but that is not why we do it.
– apologies to Richard Feynman

• Introduction
• Resource Management

uunniiqquuee__ppttrr and sshhaarreedd__ppttrr
• Concurrency

Tasks and tthhrreeaadds; Passing Arguments; Returning Results; Sharing Data; Communi-
cating Tasks

• Small Utility Components
Time; Type Functions; ppaaiirr and ttuuppllee

• Regular Expressions
• Math

Mathematical Functions and Algorithms; Complex Numbers; Random Numbers;
Vector Arithmetic; Numeric Limits

• Advice

5.1 Introduction [tour4.intro]

From an end-user’s perspective, the ideal standard library would provide components
directly supporting essentially every need. For a giv en application domain, a huge com-
mercial library can come close to that ideal. However, that is not what the C++ standard
library is trying to do. A manageable, universally available, library cannot be everything
to everybody. Instead, the C++ standard library aims to provide components that are
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useful to most people in most application areas. That is, it aims to serve the intersection
of all needs rather than their union. In addition, support for a few widely important appli-
cation areas, such as mathematical computation and text manipulation, have crept in.

5.2 Resource Management [tour4.resources]

One of the key tasks of any nontrivial program is to manage resources. A resource is
something that must be acquired and later (explicitly or implicitly) released. Examples are
memory, locks, sockets, thread handles, and file handles. For a long-running program,
failing to release a resource in a timely manner (‘‘a leak’’) can cause serious performance
degradation and possibly even a miserable crash. Even for short programs, a leak can
become an embarrassment, say by a resource shortage increasing the run time by orders of
magnitude.

The standard library components are designed not to leak resources. To do this, they
rely on the basic language support for resource management using constructor/destructor
pairs to ensure that a resource doesn’t outlive an object responsible for it. The use of a
constructor/destructor pair in VV eeccttoorr to manage the lifetime of its elements is an example
(§3.2.1.2) and all standard-library containers are implemented in similar ways. Impor-
tantly, this approach interacts correctly with error handling using exceptions. For exam-
ple, the technique is used for the standard-library lock classes:

mm uutteexx mm;; //// used to protect access to shared data
//// ...
vv ooiidd ff(())
{{

lloocc kk__gguuaarrdd<<mm uutteexx>> llcckk {{mm}};; //// acquire the mutex m
//// ... manipulate shared data ...

}}

A tthhrreeaadd will not proceed until llcc kk’s constructor has acquired its mm uutteexx, mm (§5.3.4). The
corresponding destructor releases the resource. So, in this example, lloocc kk__gguuaarrdd’s destructor
releases the mm uutteexx when the thread of control leaves ff(()) (through a return, by ‘‘falling off
the end of the function,’’ or through an exception throw).

This is an application of the ‘‘Resource Acquisition Is Initialization’’ technique (RAII;
§3.2.1.2, §13.3). This technique is fundamental to the idiomatic handling of resources in
C++. Containers (such as vv eeccttoorr and mmaapp), ssttrr iinngg, and iioossttrreeaamm manage their resources
(such as file handles and buffers) similarly.

5.2.1 uunniiqquuee__ppttrr and sshhaarreedd__ppttrr [tour4.smart]

The examples so far take care of objects defined in a scope, releasing the resources they
acquire at the exit from the scope, but what about objects allocated on the free store? In
<<mmeemmoorr yy>>, the standard library provides two ‘‘smart pointers’’ to help manage objects on
the free store:

[1] uunniiqquuee__ppttrr to represent unique ownership (§34.3.1)
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[2] sshhaarreedd__ppttrr to represent shared ownership (§34.3.2)
The most basic use of one of these ‘‘smart pointers’’ is to prevent memory leaks caused by
careless programming:

vv ooiidd ff((iinntt ii,, iinntt jj)) //// X* vs. unique_ptr<X>
{{

XX∗∗ pp == nneeww XX;; //// allocate a new X
uunniiqquuee__ppttrr<<XX>> sspp {{nneeww XX}};; //// allocate a new X and give its pointer to unique_ptr
//// ...
iiff ((ii<<9999)) tthhrrooww ZZ{{}};; //// may throw an exception
iiff ((jj<<7777)) rreettuurrnn;; //// may retur n "ear ly"
pp−−>>ddoo__ssoommeetthhiinngg(());; //// may throw an exception
sspp−−>>ddoo__ssoommeetthhiinngg(());; //// may throw an exception
//// ...
ddeelleettee pp;; //// destroy *p

}}

Here, we ‘‘forgot’’ to delete pp if ii<<9999 or if jj<<7777. On the other hand, uunniiqquuee__ppttrr ensures that
its object is properly destroyed whichever way we exit ff(()) (by throwing an exception, by
executing rreettuurr nn, or by ‘‘falling off the end’’).

In this simple case, we could have solved the problem simply by not using a pointer
and not using nnee ww:

vv ooiidd ff((iinntt ii,, iinntt jj)) //// use a local var iable
{{

XX xx;;
//// ...

}}

Unfortunately, overuse of nnee ww (and of pointers and references) seems to be an increasing
problem.

However, when you really need the semantics of pointers, uunniiqquuee__ppttrr is a very light-
weight mechanism with no space or time overhead compared to correct use of a built-in
pointer. Its further uses include passing free-store allocated objects in and out of func-
tions:

uunniiqquuee__ppttrr<<XX>> mmaakkee__XX((iinntt ii))
//// make an X and immediately give it to a unique_ptr

{{
//// check i, etc.
rreettuurr nn uunniiqquuee__ppttrr<<XX>>{{nneeww XX{{ii}}}};;

}}

A uunniiqquuee__ppttrr is a handle to an individual object (or an array) in much the same way that a
vv eeccttoorr is a handle to a sequence of objects. Both control the lifetime of other objects
(using RAII) and both rely on move semantics to make rreettuurr nn simple and efficient.

The sshhaarreedd__ppttrr is similar to uunniiqquuee__ppttrr except that sshhaarreedd__ppttrrs are copied rather than
moved. The sshhaarreedd__ppttrrs for an object share ownership of an object and that object is
destroyed when the last of its sshhaarreedd__ppttrrs is destroyed. For example:
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vv ooiidd ff((sshhaarreedd__ppttrr<<ffssttrreeaamm>>));;
vv ooiidd gg((sshhaarreedd__ppttrr<<ffssttrreeaamm>>));;
vv ooiidd hh((sshhaarreedd__ppttrr<<ffssttrreeaamm>>));;

vv ooiidd uusseerr((ccoonnsstt ssttrriinngg&& nnaammee,, iiooss__bbaassee::::ooppeennmmooddee mmooddee))
{{

sshhaarreedd__ppttrr<<ffssttrreeaamm>> ffpp {{nneeww ffssttrreeaamm((nnaammee,,mmooddee))}};;
iiff ((!!∗∗ffpp)) tthhrrooww NNoo__fifillee{{}};; //// make sure the file was properly opened

ff((ffpp));;
gg((ffpp));;
hh((ffpp));;
//// ...

}}

Now, the file opened by ffpp’s constructor will be closed by the last function to (explicitly or
implicitly) destroy a copy of ffpp. Note that ff(()), gg(()), or hh(()) may spawn a task holding a copy
of ffpp or in some other way store a copy that outlives uusseerr(()). Thus, sshhaarreedd__ppttrr provides a
form of garbage collection that respects the destructor-based resource management of the
memory-managed objects. This is neither cost free nor exorbitantly expensive, but does
make the lifetime of the shared object hard to predict. Use sshhaarreedd__ppttrr only if you actually
need shared ownership.

Given uunniiqquuee__ppttrr and sshhaarreedd__ppttrr, we can implement a complete ‘‘no naked nnee ww’’ policy
(§3.2.1.2) for many programs. However, these ‘‘smart pointers’’ are still conceptually
pointers and therefore only my second choice for resource management – after containers
and other types that manage their resources at a higher conceptual level. In particular,
sshhaarreedd__ppttrrs do not in themselves provide any rules for which of their owners can read
and/or write the shared object. Data races (§41.2.4) and other forms of confusion are not
addressed simply by eliminating the resource management issues.

Where do we use ‘‘smart pointers’’ (such as uunniiqquuee__ppttrr) rather than resource handles
with operations designed specifically for the resource (such as vv eeccttoorr or tthhrreeaadd)? Unsur-
prisingly, the answer is ‘‘when we need pointer semantics.’’

• When we share an object, we need pointers (or references) to refer to the shared
object, so sshhaarreedd__ppttrr becomes the obvious choice (unless there is an obvious single
owner).

• When we refer to a polymorphic object, we need a pointer (or a reference) because
we don’t know the exact type of the object or even its size), so uunniiqquuee__ppttrr becomes
the obvious choice.

• A shared polymorphic object typically requires sshhaarreedd__ppttrrs.
We do not need to use a pointer to return a collection of objects from a function; a con-
tainer that is a resource handle will do that simply and efficiently (§3.3.2).
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5.3 Concurrency [tour4.concurrency]

Concurrency – the execution of several tasks simultaneously – is widely used to improve
throughput (by using several processors for a single computation) or to improve respon-
siveness (by allowing one part of a program to progress while another is waiting for a
response). All modern programming languages provide support for this. The support pro-
vided by the C++ standard library is a portable and type-safe variant of what has been
used in C++ for more than 20 years and is almost universally supported by modern hard-
ware. The standard-library support is primarily aimed at supporting systems-level concur-
rency rather than directly providing sophisticated higher-level concurrency models; those
can be supplied as libraries built using the standard-library facilities.

The standard library directly supports concurrent execution of multiple threads in a sin-
gle address space. To allow that, C++ provides a suitable memory model (§41.2) and a set
of atomic operations (§41.3). However, most users will see concurrency only in terms of
the standard library and libraries built on top of that. This section briefly gives examples
of the main standard-library concurrency support facilities: tthhrreeaadds, mm uutteexxes, lloocc kk(()) opera-
tions, ppaacc kkaaggeedd__ttaasskks, and ffuuttuurrees. These features are built directly upon what operating
systems offer and do not incur performance penalties compared with those.

5.3.1 Tasks and tthhrreeaadds [tour4.thread]

We call a computation that can potentially be executed concurrently with other computa-
tions a task. A thread is the system-level representation of a task in a program. A task to
be executed concurrently with other tasks is launched by constructing a ssttdd::::tthhrreeaadd (found
in <<tthhrreeaadd>>) with the task as its argument. A task is a function or a function object:

vv ooiidd ff(());; //// function

ssttrr uucctt FF {{ //// function object
vv ooiidd ooppeerraattoorr(())(());; //// F’s call operator (§3.4.3)

}};;

vv ooiidd uusseerr(())
{{

tthhrreeaadd tt11 {{ff}};; //// f() executes in separate thread
tthhrreeaadd tt22 {{FF(())}};; //// F()() executes in separate thread

tt11..jjooiinn(());; //// wait for t1
tt22..jjooiinn(());; //// wait for t2

}}

The jjooiinn(())s ensure that we don’t exit uusseerr(()) until the threads have completed. To ‘‘join’’
means to ‘‘wait for the thread to terminate.’’

Threads of a program share a single address space. In this, threads differ from pro-
cesses, which generally do not directly share data. Since threads share an address space,
they can communicate through shared objects (§5.3.4). Such communication is typically
controlled by locks or other mechanisms to prevent data races (uncontrolled concurrent
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access to a variable).
Programming concurrent tasks can be very tricky. Consider possible implementations

of ff and FF:

vv ooiidd ff(()) {{ ccoouutt <<<< ""HHeelllloo "";; }}

ssttrr uucctt FF {{
vv ooiidd ooppeerraattoorr(())(()) {{ ccoouutt <<<< ""PPaarraalllleell WWoorrlldd!!\\nn"";; }}

}};;

This is an example of a bad error: Here, ff and FF(()) each use the object ccoouutt without any form
of synchronization. The resulting output would be unpredictable and could vary between
different executions of the program because the order of execution of the individual opera-
tions in the two tasks is not defined. The program may crash because ccoouutt was corrupted
or produce ‘‘odd’’ output, such as

PP aaHHeerraalllllllleell oo WWoorrlldd!!

When defining tasks of a concurrent program, our aim is to keep tasks completely separate
except where they communicate in simple and obvious ways. The simplest way of think-
ing of a concurrent task is as a function that happens to run concurrently with its caller.
For that to work, we just have to pass arguments, get a result back, and make sure that
there is no use of shared data in between (no data races).

5.3.2 Passing Arguments [tour4.passing]

Typically, a task needs data to work upon. We can easily pass data (or pointers or refer-
ences to the data) as arguments. Consider:

vv ooiidd ff((vveeccttoorr<<ddoouubbllee>>&& vv));; //// function do something with v

ssttrr uucctt FF {{ //// function object: do something with v
vv eeccttoorr<<ddoouubbllee>>&& vv;;
FF((vv eeccttoorr<<ddoouubbllee>>&& vvvv)) ::vv{{vvvv}} {{ }}
vv ooiidd ooppeerraattoorr(())(());; //// application operator ; §3.4.3

}};;

iinntt mmaaiinn(())
{{

vv eeccttoorr<<ddoouubbllee>> ssoommee__vveecc {{11,,22,,33,,44,,55,,66,,77,,88,,99}};;
vv eeccttoorr<<ddoouubbllee>> vveecc22 {{1100,,1111,,1122,,1133,,1144}};;

tthhrreeaadd tt11 {{ff,,ssoommee__vveecc}};; //// f(some_vec) executes in a separate thread
tthhrreeaadd tt22 {{FF{{vveecc22}}}};; //// F(vec2)() executes in a separate thread

tt11..jjooiinn(());;
tt22..jjooiinn(());;

}}

Obviously, FF{{vv eecc22}} saves a reference to the argument vector in FF. FF can now use that array
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and hopefully no other task accesses vv eecc22 while FF is executing. Passing vv eecc22 by value
would eliminate that risk.

The initialization with {{ff ,,ssoommee__vv eecc}} uses a tthhrreeaadd variadic template constructor that can
accept an arbitrary sequence of arguments (§28.6). The compiler checks that the first
argument can be invoked giv en the following arguments and builds the necessary function
object to pass to the thread. Thus, if FF::::ooppeerr aattoorr(())(()) and ff(()) perform the same algorithm, the
handling of the two tasks are roughly equivalent: in both cases, a function object is con-
structed for the tthhrreeaadd to execute.

5.3.3 Returning Results [tour4.results]

In the example in §5.3.2, I pass the arguments by non-ccoonnsstt reference. I only do that if I
expect the task to modify the value of the data referred to (§7.7). That’s a somewhat
sneaky, but not uncommon, way of returning a result. A less obscure technique is to pass
the input data by ccoonnsstt reference and to pass the location of a place to deposit the result as
a separate argument:

vv ooiidd ff((ccoonnsstt vveeccttoorr<<ddoouubbllee>>&& vv,, ddoouubbllee∗∗ rreess));; //// take input from v; place result in *res

ccllaassss FF {{
ppuubb lliicc::

FF((ccoonnsstt vveeccttoorr<<ddoouubbllee>>&& vvvv,, ddoouubbllee∗∗ pp)) ::vv{{vvvv}},, rreess{{pp}} {{ }}
vv ooiidd ooppeerraattoorr(())(());; //// place result in *res

pprr iivvaattee::
ccoonnsstt vveeccttoorr<<ddoouubbllee>>&& vv;; //// source of input
ddoouubb llee∗∗ rreess;; //// target for output

}};;

iinntt mmaaiinn(())
{{

vv eeccttoorr<<ddoouubbllee>> ssoommee__vveecc;;
vv eeccttoorr<<ddoouubbllee>> vveecc22;;
//// ...

ddoouubb llee rreess11;;
ddoouubb llee rreess22;;

tthhrreeaadd tt11 {{ff,,ssoommee__vveecc,,&&rreess11}};; //// f(some_vec,&res1) executes in a separate thread
tthhrreeaadd tt22 {{FF{{vveecc22,,&&rreess22}}}};; //// F{vec2,&res2}() executes in a separate thread

tt11..jjooiinn(());;
tt22..jjooiinn(());;

ccoouutt <<<< rreess11 <<<< ’’ ’’ <<<< rreess22 <<<< ’’\\nn’’;;
}}

I don’t consider returning results through arguments particularly elegant, so I return to this
topic in §5.3.5.1.
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5.3.4 Sharing Data [tour4.sharing]

Sometimes tasks need to share data. In that case, the access has to be synchronized so that
at most one task at a time has access. Experienced programmers will recognize this as a
simplification (e.g., there is no problem with many tasks simultaneously reading
immutable data), but consider how to ensure that at most one task at a time has access to a
given set of objects.

The fundamental element of the solution is a mm uutteexx, a ‘‘mutual exclusion object.’’ A
tthhrreeaadd acquires a mutex using a lloocc kk(()) operation:

mm uutteexx mm;; //// controlling mutex
iinntt sshh;; //// shared data

vv ooiidd ff(())
{{

lloocc kk__gguuaarrdd<<mm uutteexx>> llcckk {{mm}};; //// acquire mutex
sshh ++== 77;; //// manipulate shared data

}} //// release mutex implicitly

The lloocc kk__gguuaarrdd’s constructor acquires the mutex (through a call mm..lloocc kk(())). If another thread
has already acquired the mutex, the thread waits (‘‘blocks’’) until the other thread com-
pletes its access. Once a thread has completed its access to the shared data, the lloocc kk__gguuaarrdd
releases the mm uutteexx (with a call mm..uunnlloocc kk(())). The mutual exclusion and locking facilities are
found in <<mm uutteexx>>.

The correspondence between the shared data and a mm uutteexx is conventional: The pro-
grammer simply has to know which mm uutteexx is supposed to correspond to which data. Obvi-
ously, this is error-prone, and equally obviously we try to make the correspondence clear
through various language means. For example:

ccllaassss RReeccoorrdd {{
ppuubb lliicc::

mm uutteexx rrmm;;
//// ...

}};;

It doesn’t take a genius to guess that for a RReeccoorrdd called rreecc, rreecc..rr mm is a mm uutteexx that you are
supposed to acquire before accessing the other data of rreecc, though a comment or a better
name might have helped a reader.

It is not uncommon to need to simultaneously access several resources to perform
some action. This can lead to deadlock. For example, if tthhrreeaadd11 acquires mm uutteexx11 and then
tries to acquire mm uutteexx22 while tthhrreeaadd22 acquires mm uutteexx22 and then tries to acquire mm uutteexx11, then
neither task will ever proceed further. The standard library offers help in the form of an
operation for acquiring several locks simultaneously:
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vv ooiidd ff(())
{{

//// ...
lloocc kk__gguuaarrdd<<mm uutteexx>> llcckk11 {{mm11,,ddeeffeerr__lloocckk}};; //// defer_lock: don’t yet try to acquire the mutex
lloocc kk__gguuaarrdd<<mm uutteexx>> llcckk22 {{mm22,,ddeeffeerr__lloocckk}};;
lloocc kk__gguuaarrdd<<mm uutteexx>> llcckk33 {{mm33,,ddeeffeerr__lloocckk}};;
//// ...
lloocc kk((llcc kk11,,llcc kk22,,llcc kk33));; //// acquire all three locks
//// ... manipulate shared data ...

}} //// implicitly release all mutexes

This lloocc kk(()) will only proceed after acquiring all its mm uutteexx arguments and will never block
(‘‘go to sleep’’) while holding a mm uutteexx. The destructors for the individual lloocc kk__gguuaarrdds
ensure that the mm uutteexxes are released when a tthhrreeaadd leaves the scope.

Communicating through shared data is pretty low lev el. In particular, the programmer
has to devise ways of knowing what work has and has not been done by various tasks. In
that regard, use of shared data is inferior to the notion of call and return. On the other
hand, some people are convinced that sharing must be more efficient than copying argu-
ments and returns. That can indeed be so when large amounts of data are involved, but
locking and unlocking are relatively expensive operations. On the other hand, modern
machines are very good at copying data, especially compact data, such as vv eeccttoorr elements.
So don’t choose shared data for communication because of ‘‘efficiency’’ without thought
and preferably not without measurement.

5.3.4.1 Waiting for Events [tour4.condition]

Sometimes, a tthhrreeaadd needs to wait for some kind of external event, such as another tthhrreeaadd
completing a task or a certain amount of time having passed. The simplest ‘‘event’’ is
simply time passing. Consider:

uussiinngg nnaammeessppaaccee ssttdd::::cchhrroonnoo;; //// see §35.2

aauuttoo tt00 == hhiigghh__rreessoolluuttiioonn__cclloocckk::::nnooww(());;
tthhiiss__tthhrreeaadd::::sslleeeepp__ff oorr((mmiilllliisseeccoonnddss{{2200}}));;
aauuttoo tt11 == hhiigghh__rreessoolluuttiioonn__cclloocckk::::nnooww(());;
ccoouutt <<<< nnaannoosseeccoonnddss((tt11−−tt00))..ccoouunntt(()) <<<< "" nnaannoosseeccoonnddss ppaasssseedd\\nn"";;

Note that I didn’t even hav e to launch a tthhrreeaadd; by default, tthhiiss__tthhrreeaadd refers to the one and
only thread (§42.2.6).

See _tour4.time_ and §35.2 before trying anything more complicated than this with
time. The time facilities are found in <<cchhrroonnoo>>.

The basic support for communicating using external events is provided by ccoonnddii--
ttiioonn__vv aarriiaabbllees found in <<ccoonnddiittiioonn__vv aarriiaabbllee>> (§42.3.4). A ccoonnddiittiioonn__vv aarriiaabbllee is a mechanism
allowing one tthhrreeaadd to wait for another. In particular, it allows a tthhrreeaadd to wait for some
condition (often called an event) to occur as the result of work done by other tthhrreeaadds.

Consider the classical example of two tthhrreeaadds communicating by passing messages
through a qquueeuuee. For simplicity, I declare the qquueeuuee and the mechanism for avoiding race
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conditions on that qquueeuuee global to the producer and consumer:

ccllaassss MMeessssaaggee {{ //// object to be communicated
//// ...

}};;

qquueeuuee<<MMeessssaaggee>> mmqquueeuuee;; //// the queue of messages
ccoonnddiittiioonn__vv aarriiaabbllee mmccoonndd;; //// the var iable communicating events
mm uutteexx mmmmuutteexx;; //// the locking mechanism

The types qquueeuuee, ccoonnddiittiioonn__vv aarriiaabbllee, and mm uutteexx are provided by the standard library.
The ccoonnssuummeerr(()) reads and processes MMeessssaaggees:

vv ooiidd ccoonnssuummeerr(())
{{

wwhhiillee((ttrr uuee)) {{
uunniiqquuee__lloocc kk<<mm uutteexx>> llcckk{{mmmmuutteexx}};; //// acquire mmutex
mmccoonndd..ww aaiitt((llcckk));; //// release lck and wait;

//// re-acquire lck upon wakeup
aauuttoo mm == mmqquueeuuee..ttoopp(());; //// get the message
mmqquueeuuee ..ppoopp(());;
llcc kk..uunnlloocc kk(());; //// release lck
//// ... process m ...

}}
}}

Here, I explicitly protect the operations on the qquueeuuee and on the ccoonnddiittiioonn__vv aarriiaabbllee with a
uunniiqquuee__lloocc kk on the mm uutteexx. Waiting on ccoonnddiittiioonn__vv aarriiaabbllee releases its lock argument until the
wait is over (so that the queue is non-empty) and then reacquires it.

The corresponding pprroodduucceerr looks like this:

vv ooiidd pprroodduucceerr(())
{{

wwhhiillee((ttrr uuee)) {{
MMeessssaaggee mm;;
//// ... fill the message ...
uunniiqquuee__lloocc kk<<mm uutteexx>> llcckk {{mmmmuutteexx}};; //// protect operations
mmqquueeuuee ..ppuusshh((mm));;
mmccoonndd..nnoottiiffyy__oonnee(());; //// notify

}} //// release lock (at end of scope)
}}

Using ccoonnddiittiioonn__vv aarriiaabbllees supports many forms of elegant and efficient sharing, but can be
rather tricky (§42.3.4).

5.3.5 Communicating Tasks [tour4.task]

The standard library provides a few facilities to allow programmers to operate at the con-
ceptual level of tasks (work to potentially be done concurrently) rather than directly at the
lower level of threads and locks:
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[1] ffuuttuurree and pprroommiissee for returning a value from a task spawned on a separate thread
[2] ppaacc kkaaggeedd__ttaasskk to help launch tasks and connect up the mechanisms for returning

a result
[3] aassyynncc(()) for launching of a task in a manner very similar to calling a function.

These facilities are found in <<ffuuttuurree>>.

5.3.5.1 ffuuttuurree and pprroommiissee [tour4.future]

The important point about ffuuttuurree and pprroommiissee is that they enable a transfer of a value
between two tasks without explicit use of a lock; ‘‘the system’’ implements the transfer
efficiently. The basic idea is simple: When a task wants to pass a value to another, it puts
the value into a pprroommiissee. Somehow, the implementation makes that value appear in the
corresponding ffuuttuurree, from which it can be read (typically by the launcher of the task). We
can represent this graphically:

future promise

value

task1: task2:

ggeett(())
sseett__vv aalluuee(())

sseett__ee xxcceeppttiioonn(())

If we have a ffuuttuurree<<XX>> called ffxx, we can ggeett(()) a value of type XX from it:

XX vv == ffxx..ggeett(());; //// if necessary, wait for the value to get computed

If the value isn’t there yet, our thread is blocked until it arrives. If the value couldn’t be
computed, ggeett(()) might throw an exception (from the system or transmitted from the task
from which we were trying to ggeett(()) the value).

The main purpose of a pprroommiissee is to provide simple ‘‘put’’ operations (called sseett__vv aalluuee(())
and sseett__ee xxcceeppttiioonn(())) to match ffuuttuurree’s ggeett(()). The names ‘‘future’’ and ‘‘promise’’ are histori-
cal; please don’t blame me. They are yet another fertile source of puns.

If you have a pprroommiissee and need to send a result of type XX to a ffuuttuurree, you can do one of
two things: pass a value or pass an exception. For example:

vv ooiidd ff((pprroommiissee<<XX>>&& ppxx)) //// a task: place the result in px
{{

//// ...
ttrr yy {{

XX rreess;;
//// ... compute a value for res ...
ppxx..sseett__vv aalluuee((rreess));;

}}
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ccaattcchh ((......)) {{ //// oops: couldn’t compute res
//// pass the exception to the future’s thread:
ppxx..sseett__ee xxcceeppttiioonn((ccuurrrreenntt__eexxcceeppttiioonn(())));;

}}
}}

The ccuurrrreenntt__ee xxcceeppttiioonn(()) refers to the caught exception (§30.4.1.2).
To deal with an exception transmitted through a ffuuttuurree, the caller of ggeett(()) must be pre-

pared to catch it somewhere. For example:

vv ooiidd gg((ffuuttuurree<<XX>>&& ffxx)) //// a task: get the result from fx
{{

//// ...
ttrr yy {{

XX vv == ffxx..ggeett(());; //// if necessary, wait for the value to get computed
//// ... use v ...

}}
ccaattcchh ((......)) {{ //// oops: someone couldn’t compute v

//// ... handle error ...
}}

}}

5.3.5.2 ppaacc kkaaggeedd__ttaasskk [tour4.packaged]

How do we get a ffuuttuurree into the task that needs a result and the corresponding pprroommiissee into
the thread that should produce that result? The ppaacc kkaaggeedd__ttaasskk type is provided to simplify
setting up tasks connected with ffuuttuurrees and pprroommiissees to be run on tthhrreeaadds. A ppaacc kkaaggeedd__ttaasskk
provides wrapper code to put the return value or exception from the task into a pprroommiissee
(like the code shown in §5.3.5.1). If you ask it, the ppaacc kkaaggeedd__ttaasskk will give you the corre-
sponding ffuuttuurree. For example, we can set up two tasks to each add half of the elements of
a vv eeccttoorr<<ddoouubbllee>> using the standard-library aaccccuumm uullaattee(()) (§3.4.2, §40.6):

ddoouubb llee aaccccuumm((ddoouubbllee∗∗ bbeegg,, ddoouubbllee ∗∗ eenndd,, ddoouubbllee iinniitt))
//// compute the sum of [beg:end) starting with the initial value init;

{{
rreettuurr nn aaccccuummuullaattee((bbeegg,,eenndd,,iinniitt));;

}}

ddoouubb llee ccoommpp22((vveeccttoorr<<ddoouubbllee>>&& vv))
{{

uussiinngg TTaasskk__ttyyppee == ddoouubbllee((ddoouubbllee∗∗,,ddoouubb llee∗∗,,ddoouubb llee));; //// type of task

ppaacc kkaaggeedd__ttaasskk<<TT aasskk__ttyyppee>> pptt00 {{aaccccuumm}};; //// package the task (i.e., accum)
ppaacc kkaaggeedd__ttaasskk<<TT aasskk__ttyyppee>> pptt11 {{aaccccuumm}};;

ffuuttuurree<<ddoouubb llee>> ff00 {{pptt00..ggeett__ffuuttuurree(())}};; //// get hold of pt0’s future
ffuuttuurree<<ddoouubb llee>> ff11 {{pptt11..ggeett__ffuuttuurree(())}};; //// get hold of pt1’s future
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ddoouubb llee∗∗ fifirrsstt == &&vv[[00]];;
tthhrreeaadd tt11 {{mmoovvee((pptt00)),,fifirrsstt,,fifirrsstt++vv..ssiizzee(())//22,,00}};; //// star t a thread for pt0
tthhrreeaadd tt22 {{mmoovvee((pptt11)),,fifirrsstt++vv..ssiizzee(())//22,,fifirrsstt++vv..ssiizzee(()),,00}};; //// star t a thread for pt1

//// ...

rreettuurr nn ff00..ggeett(())++ff11..ggeett(());; //// get the results
}}

The ppaacc kkaaggeedd__ttaasskk template takes the type of the task as its template argument (here
TT aasskk__ttyyppee, an alias for ddoouubb llee((ddoouubbllee∗∗,,ddoouubb llee∗∗,,ddoouubb llee))) and the task as its constructor argu-
ment (here, aaccccuumm). The mmoo vvee(()) operations are needed because a ppaacc kkaaggeedd__ttaasskk cannot be
copied.

Please note the absence of explicit mention of locks in this code: we are able to con-
centrate on tasks to be done, rather than on the mechanisms used to manage their commu-
nication. The two tasks will be run on separate threads and thus potentially in parallel.

5.3.5.3 aassyynncc(()) [tour4.async]

The line of thinking I have pursued in this chapter is the one I believe to be the simplest
yet still among the most powerful: Treat a task as a function that may happen to run con-
currently with other tasks. It is far from the only model supported by the C++ standard
library, but it serves well for a wide range of needs. More subtle and tricky models, e.g.,
styles of programming relying on shared memory, can be used as needed.

The standard-library function aassyynncc(()) provides a very simple way of executing a task
asynchronously:

ddoouubb llee ccoommpp44((vveeccttoorr<<ddoouubbllee>>&& vv))
//// spawn many tasks if v is large enough

{{
iiff ((vv..ssiizzee(())<<1100000000)) rreettuurrnn aaccccuumm((vv..bbeeggiinn(()),,vv..eenndd(()),,00..00));;

aauuttoo vv00 == &&vv[[00]];;
aauuttoo sszz == vv..ssiizzee(());;

aauuttoo ff00 == aassyynncc((aaccccuumm,,vv00,,vv00++sszz//44,,00..00));; //// first quarter
aauuttoo ff11 == aassyynncc((aaccccuumm,,vv00++sszz//44,,vv00++sszz//22,,00..00));; //// second quarter
aauuttoo ff22 == aassyynncc((aaccccuumm,,vv00++sszz//22,,vv00++sszz∗∗33//44,,00..00));; //// third quarter
aauuttoo ff33 == aassyynncc((aaccccuumm,,vv00++sszz∗∗33//44,,vv00++sszz,,00..00));; //// four th quar ter

rreettuurr nn ff00..ggeett(())++ff11..ggeett(())++ff22..ggeett(())++ff33..ggeett(());; //// collect and combine the results
}}

Basically, aassyynncc(()) separates the ‘‘call part’’ of a function call from the ‘‘get the result part,’’
and separates both from the actual execution of the task. Using aassyynncc(()), you don’t hav e to
think about threads and locks. Instead, you think just in terms of tasks that potentially
compute their results asynchronously. There is an obvious limitation: Don’t even think of
using aassyynncc(()) for tasks that share resources needing locking – with aassyynncc(()) you don’t even
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know how many tthhrreeaadds will be used because that’s up to aassyynncc(()) to decide based on what
it knows about the system resources available at the time of a call. For example, aassyynncc(())
may check whether any idle cores (processors) are available before deciding how many
tthhrreeaadds to use.

Please note that aassyynncc(()) is not just a mechanism specialized for parallel computation for
increased performance. For example, it can also be used to spawn a task for getting infor-
mation from a user, leaving the ‘‘main program’’ active with something else (§42.4.6).

5.4 Small Utility Components [tour4.utilities]

Not all standard-library components come as part of obviously labeled facilities, such as
‘‘containers’’ or ‘‘I/O.’’ This section gives a few examples of small, widely useful compo-
nents:

• cclloocc kk and dduurr aattiioonn for measuring time.
• Type functions, such as iitteerr aattoorr__ttrraaiittss and iiss__aarr iitthhmmeettiicc, for gaining information about

types.
• ppaaiirr and ttuuppllee for representing small potentially heterogeneous sets of values.

The point here is that a function or a type need not be complicated or closely tied to a
mass of other functions and types to be useful. Such library components mostly act as
building blocks for more powerful library facilities, including other components of the
standard library.

5.4.1 Time [tour4.clock]

The standard library provides facilities for dealing with time. For example, here is the
basic way of timing something:

uussiinngg nnaammeessppaaccee ssttdd::::cchhrroonnoo;; //// see §35.2

aauuttoo tt00 == hhiigghh__rreessoolluuttiioonn__cclloocckk::::nnooww(());;
ddoo__ww oorrkk(());;
aauuttoo tt11 == hhiigghh__rreessoolluuttiioonn__cclloocckk::::nnooww(());;
ccoouutt <<<< dduurraattiioonn__ccaasstt<<mmiilllliisseeccoonnddss>>((tt11−−tt00))..ccoouunntt(()) <<<< ""mmsseecc\\nn"";;

The clock returns a ttiimmee__ppooiinntt (a point in time). Subtracting two ttiimmee__ppooiinntts giv es a dduurr aattiioonn
(a period of time). Various clocks give their results in various units of time (the clock I
used measures nnaannoosseeccoonnddss), so it is usually a good idea to convert a dduurr aattiioonn into a known
unit. That’s what dduurr aattiioonn__ccaasstt does.

The standard-library facilities for dealing with time are found in the subnamespace
ssttdd::::cchhrroonnoo in <<cchhrroonnoo>> (§35.2).

Don’t make statements about ‘‘efficiency’’ of code without first doing time measure-
ments. Guesses about performance are most unreliable.
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5.4.2 Type Functions [tour4.typetraits]

A type function is a function that is evaluated at compile-time given a type as its argument
or returning a type. The standard library provides a variety of type functions to help
library implementers and programmers in general to write code that take advantage of
aspects of the language, the standard library, and code in general.

For numerical types, nn uummeerr iicc__lliimmiittss from <<lliimmiittss>> presents useful information (§5.6.5).
For example:

ccoonnssttee xxpprr flflooaatt mmiinn == nnuummeerriicc__lliimmiittss<<flflooaatt>>::::mmiinn(());; //// smallest positive float (§40.2)

Similarly, information about sizes can be extracted by the built-in ssiizz eeooff operator (§2.2.2).
For example:

ccoonnssttee xxpprr iinntt sszzii == ssiizzeeooff((iinntt));; //// the number of bytes in an int

Such type functions are part of C++’s mechanisms for compile-time computation that
allow tighter type checking and better performance than would otherwise have been possi-
ble. Use of such features is often called metaprogramming or (when templates are
involved) template metaprogramming (Chapter 28). Here, I just present two facilities pro-
vided by the standard library: iitteerr aattoorr__ttrraaiittss (§5.4.2.1) and type predicates (§5.4.2.2).

5.4.2.1 iitteerr aattoorr__ttrraaiittss [tour4.iteratortraits]

The standard-library ssoorr tt(()) takes a pair of iterators supposed to define a sequence (§4.5).
Furthermore, those iterators must offer random access to that sequence, that is, they must
be random-access iterators. Some containers, such as ff oorrwwaarrdd__lliisstt, do not offer that. In
particular, a ff oorrwwaarrdd__lliisstt is a singly-linked list so subscripting would be expensive and there
is no reasonable way to refer back to a previous element. However, like most containers,
ff oorrwwaarrdd__lliisstt offers forward iterators that can be used to traverse the sequence by algorithms
and ff oorr-statements (§33.1.1).

The standard library provides a mechanism, iitteerr aattoorr__ttrraaiittss that allows us to check which
kind of iterator is supported. Given that, we can improve the range ssoorr tt(()) from §4.5.6 to
accept either a vv eeccttoorr or a ff oorrwwaarrdd__lliisstt. For example:

vv ooiidd tteesstt((vveeccttoorr<<ssttrriinngg>>&& vv,, ffoorrwwaarrdd__lliisstt<<iinntt>>&& llsstt))
{{

ssoorr tt((vv));; //// sor t the vector
ssoorr tt((llsstt));; //// sor t the singly-linked list

}}

The techniques needed to make that work are generally useful.
First, I write two helper functions that take an extra argument indicating whether they

are to be used for random-access iterators or forward iterators. The version for random-
access iterators is trivial:
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tteemmppllaattee<<ttyyppeennaammee RRaann>> //// for random-access iterators
vv ooiidd ssoorrtt__hheellppeerr((RRaann bbeegg,, RRaann eenndd,, rraannddoomm__aacccceessss__iitteerraattoorr__ttaagg))

//// we can subscript into [beg:end)
{{

ssoorr tt((bbeegg,,eenndd));; //// just sort it

}}

The version for forward iterators is almost as simple; just copy the list into a vv eeccttoorr, sort,
and copy back again:

tteemmppllaattee<<ttyyppeennaammee FFoorr>> //// for forward iterators
vv ooiidd ssoorrtt__hheellppeerr((FFoorr bbeegg,, FFoorr eenndd,, ffoorrwwaarrdd__iitteerraattoorr__ttaagg))

//// we can traverse [beg:end)
{{

vv eeccttoorr<<ddeeccllttyyppee((∗∗bbeegg))>> vv {{bbeegg,,eenndd}};; //// initialize a vector from [beg:end)
ssoorr tt((vv..bbeeggiinn(()),,vv..eenndd(())));;
ccoopp yy((vv..bbeeggiinn(()),,vv..eenndd(()),,bbeegg));; //// copy the elements back

}}

The ddeeccllttyyppee(()) is a built-in type function that returns the declared type of its argument
(§6.3.6.3). Thus, vv is a vv eeccttoorr<<XX>> where XX is the element type of the input sequence.

The real ‘‘type magic’’ is in the selection of helper functions:

tteemmppllaattee<<ccllaassss CC))
vv ooiidd ssoorrtt((CC&& cc))
{{

uussiinngg IItteerr == IItteerraattoorr__ttyyppee<<CC>>;;
ssoorr tt__hheellppeerr((cc..bbeeggiinn(()),,cc..eenndd(()),,IItteerraattoorr__ccaatteeggoorryy<<IItteerr>>{{}}));;

}}

Here, I use two type functions: IItteerr aattoorr__ttyyppee<<CC>> returns the iterator type of CC (that is, CC::::iitteerr--
aattoorr) and then IItteerr aattoorr__ccaatteeggoorryy<<IItteerr>>{{}} constructs a ‘‘tag’’ value indicating the kind of itera-
tor provided:

• ssttdd::::rr aannddoomm__aacccceessss__iitteerraattoorr__ttaagg if CC’s iterator supports random access.
• ssttdd::::ff oorrwwaarrdd__iitteerraattoorr__ttaagg if CC’s iterator supports forward iteration.

Given that, we can select between the two sorting algorithms at compile time. This tech-
nique, called tag dispatch is one of several used in the standard library and elsewhere to
improve flexibility and performance.

The standard-library support for techniques for using iterators, such as tag dispatch,
comes in the form of a simple class template iitteerr aattoorr__ttrraaiittss from <<iitteerr aattoorr>> (§33.1.3). This
allows simple definitions of the type functions used in ssoorr tt(()):

tteemmppllaattee<<ttyyppeennaammee CC>>
uussiinngg IItteerraattoorr__ttyyppee == ttyyppeennaammee CC::::iitteerraattoorr;; //// C’s iterator type

tteemmppllaattee<<ttyyppeennaammee IItteerr>>
uussiinngg IItteerraattoorr__ccaatteeggoorryy == ttyyppeennaammee ssttdd::::iitteerraattoorr__ttrraaiittss<<IItteerr>>::::iitteerraattoorr__ccaatteeggoorryy;; //// Iter’s categor y

If you don’t want to know what kind of ‘‘compile-time type magic’’ is used to provide the
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standard-library features, you are free to ignore facilities such as iitteerr aattoorr__ttrraaiittss. But then
you can’t use the techniques they support to improve your own code.

5.4.2.2 Type Predicates [tour4.typepredicates]

A standard-library type predicate is a simple type function that answers a fundamental
question about types. For example:

bbooooll bb11 == IIss__aarriitthhmmeettiicc<<iinntt>>(());; //// yes, int is an arithmetic type
bbooooll bb22 == IIss__aarriitthhmmeettiicc<<ssttrriinngg>>(());; //// no, std::str ing is not an arithmetic type

These predicates are found in <<ttyyppee__ttrr aaiittss>> and described in §35.4.1. Other examples are
iiss__ccllaassss, iiss__ppoodd, iiss__lliitteerr aall__ttyyppee, hhaass__vviirr ttuuaall__ddeessttrruuccttoorr, and iiss__bbaassee__ooff. They are most useful
when we write templates. For example:

tteemmppllaattee<<ttyyppeennaammee SSccaallaarr>>
ccllaassss ccoommppllee xx {{

SSccaallaarr rree ,, iimm;;
ppuubb lliicc::

ssttaattiicc__aasssseerr tt((IIss__aarriitthhmmeettiicc<<SSccaallaarr>>(()),, ""SSoorrrryy,, II oonnllyy ssuuppppoorrtt ccoommpplleexx ooff aarriitthhmmeettiicc ttyyppeess""));;
//// ...

}};;

To improve readability compared to using the standard library directly, I defined a type
function:

tteemmppllaattee<<ttyyppeennaammee TT>>
ccoonnssttee xxpprr bbooooll IIss__aarriitthhmmeettiicc(())
{{

rreettuurr nn ssttdd::::iiss__aarriitthhmmeettiicc<<TT>>::::vvaalluuee ;;
}}

Older programs use ::::vv aalluuee directly instead of (()), but I consider that quite ugly and it
exposes implementation details.

5.4.3 ppaaiirr and ttuuppllee [tour4.pair]

Often, we need some data that is just data; that is, a collection of values, rather than an
object of a class with a well-defined semantics and an invariant for its value (§2.4.3.2,
§13.4). In such cases, we could define a simple ssttrr uucctt with an appropriate set of appropri-
ately named members. Alternatively, we could let the standard library write the definition
for us. For example, the standard-library algorithm eeqquuaall__rr aannggee (§32.6.1) returns a ppaaiirr of
iterators specifying a sub-sequence meeting a predicate:

tteemmppllaattee<<ttyyppeennaammee FFoorrwwaarrdd__iitteerraattoorr,, ttyyppeennaammee TT,, ttyyppeennaammee CCoommppaarree>>
ppaaiirr<<FF oorrwwaarrdd__iitteerraattoorr,,FFoorrwwaarrdd__iitteerraattoorr>>
eeqquuaall__rr aannggee((FFoorrwwaarrdd__iitteerraattoorr fifirrsstt,, FFoorrwwaarrdd__iitteerraattoorr llaasstt,, ccoonnsstt TT&& vvaall,, CCoommppaarree ccmmpp));;

Given a sorted sequence [fifirrsstt:llaasstt), eeqquuaall__rr aannggee(()) will return the ppaaiirr representing the subse-
quence that matches the predicate ccmmpp. We can use that to search in a sorted sequence of
RReeccoorrdds:
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vv ooiidd ff((ccoonnsstt vveeccttoorr<<RReeccoorrdd>>&& vv))
{{

//// assume that v is sorted on its "name" field
aauuttoo eerr == eeqquuaall__rraannggee((vv..bbeeggiinn(()),,vv..eenndd(()),, ""RReegg"",,

[[]]((ccoonnsstt RReeccoorrdd&& rr11,, ccoonnsstt RReeccoorrdd&& rr22)) {{ rreettuurrnn rr11..nnaammee====rr22..nnaammee;;}}
));;

ff oorr ((aauuttoo pp == eerr..fifirrsstt;; pp!!==eerr..sseeccoonndd;; ++++pp)) //// pr int all equal records
ccoouutt <<<< ∗∗pp;; //// assume that << is defined for Record

}}

The first member of a ppaaiirr is called fifirrsstt and the second member is called sseeccoonndd. This
naming is not particularly creative and may look a bit odd at first, but such consistent nam-
ing is a boon when we want to write generic code.

The standard-library ppaaiirr (from <<uuttiillttyy>>) is quite frequently used in the standard library
and elsewhere. A ppaaiirr provides operators, such as ==, ====, and <<, if its elements do. The
mmaakk ee__ppaaiirr(()) function makes it easy to create a ppaaiirr without explicitly mentioning its type
(§34.2.4.1). For example:

vv ooiidd ff((vveeccttoorr<<ssttrriinngg>>&& vv))
{{

aauuttoo pppp == mmaakkee__ppaaiirr((vv..bbeeggiinn(()),,22));; //// pp is a pair<vector<str ing>::iterator,int>
//// ...

}}

If you need more than two elements (or less), you can use ttuuppllee (from <<uuttiilliittyy>>; §34.2.4.2).
A ttuuppllee is a heterogeneous sequence of elements; for example:

ttuuppllee<<ssttrr iinngg,,iinntt,,ddoouubbllee>> tt22((""SSiilldd"",,112233,, 33..1144));; //// the type is explicitly specified

aauuttoo tt == mmaakkee__ttuuppllee((ssttrriinngg((""HHeerrrriinngg"")),,1100,, 11..2233));; //// the type is deduced
//// t is a tuple<str ing,int,double>

ssttrr iinngg ss == ggeett<<00>>((tt));; //// get first element of tuple
iinntt xx == ggeett<<11>>((tt));;
ddoouubb llee dd == ggeett<<22>>((tt));;

The elements of a ttuuppllee are numbered (starting with zero), rather than named the way ele-
ments of ppaaiirrs are (fifirrsstt and sseeccoonndd). To get compile-time selection of elements, I must
unfortunately use the ugly ggeett<<11>>((tt)), rather than ggeett((tt,,11)) or tt[[11]] (§28.5.2).

Like ppaaiirrs, ttuuppllees can be assigned and compared if their elements can be.
A ppaaiirr is common in interfaces because often we want to return more than one value,

such as a result and an indicator of the quality of that result. It is less common to need
three or more parts to a result, so ttuuppllees are more often found in the implementations of
generic algorithms.
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5.5 Regular Expressions [tour4.regex]

Regular expressions are a powerful tool for text processing. They provide a way to simply
and tersely describe patterns in text (e.g., a U.S. ZIP code such as TTXX 7777884455, or an ISO-
style date, such as 22000099−−0066−−0077) and to efficiently find such patterns in text. In <<rreeggee xx>>, the
standard library provides support for regular expressions in the form of the ssttdd::::rreeggee xx class
and its supporting functions. To giv e a taste of the style of the rreeggee xx library, let us define
and print a pattern:

rreeggee xx ppaatt ((RR""((\\ww{{22}}\\ss∗∗\\dd{{55}}((−−\\dd{{44}}))??))""));; //// ZIP code pattern: XXddddd-dddd and var iants
ccoouutt <<<< ""ppaatttteerrnn:: "" <<<< ppaatt <<<< ’’\\nn’’;;

People who have used regular expressions in just about any language will find
\\ww{{22}}\\ss∗∗\\dd{{55}}((−−\\dd{{44}}))?? familiar. It specifies a pattern starting with two letters \\ww{{22}} optionally
followed by some space \\ss∗∗ followed by five digits \\dd{{55}} and optionally followed by a dash
and four digits −−\\dd{{44}}. If you are not familiar with regular expressions, this may be a good
time to learn about them ([Stroustrup 2009], [Maddock,2009], [Friedl,1997]). Regular
expressions are summarized in §37.1.1.

To express the pattern, I used a raw string literal (§7.3.2.1) starting with a RR""(( and ter-
minated by ))"" . This allows backslashes and quotes to be represented in the string without
the use of special notation.

The simplest way of using a pattern is to search for it in a stream:

iinntt lliinneennoo == 00;;
ff oorr ((ssttrriinngg lliinnee;; ggeettlliinnee((cciinn,,lliinnee));;)) {{ //// read into line buffer

++++lliinneennoo;;
ssmmaattcchh mmaattcchheess;; //// matched strings go here
iiff ((rreeggeexx__sseeaarrcchh((lliinnee,,mmaattcchheess,,ppaatt)))) //// search for pat in line

ccoouutt <<<< lliinneennoo <<<< "":: "" <<<< mmaattcchheess[[00]] <<<< ’’\\nn’’;;
}}

The rreeggee xx__sseeaarrcchh((lliinnee,,mmaattcchheess,,ppaatt)) searches the lliinnee for anything that matches the regular
expression stored in ppaatt and if it finds any matches, it stores them in mmaattcchheess. If no match
was found, rreeggee xx__sseeaarrcchh((lliinnee,,mmaattcchheess,,ppaatt)) returns ff aallssee. The mmaattcchheess variable is of type
ssmmaattcchh. The ‘‘s’’ stands for ‘‘sub’’ and an ssmmaattcchh is a vv eeccttoorr of sub-matches. The first ele-
ment, here mmaattcchheess[[00]], is the complete match.

For a more complete description see Chapter 37.

5.6 Math [tour4.math]

C++ wasn’t designed primarily with numerical computation in mind. However, C++ is
heavily used for numerical computation and the standard library reflects that.

5.6.1 Mathematical Functions and Algorithms [tour4.stdmath]

In <<ccmmaatthh>>, we find the ‘‘usual mathematical functions,’’ such as ssqqrr tt(()), lloogg(()), and ssiinn(()) for
arguments of type flflooaatt, ddoouubb llee, and lloonngg ddoouubb llee (§40.3). Their complex number versions
are found in <<ccoommppllee xx>> (§40.4).
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In <<nn uummeerr iicc>> we find a small set of generalized numerical algorithms, such as aaccccuumm uu--
llaattee(()). For example:

lliisstt<<ddoouubb llee>> llsstt {{11,, 22,, 33,, 44,, 55,, 66 ,, 99999999..9999999999}};;
aauuttoo ss == aaccccuummuullaattee((llsstt..bbeeggiinn(()),,llsstt..eenndd(()),,00..00));;
ccoouutt <<<< ss <<<< ’’\\nn’’;;

These algorithms work for every standard-library sequence and can have operations sup-
plied as arguments (§40.6).

5.6.2 Complex Numbers [tour4.complex]

The standard library supports a family of complex number types along the lines of the
ccoommppllee xx class described in §2.3. To support complex numbers where the scalars are single-
precision floating-point numbers (flflooaatts), double-precision floating-point numbers (ddoouu--
bb llees), etc., the standard library ccoommppllee xx is a template:

tteemmppllaattee<<ttyyppeennaammee SSccaallaarr>>
ccllaassss ccoommppllee xx {{
ppuubb lliicc::

ccoommppllee xx((ccoonnsstt SSccaallaarr&& rree =={{}},, ccoonnsstt SSccaallaarr&& iimm =={{}}));;
//// ...

}};;

The usual arithmetic operations and the most common mathematical functions are sup-
ported for complex numbers. For example:

vv ooiidd ff((ccoommpplleexx<<flflooaatt>> flfl,, ccoommpplleexx<<ddoouubbllee>> ddbb))
{{

ccoommppllee xx<<lloonngg ddoouubbllee>> lldd {{flfl++ssqqrrtt((ddbb))}};;
ddbb ++== flfl∗∗33;;
flfl == ppooww((11//flfl,,22));;
//// ...

}}

The ssqqrr tt(()) and ppoo ww(()) (exponentiation) functions are among the usual mathematical func-
tions defined in <<ccoommppllee xx>>. For more details, see §40.4.

5.6.3 Random Numbers [tour4.random]

Random numbers are useful in many contexts, such as testing, games, simulation, and
security. The diversity of application areas is reflected in the wide selection of random
number generators provided by the standard library in <<rr aannddoomm>>. A random number gen-
erator consists of two parts:

[1] an engine that produces a sequence of random or pseudo-random values.
[2] a distribution that maps those values into a mathematical distribution in a range.

Examples of distributions are uunniiff oorrmm__iinntt__ddiissttrriibbuuttiioonn (where all integers produced are
equally likely), nnoorr mmaall__ddiissttrriibbuuttiioonn (‘‘the bell curve’’), and ee xxppoonneennttiiaall__ddiissttrriibbuuttiioonn (exponen-
tial growth); each for some specified range. For example:
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uussiinngg mmyy__eennggiinnee == ddeeffaauulltt__rraannddoomm__eennggiinnee;; //// type of engine
uussiinngg mmyy__ddiissttrriibbuuttiioonn == uunniiffoorrmm__iinntt__ddiissttrriibbuuttiioonn<<>>;; //// type of distribution

mm yy__eennggiinnee rree {{}};; //// the default engine
mm yy__ddiissttrriibbuuttiioonn oonnee__ttoo__ssiixx {{11,,66}};; //// distr ibution that maps to the ints 1..6
aauuttoo ddiiccee == bbiinndd((oonnee__ttoo__ssiixx,,rree));; //// make a generator

iinntt xx == ddiiccee(());; //// roll the dice: x becomes a value in [1:6]

The standard-library function bbiinndd(()) makes a function object that will invoke its first argu-
ment (here, oonnee__ttoo__ssiixx) giv en its second argument (here, rree) as its argument (§33.5.1).
Thus a call ddiiccee(()) is equivalent to a call oonnee__ttoo__ssiixx((rree)).

Thanks to its uncompromising attention to generality and performance one expert has
deemed the standard-library random number component ‘‘what every random number
library wants to be when it grows up.’’ Howev er, it can hardly be deemed ‘‘novice
friendly.’’ The uussiinngg statements makes what is being done a bit more obvious. Instead, I
could just have written:

aauuttoo ddiiccee == bbiinndd((uunniiffoorrmm__iinntt__ddiissttrriibbuuttiioonn<<>>{{11,,66}},, ddeeffaauulltt__rraannddoomm__eennggiinnee{{}}));;

Which version is the more readable depends entirely on the context and the reader.
For novices (of any background) the fully general interface to the random number

library can be a serious obstacle. A simple uniform random number generator is often suf-
ficient to get started. For example:

RRaanndd__iinntt rrnndd {{11,,1100}};; //// make a random number generator for [1:10]
iinntt xx == rrnndd(());; //// x is a number in [1:10]

So, how could we get that? We hav e to get something like ddiiccee(()) inside a class RRaanndd__iinntt:

ccllaassss RRaanndd__iinntt {{
ppuubb lliicc::

RRaanndd__iinntt((iinntt llooww,, iinntt hhiigghh)) ::ddiisstt{{llooww,,hhiigghh}} {{ }}
iinntt ooppeerraattoorr(())(()) {{ rreettuurrnn rr(());; }}

pprr iivvaattee::
ddeeff aauulltt__rraannddoomm__eennggiinnee rree;;
uunniiff oorrmm__iinntt__ddiissttrriibbuuttiioonn<<>> ddiisstt;;
aauuttoo rr == bbiinndd((ddiisstt,,rree));;

}};;

That definition is still ‘‘expert level,’’ but the use of RRaanndd__iinntt(()) is manageable in the first
week of a C++ course for novices. For example:

iinntt mmaaiinn(())
{{

RRaanndd__iinntt rrnndd {{00,,99}};; //// make a unifor m random number generator

vv eeccttoorr<<iinntt>> mmnn((1100));; //// make a vector of size 10
ff oorr ((iinntt ii==00;; ii!!==550000;; ++++ii))

++++mmnn[[rr nndd(())]];; //// fill mn with the frequencies of numbers [0:9]
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ff oorr ((iinntt ii == 00;; ii!!==mmnn..ssiizzee(());; ++++ii)) {{ //// wr ite out a bar graph
ccoouutt <<<< ii <<<< ’’\\tt’’;;
ff oorr ((iinntt jj==00;; jj!!==mmnn[[ii]];; ++++jj)) ccoouutt <<<< ’’∗∗’’;;
ccoouutt <<<< eennddll;;

}}
}}

The output is a (reassuringly boring) uniform distribution (with reasonable statistical vari-
ation):

00 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
11 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
22 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
33 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
44 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
55 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
66 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
77 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
88 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
99 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

There is no standard graphics library for C++, so I use ‘‘ASCII graphics.’’ Obviously,
there are lots of open source and commercial graphics and GUI libraries for C++, but in
this book I’ll restrict myself to ISO standard facilities.

For more information about random numbers, see §40.7.

5.6.4 Vector Arithmetic [tour4.valarray]

The vv eeccttoorr described in §4.4.1 was designed to be a general mechanism for holding values,
to be flexible, and to fit into the architecture of containers, iterators, and algorithms. How-
ev er, it does not support mathematical vector operations. Adding such operations to vv eeccttoorr
would be easy, but its generality and flexibility precludes optimizations that are often con-
sidered essential for serious numerical work. Consequently, the standard library provides
(in <<vv aallaarrrraayy>>) a vv eeccttoorr-like template, called vv aallaarrrraayy, that is less general and more amenable
to optimization for numerical computation:

tteemmppllaattee<<ttyyppeennaammee TT>>
ccllaassss vvaallaarrrr aayy {{

//// ...
}};;

The usual arithmetic operations and the most common mathematical functions are sup-
ported for vv aallaarrrraayys. For example:
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vv ooiidd ff((vvaallaarrrraayy<<ddoouubbllee>>&& aa11,, vvaallaarrrraayy<<ddoouubbllee>>&& aa22))
{{

vv aallaarrrraayy<<ddoouubbllee>> aa == aa11∗∗33..1144++aa22//aa11;; //// numer ic array operators *, +, /, and =
aa22 ++== aa11∗∗33..1144;;
aa == aabbss((aa));;
ddoouubb llee dd == aa22[[77]];;
//// ...

}}

For more details, see §40.5. In particular, vv aallaarrrraayy offers stride access to help implement
multidimensional computations.

5.6.5 Numeric Limits [tour4.limits]

In <<lliimmiittss>>, the standard library provides classes that describe the properties of built-in
types – such as the maximum exponent of a flflooaatt or the number of bytes in an iinntt; see
§40.2. For example, we can assert that a cchhaarr is signed:

ssttaattiicc__aasssseerr tt((nnuummeerriicc__lliimmiittss<<cchhaarr>>::::iiss__ssiiggnneedd,,""uunnssiiggnneedd cchhaarraacctteerrss!!""));;
ssttaattiicc__aasssseerr tt((110000000000<<nnuummeerriicc__lliimmiittss<<iinntt>>::::mmaaxx(()),,""ssmmaallll iinnttss!!""));;

Note that the second assert (only) works because nn uummeerr iicc__lliimmiittss<<iinntt>>::::mmaaxx(()) is a ccoonnssttee xxpprr
function (§2.2.3, §10.4).

5.7 Advice [tour4.advice]

[1] Use resource handles to manage resources (RAII); §5.2.
[1] Use uunniiqquuee__ppttrr to refer to objects of polymorphic type;§5.2.1.
[2] Use sshhaarreedd__ppttrr to refer to shared objects;§5.2.1.
[3] Use type-safe mechanisms for concurrency; §5.3.
[4] Minimize the use of shared data; §5.3.4.
[5] Don’t choose shared data for communication because of ‘‘efficiency’’ without

thought and preferably not without measurement; §5.3.4.
[6] Think in terms of concurrent tasks, rather than threads; §5.3.5.
[7] A library doesn’t hav e to be large or complicated to be useful; §5.4.
[8] Time your programs before making claims about efficiency; §5.4.1.
[9] You can write code to explicitly depend of properties of types; §5.4.2.
[10] Use regular expressions for simple pattern matching §5.5.
[11] Don’t try to do serious numeric computation using only the bare language; use

libraries; §5.6.
[12] Properties of numeric types are accessible through nn uummeerr iicc__lliimmiittss; §5.6.5.
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