
cheat sheet

Getting started with Maven

For more awesome cheat sheetsvisit rebellabs.org!

Useful command line options
-DskipTests=true compiles the tests, but skips
running them

-Dmaven.test.skip=true skips compiling the tests
and does not run them

-T - number of threads:
 -T 4 is a decent default
 -T 2C - 2 threads per CPU

-rf, --resume-from resume build from the
specified project

-pl, --projects makes Maven build only specified
modules and not the whole project

-am, --also-make makes Maven figure out what
modules out target depends on and build them too

-o, --offline work offline

-X, --debug enable debug output

-P, --activate-profiles comma-delimited list
of profiles to activate

-U, --update-snapshots forces a check for updated
dependencies on remote repositories

-ff, --fail-fast stop at first failure

Create Java project
mvn archetype:generate
-DgroupId=org.yourcompany.project
-DartifactId=application

Create web project
mvn archetype:generate
-DgroupId=org.yourcompany.project
-DartifactId=application
-DarchetypeArtifactId=maven-archetype-webapp

Create archetype from existing project
mvn archetype:create-from-project

Main phases
clean — delete target directory
validate — validate, if the project is correct
compile — compile source code, classes stored
in target/classes
test — run tests
package — take the compiled code and package it in its
distributable format, e.g. JAR, WAR
verify — run any checks to verify the package is valid
and meets quality criteria
install — install the package into the local repository
deploy — copies the final package to the remote repository

Help plugin — used to get relative information about a
project or the system.
mvn help:describe describes the attributes of a plugin
mvn help:effective-pom displays the effective POM
as an XML for the current build, with the active profiles
factored in.

Dependency plugin — provides the capability to
manipulate artifacts.
mvn dependency:analyze analyzes the dependencies
of this project
mvn dependency:tree prints a tree of dependencies

Compiler plugin — compiles your java code.
Set language level with the following configuration:
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</
 artifactId>
 <version>3.6.1</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
</plugin>

Version plugin — used when you want to manage
the versions of artifacts in a project's POM.

Wrapper plugin — an easy way to ensure
a user of your Maven build has everything
that is necessary.

Spring Boot plugin — compiles your
Spring Boot app, build an executable fat jar.

Exec — amazing general purpose plugin,
can run arbitrary commands :)

Essential plugins

Central
Plugins

Dependencies

~/.m2/settings.xml
Local Repository

compile

test

package

maven-compiler-plugin compiler:compile

maven-jar-plugin jar:jar

https://zeroturnaround.com/rebellabs/
http://zeroturnaround.com/software/jrebel/
http://maven.apache.org/plugins/maven-help-plugin/
http://maven.apache.org/plugins/maven-dependency-plugin/
http://maven.apache.org/plugins/maven-dependency-plugin/
https://maven.apache.org/plugins/maven-compiler-plugin/
https://maven.apache.org/plugins/maven-compiler-plugin/
http://www.mojohaus.org/versions-maven-plugin/
https://github.com/takari/maven-wrapper
http://docs.spring.io/spring-boot/docs/current/maven-plugin/
http://docs.spring.io/spring-boot/docs/current/maven-plugin/
http://www.mojohaus.org/exec-maven-plugin/

Git Cheat Sheet

Create a Repository
From scratch -- Create a new local
repository
$ git init [project name]

Download from an existing repository
$ git clone my_url

SynchronizeMake a change

Observe your Repository
List new or modified files not yet
committed
$ git status

Show the changes to files not yet staged
$ git diff

Show the changes to staged files
$ git diff --cached

Show all staged and unstaged
file changes
$ git diff HEAD

Show the changes between two
commit ids
$ git diff commit1 commit2

List the change dates and authors
for a file
$ git blame [file]

Show the file changes for a commit
id and/or file
$ git show [commit]:[file]

Show full change history
$ git log

Show change history for file/directory
including diffs
$ git log -p [file/directory]

Stages the file, ready for commit
$ git add [file]

Stage all changed files, ready for commit
$ git add .

Commit all staged files to versioned history
$ git commit -m “commit message”

Commit all your tracked files to
versioned history
$ git commit -am “commit message”

Unstages file, keeping the file changes
$ git reset [file]

Revert everything to the last commit
$ git reset --hard

Get the latest changes from origin
(no merge)
$ git fetch

Fetch the latest changes from origin
and merge
$ git pull

Fetch the latest changes from origin
and rebase
$ git pull --rebase

Push local changes to the origin
$ git push

Working with Branches
List all local branches
$ git branch

List all branches, local and remote
$ git branch -av

Switch to a branch, my_branch,
and update working directory
$ git checkout my_branch

Create a new branch called new_branch
$ git branch new_branch

Delete the branch called my_branch
$ git branch -d my_branch

Merge branch_a into branch_b
$ git checkout branch_b
$ git merge branch_a

Tag the current commit
$ git tag my_tag

Finally!
When in doubt, use git help
$ git command --help

Or visit https://training.github.com/
for official GitHub training.

https://training.github.com/
http://zeroturnaround.com/software/jrebel/
https://zeroturnaround.com/rebellabs/

How fast are your collections?

Collection class Random access
by index / key

Search /
Contains Insert Remember, not all operations are equally fast. Here’s a reminder

of how to treat the Big-O complexity notation:

O(1) - constant time, really fast, doesn’t depend on the
size of your collection

O(log(n)) - pretty fast, your collection size has to be
extreme to notice a performance impact

O(n) - linear to your collection size: the larger your
collection is, the slower your operations will be

ArrayList O(1) O(n) O(n)

HashSet O(1) O(1) O(1)

HashMap O(1) O(1) O(1)

TreeMap O(log(n)) O(log(n)) O(log(n))

Java Collections Cheat Sheet

Notable Java collections
libraries

Fastutil
http://fastutil.di.unimi.it/
Fast & compact type-specific collections for Java
Great default choice for collections of primitive
types, like int or long. Also handles big
collections with more than 231 elements well.

Guava
https://github.com/google/guava
Google Core Libraries for Java 6+
Perhaps the default collection library for Java
projects. Contains a magnitude of convenient
methods for creating collection, like fluent
builders, as well as advanced collection types.

Eclipse Collections
https://www.eclipse.org/collections/
Features you want with the collections you need
Previously known as gs-collections, this library
includes almost any collection you might
need: primitive type collections, multimaps,
bidirectional maps and so on.

JCTools
https://github.com/JCTools/JCTools
Java Concurrency Tools for the JVM.
If you work on high throughput concurrent
applications and need a way to increase your
performance, check out JCTools.

What can your collection do for you?

Collection class Thread-safe alternative

Your data Operations on your collections

Individual
elements

Key-value
pairs

Duplicate
element
support

Primitive
support

Order of iteration Performant
‘contains’

check

Random access

FIFO Sorted LIFO By key By value By index

HashMap ConcurrentHashMap

HashBiMap (Guava)
Maps.synchronizedBiMap

(new HashBiMap())

ArrayListMultimap
(Guava)

Maps.synchronizedMultiMap
(new ArrayListMultimap())

LinkedHashMap
Collections.synchronizedMap

(new LinkedHashMap())

TreeMap ConcurrentSkipListMap

Int2IntMap (Fastutil)

ArrayList CopyOnWriteArrayList

HashSet
Collections.newSetFromMap

(new ConcurrentHashMap<>())

IntArrayList (Fastutil)

PriorityQueue PriorityBlockingQueue

ArrayDeque ArrayBlockingQueue

* O(log(n)) complexity, while all others are O(1) - constant time ** when using Queue interface methods: offer() / poll()

*

**

*

**

**

http://fastutil.di.unimi.it/
https://github.com/google/guava
https://zeroturnaround.com/rebellabs/
http://zeroturnaround.com/software/jrebel/

Java Generics cheat sheet

Basics

Intersection types

For more awesome cheat sheetsvisit rebellabs.org!

Generics don’t exist at runtime!

class Pair<T1, T2> { /* ... */ }
-- the type parameter section, in angle
brackets, specifies type variables.

Type parameters are substituted when
objects are instantiated.

Pair<String, Long> p1 = new
 Pair<String, Long> ("RL", 43L);

Avoid verbosity with the diamond operator:
Pair<String, Long> p1 =
 new Pair<>("RL", 43L);

<T extends Object &
 Comparable<? super T>> T
max(Collection<? extends T> coll)

The return type here is Object!

Compiler generates the bytecode
for the most general method only.

Producer Extends Consumer Super (PECS)

Wildcards
Collection<Object> - heterogenous,
any object goes in.
Collection<?> - homogenous collection
of arbitrary type.

Avoid using wildcards in return types!

Method Overloading
String f(Object s) {
 return "object";
}
String f(String s) {
 return "string";
}
<T> String generic(T t) {
 return f(t);
}

If called generic("string") returns "object".

Collections.copy(List<? super T> dest, List<? extends T> src)

src -- contains elements of type T or its subtypes.

dest -- accepts elements, so defined to use T or its supertypes.

Consumers are contravariant (use super). Producers are covariant (use extends).

Recursive generics
Recursive generics add constraints to
your type variables. This helps the compiler
to better understand your types and API.

interface Cloneable<T extends
Cloneable<T>> {
 T clone();
}

Now cloneable.clone().clone()
will compile.

Covariance
List<Number> > ArrayList<Integer>

Collections are
not covariant!

http://zeroturnaround.com/software/jrebel/
https://zeroturnaround.com/rebellabs/

http://zeroturnaround.com/software/jrebel/
https://zeroturnaround.com/rebellabs/

Terminal operations
. Return concrete types or produce a side effect.
. Eagerly executed.

Function Output When to use

reduce concrete type to cumulate elements

collect list, map or set to group elements

forEach side effect to perform a side effect
on elements

Common examples include:

Stream examples
Get the unique surnames in uppercase of the first 15 book
authors that are 50 years old or over.
 library.stream()
 .map(book -> book.getAuthor())
 .filter(author -> author.getAge() >= 50)
 .distinct()
 .limit(15)
 .map(Author::getSurname)
 .map(String::toUpperCase)
 .collect(toList());

Compute the sum of ages of all female authors younger than 25.
 library.stream()
 .map(Book::getAuthor)
 .filter(a -> a.getGender() == Gender.FEMALE)
 .map(Author::getAge)
 .filter(age -> age < 25)
 .reduce(0, Integer::sum):

Intermediate operations
. Always return streams.

Function Preserves
count

Preserves
type

Preserves
order

map

filter

distinct

sorted

peek

Common examples include:

. Lazily executed.

BROUGHT TO YOU BY

jrebel.com
https://zeroturnaround.com/rebellabs/

JVM Options cheat sheet

Standard Options

For more awesome cheat sheetsvisit rebellabs.org!

$ java
List all standard options.

-Dblog=RebelLabs
Sets a ‘blog’ system property to ‘RebelLabs’.
Retrieve/set it during runtime like this:

System.getProperty("blog");
//RebelLabs

System.setProperty("blog", "RL");

-javaagent:/path/to/agent.jar
Loads the java agent in agent.jar.

-agentpath:pathname
Loads the native agent library specified by
the absolute path name.

-verbose:[class/gc/jni]
Displays information about each loaded
class/gc event/JNI activity.

Advanced OptionsNon-Standard Options
$ java -X
List all non-standard options.

-Xint
Runs the application in interpreted-only
mode.

-Xbootclasspath:path
Path and archive list of boot class files.

-Xloggc:filename
Log verbose GC events to filename.

-Xms1g
Set the initial size (in bytes) of the heap.

-Xmx8g
Specifies the max size (in bytes) of the heap.

-Xnoclassgc
Disables class garbage collection.

-Xprof
Profiles the running program.

BEHAVIOR

-XX:+UseConcMarkSweepGC
Enables CMS garbage collection.

-XX:+UseParallelGC
Enables parallel garbage collection.

-XX:+UseSerialGC
Enables serial garbage collection.

-XX:+UseG1GC
Enables G1GC garbage collection.

-XX:+FlightRecorder (requires
-XX:+UnlockCommercialFeatures)
Enables the use of the Java Flight Recorder.

DEBUGGING

-XX:ErrorFile=file.log
Save the error data to file.log.

-XX:+HeapDumpOnOutOfMemory
Enables heap dump when
OutOfMemoryError is thrown.

-XX:+PrintGC
Enables printing messages during
garbage collection.

-XX:+TraceClassLoading
Enables Trace loading of classes.

-XX:+PrintClassHistogram
Enables printing of a class instance histogram
after a Control+C event (SIGTERM).

PERFORMANCE
-XX:MaxPermSize=128m (Java 7 or earlier)
Sets the max perm space size (in bytes).

-XX:ThreadStackSize=256k
Sets Thread Stack Size (in bytes).
(Same as -Xss256k)

-XX:+UseStringCache
Enables caching of commonly
allocated strings.

-XX:G1HeapRegionSize=4m
Sets the sub-division size of G1 heap
(in bytes).

-XX:MaxGCPauseMillis=n
Sets a target for the maximum GC
pause time.

-XX:MaxNewSize=256m
Max size of new generation (in bytes).

XX:+AggressiveOpts
Enables the use of aggressive performance
optimization features.

-XX:OnError="<cmd args>”
Run user-defined commands
on fatal error.

https://zeroturnaround.com/rebellabs/
http://zeroturnaround.com/software/jrebel/

Regex cheat sheet

Character classes

For more awesome cheat sheetsvisit rebellabs.org!

[abc] matches a or b, or c.
[^abc] negation, matches everything except a, b, or c.
[a-c] range, matches a or b, or c.
[a-c[f-h]] union, matches a, b, c, f, g, h.
[a-c&&[b-c]] intersection, matches b or c.
[a-c&&[^b-c]] subtraction, matches a.

Useful Java classes & methods
PATTERN
A pattern is a compiler representation of a regular expression.

Pattern compile(String regex)
Compiles the given regular expression into a pattern.

Pattern compile(String regex, int flags)
Compiles the given regular expression into a pattern
with the given flags.

boolean matches(String regex)
Tells whether or not this string matches the given
regular expression.

String[] split(CharSequence input)
Splits the given input sequence around matches of
this pattern.

String quote(String s)
Returns a literal pattern String for the specified String.

Predicate<String> asPredicate()
Creates a predicate which can be used to match a string.

Predefined character classes
. Any character.
\d A digit: [0-9]
\D A non-digit: [^0-9]
\s A whitespace character: [\t\n\x0B\f\r]
\S A non-whitespace character: [^\s]
\w A word character: [a-zA-Z_0-9]
\W A non-word character: [^\w]

Boundary matches
^ The beginning of a line.
$ The end of a line.
\b A word boundary.
\B A non-word boundary.
\A The beginning of the input.
\G The end of the previous match.
\Z The end of the input but for the final terminator, if any.
\z The end of the input.

MATCHER
An engine that performs match operations on a character
sequence by interpreting a Pattern.

boolean matches()
Attempts to match the entire region against the pattern.

boolean find()
Attempts to find the next subsequence of the input
sequence that matches the pattern.

int start()
Returns the start index of the previous match.

int end()
Returns the offset after the last character matched.

Logical operations
XY X then Y.
X|Y X or Y.

Greedy - matches the longest matching group.
Reluctant - matches the shortest group.
Possessive - longest match or bust (no backoff).

Greedy Reluctant Possessive Description

X? X?? X?+ X, once or not at all.

X* X*? X*+ X, zero or more times.

X+ X+? X++ X, one or more times.

X{n} X{n}? X{n}+ X, exactly n times.

X{n,} X{n,}? X{n,}+ X, at least n times.

X{n,m} X{n,m}? X{n,m}+ X, at least n but
not more than m times.

Groups & backreferences
A group is a captured subsequence of characters which may
be used later in the expression with a backreference.

(...) - defines a group.
\N - refers to a matched group.

(\d\d) - a group of two digits.
(\d\d)/\1- two digits repeated twice.
\1 - refers to the matched group.

Pattern flags
Pattern.CASE_INSENSITIVE - enables case-insensitive
matching.
Pattern.COMMENTS - whitespace and comments starting
with # are ignored until the end of a line.
Pattern.MULTILINE - one expression can match
multiple lines.
Pattern.UNIX_LINES - only the '\n' line terminator
is recognized in the behavior of ., ^, and $.

Quantifiers

https://zeroturnaround.com/rebellabs/
http://zeroturnaround.com/software/jrebel/

Markdown Cheat Sheet

CHEAT SHEETS / WEB / PAGE 1

Ralph Mason, Author Paragraphs (Core Markdown)

Paragraphs don’t require markup, but make sure:

• There's a line break before and after it
• There are no spaces or tabs at the start of it

Headings (Core Markdown)

This is an H1
This is an H2
This is an H3
This is an H6

This is an H1
========
This is an H2

or…

Unordered Lists (Core Markdown)

* Top-level item
* Top-level item

* Nested item

- This is nicer to read
in plain text

• Optionally use + or - instead of *
• Indent nested items by 2 spaces
• Lists must have a line break before and after
• List items can be indented by max. three spaces
or one tab
• Hanging indents for wrapped lines are supported:

Ordered Lists (Core Markdown)

1. Top-level item
2. Top-level item
3. Top-level item

1. Nested item
2. Nested item

• You must include a . after each number
• Markdown will output items in order (1, 2, 3…)
even if you write unorderly (1, 3, 2…)

Text Formatting (Core Markdown)

This is em text and _so is this_
This is strong text and __so is this__
*This is **strong text** inside em text*
This is _em text_ inside strong text
This is strong and em combined

Paragraphs in List Items (Core Markdown)

- item 1

- item 2

- Paragraph 1

 Paragraph 2

Adding line breaks between list items will wrap the
list item content in <p> tags.

For multiple paragraphs in a list item, indent each
one by four spaces or a tab (first item optional).

Markdown Cheat Sheet

CHEAT SHEETS / WEB / PAGE 2

Ralph Mason, Author

Elements Within a Blockquote (Core Markdown)

> ## This is an H2
>
> - This is a list
> - Inside a blockquote
>
> ```
> console.log("Code inside a blockquote");
> ```

Blockquotes (Core Markdown)

> One paragraph in
a blockquote

> Another paragraph in
the same blockquote.

> One paragraph in
> a blockquote
>
> Another paragraph in
> the same blockquote.

Alternatively, use > before every line.

Code Blocks (Core Markdown)

```
.selector {
 color: red;
}
```

 .selector {
 color: red;

 }

Place three backticks above and below the block

Or, indent every line by at least 4 spaces/one tab

• Markdown renders code inside <pre><code> tags
• Place one line break above/below the code block

Code Block in a List Item (Core Markdown)

* list item:

 console.log("A code block")

Indent the code block by 8 spaces or 2 tabs

Inline Code (Core Markdown)

Run `console.log("Hello world");` in the console.

Wrap inline code with single backticks

Nested Blockquotes (Core Markdown)

> A top-level blockquote
>
>> A nested blockquote
>
> Top-level blockquote continued.

Markdown Cheat Sheet

CHEAT SHEETS / WEB / PAGE 3

Ralph Mason, Author

Horizontal Rules/Line Breaks (Core Markdown)

•
: hit enter or end the line with two spaces
• <hr>: *** or --- or ___ on a line on their own

Raw HTML in Markdown

HTML elements can be used in Markdown as long
as you don’t indent the first/last tags in a HTML
block and add a line break before/after the block.

Escaping Markdown Characters

The following Markdown characters can appear
literally when escaped with a backslash (e.g. `\#`):

\\ \` * _ \{} \[] \() \# \+ \- \. \!

Blockquote in a List Item (Core Markdown)

* list item:

> Blockquote inside a list item.

Indent the blockquote by 4 spaces or a tab

Links (Core Markdown)

[Linked text](https://sitepoint.com “Optional title")

Visit <https://sitepoint.com> for more.

• [id] can be any random identifier
• [id]: reference can sit on its own line, absolutely
anywhere in the document
• Markdown auto-obfuscates email addresses

[Reference][id]

⋮

[id]: https://sitepoint.com “Optional title"

Images (Core Markdown)

![Alt text](path/to/img.jpg “Optional title")

Visit <https://sitepoint.com> for more.

• Links can be absolute (with http://) or relative
(link to an image within your file structure)

![Reference alt text][id]

⋮

[id]: path/to/image "Optional title"

Markdown Cheat Sheet

CHEAT SHEETS / WEB / PAGE 4

Ralph Mason, Author Tables (Extended Markdown)

Header One | Header Two
———————— | ————————
Content Cell | Content Cell
Content Cell | Content Cell

: ———————— | ———————— : | : ———————— :
Left-aligned | Right-aligned | Centered

Creating a table with headers:

Notes:

Notes:

• There must be a header row
• There must be a separator line after the header
• There must be at least one pipe per row
• Extra pipes at the start/end of rows are optional
• MD for inline elements is allowed within cells

Set column alignment by adding colons to the
separator row:

• Headers are centered by default
• Columns are left-aligned by default
• Colon alignment affects both header and column

Footnotes (Extended Markdown)

This line ends with a footnote reference.[^id]

[^id]: Place this footnote anywhere.

Syntax Highlighting (Extended Markdown)

```javascript
 console.log("SitePoint rocks");

```

Strikethrough Text (Extended Markdown)

Let's ~~draw a line though this~~ now

Extended Markdown

Most Markdown processors support an extended
syntax, although syntaxes vary across editors.

Popular flavors include:

Github Flavored Markdown: https://goo.gl/Pycq8Z
Markdown Extra: https://goo.gl/7f9TuE

Some widely supported elements follow:

Ralph Mason is SitePoint's Web channel editor,
administrator of SitePoint's magnificent web forums, and
a freelance editor and web designer at Page Affairs.

About the Author

