
2019/6/11 Changes between C++14 and C++17

https://isocpp.org/files/papers/p0636r0.html 1/12

ISO/IEC JTC1 SC22 WG21 P0636R0
Date: 2017-04-02

To: the public
Thomas Köppe <tkoeppe@google.com> Changes between C++14 and

C++17 DIS

Abstract
This document enumerates all the major changes that have been applied to the C++ working draft since
the publication of C++14, up to the publication of the C++17 DIS (N4660). Major changes are those that
were added in the form of a dedicated paper, excluding those papers that are large issue resolutions. No
issue resolutions from either CWG or LWG issues lists (“defect reports”) are included.

Contents
1. Removed or deprecated features
2. New core language features with global applicability
3. New core language features with local applicability
4. New library features
5. Modifications to existing features
6. Miscellaneous
7. Unlisted papers
8. Assorted snippets demonstrating C++17

Removed or deprecated features

Document Summary Examples, notes

N4086 Remove trigraphs The sequence ??! no longer means |. Implementations may
offer trigraph-like features as part of their input encoding.

P0001R1 Remove register The register keyword remains reserved, but it no longer has
any semantics.

P0002R1 Remove ++ for bool Increment (++) prefix and postfix expressions are no longer
valid for operands of type bool.

P0003R5 Remove throw(A, B,
C)

Dynamic exception specifications of the form throw(A, B, C)
are no longer valid. Only throw() remains as a synonym for
noexcept(true). Note the change in termination semantics.

P0386R2 Deprecate
redeclaration of static
constexpr class
members

Given struct X { static constexpr int n = 10; };, int
X::n; is no longer a definition, but instead a redundant
redeclaration, which is deprecated. The member X::n is
implicitly inline (see below).

N4190 Remove auto_ptr,
random_shuffle, old
parts of <functional>

Features that have been deprecated since C++11 and
replaced with superior components are no longer included.
Their names remain reserved, and implementations may
choose to continue to ship the features.

P0004R1 Remove deprecated
iostream aliases

Same as above

mailto:tkoeppe@google.com
http://wg21.link/n4086
http://wg21.link/p0001r1
http://wg21.link/p0002r1
http://wg21.link/p0003r5
http://wg21.link/p0386r2
http://wg21.link/n4190
http://wg21.link/p0004r1

2019/6/11 Changes between C++14 and C++17

https://isocpp.org/files/papers/p0636r0.html 2/12

Document Summary Examples, notes

P0302R1 Remove allocator
support from function

The polymorphic function wrapper function no longer has
constructors that accept an allocator. Allocator support for
type-erasing, copyable types is difficult, and possibly not
implementable efficiently.

P0063R3
(see
below)

Deprecate C library
headers

The following headers of the “C library” (this is the term for a
part of the C++ standard library, not a part of the C
standard!) are now deprecated: <ccomplex>, <cstdalign>,
<cstdbool>, <ctgmath>. Note that the header <ciso646> is
not deprecated.

P0174R2 Deprecate old library
parts

These library components are now deprecated:
allocator<void>, raw_storage_iterator,
get_temporary_buffer, is_literal_type, std::iterator.

P0618R0 Deprecate <codecvt> The entire header <codecvt> (which does not contain the
class codecvt!) is deprecated, as are the utilities
wstring_convert and wbuffer_convert. These features are
hard to use correctly, and there are doubts whether they are
even specified correctly. Users should use dedicated text-
processing libraries instead.

P0371R1 Deprecate
memory_order_consume
temporarily

The current semantics of “consume” ordering have been
found inadequate, and the ordering needs to be redefined.
While this work is in progress, hopefully ready for the next
revision of C++, users are encouraged to not use this
ordering and instead use “acquire” ordering, so as to not be
exposed to a breaking change in the future.

P0521R0 Deprecate
shared_ptr::unique

This member function suggests behaviour that is not actually
provided.

P0604R0 Deprecate result_of Use the new trait invoke_result instead.

New core language features with global applicability
These are features that may happen to you without your knowledge or consent.

Document Summary Examples, notes

P0012R1 Exception
specification as
part of the type
system

The exception specification of a function is now part of the
function’s type: void f() noexcept(true); and void f()
noexcept(false); are functions of two distinct types. Function
pointers are convertible in the sensible direction. (But the two
functions f may not form an overload set.) This change strengthens
the type system, e.g. by allowing APIs to require non-throwing
callbacks.

P0135R1 Guaranteed copy
elision

The meaning of prvalue and glvalue has been revised, prvalues are
no longer objects, but merely “initialization”. Functions returning
prvalues no longer copy objects (“mandatory copy elision”), and
there is a new prvalue-to-glvalue conversion called temporary
materialization conversion. This change means that copy elision is
now guaranteed, and even applies to types that are not copyable or
movable. This allows you to define functions that return such types.

http://wg21.link/p0302r1
http://wg21.link/p0063r3
http://wg21.link/p0174r2
http://wg21.link/p0618r0
http://wg21.link/p0371r1
http://wg21.link/p0521r0
http://wg21.link/p0604r0
http://wg21.link/p0012r1
http://wg21.link/p0135r1

2019/6/11 Changes between C++14 and C++17

https://isocpp.org/files/papers/p0636r0.html 3/12

Document Summary Examples, notes

P0035R4 Dynamic
allocation of over-
aligned types

Dynamic allocation (operator new) may now support over-aligned
types, and a new overload of the operator takes an alignment
parameter. It is still up to the implementation to choose which
alignments to support.

P0145R3 Stricter order of
expression
evaluation

The order of evaluation of certain subexpressions has been
specified more than it used to be. An important particular aspect of
this change is that function arguments are now evaluated in an
indeterminate order (i.e. no interleaving), which was previously
merely unspecified. Note that the evaluation order for overloaded
operators depends on how they are invoked: when invoked using
operator syntax, the order is the same as for the built-in operator,
but when invoked using function call syntax, the order is the same
as for ordinary function calls (i.e. indeterminate).

New core language features with local applicability
These are features where you would know if you were using them.

Document Summary Examples, notes

N4267 A u8 character
literal

A character literal prefix u8 creates a character that is a valid
Unicode code point that takes one code unit of UTF-8, i.e. an ASCII
value: u8'x'

P0245R1 Hexadecimal
floating point
literals

Floating point literals with hexadecimal base and decimal
exponent: 0xC.68p+2, 0x1.P-126. C has supported this syntax
since C99, and printf supports it via %a.

N4295,
P0036R0

Fold expressions A convenient syntax for applying a binary operator iteratively to
the elements of a parameter pack: template <typename ...Args>
auto f(Args ...args) { return (0 + ... + args); }

P0127R2 template <auto> A non-type template parameter may now be declared with
placeholder type auto. Examples:
 • template <auto X> struct constant { static constexpr
auto value = X; };
 • Delegate<&MyClass::some_function>

P0091R3,
P0433R2,
P0512R0,
P0620R0

Class template
argument
deduction

The template arguments of a class template may now be deduced
from a constructor. For example, pair p(1, 'x'); defines p as
pair<int, char> (this is not an HTML error, the template
arguments were omitted deliberately). The implicit deduction is
complemented by a system of explicit deduction guides which
allow authors to customise how the deduction happens, or forbid
it.

P0292R2 Constexpr if In a template specialization, the arms of the new if constexpr
(condition) statement are only instantiated if the condition
(which must be a constant expression) has the appropriate value.

P0305R1 Selection
statements with
initializer

The selection statements if and switch gain a new, optional
initializer part: if (auto it = m.find(key); it != m.end())
return it->second;

http://wg21.link/p0035r4
http://wg21.link/p0145r3
http://wg21.link/n4267
http://wg21.link/p0245r1
http://wg21.link/n4295
http://wg21.link/p0036r0
http://wg21.link/p0127r2
http://wg21.link/p0091r3
http://wg21.link/p0433r2
http://wg21.link/p0512r0
http://wg21.link/p0620r0
http://wg21.link/p0292r2
http://wg21.link/p0305r1

2019/6/11 Changes between C++14 and C++17

https://isocpp.org/files/papers/p0636r0.html 4/12

Document Summary Examples, notes

P0170R1 Constexpr
lambdas

Lambda expressions may now be constant expressions: auto add
= [](int a, int b) constexpr { return a + b; }; int
arr[add(1, 2)];

P0018R3 Lambda capture of
*this

Before: [self = *this]{ self.f(); } Now: [*this]{ f(); }

P0386R2 Inline variables In a header file: inline int n = 10; All definitions refer to the
same entity. Implied for static constexpr class data members.

P0217R3,
P0615R0

Structured
bindings

auto [it, ins] = m.try_emplace(key, a1, a2, a3);
Decomposes arrays, all-members-public classes, and user-defined
types that follow a get<N> protocol like pair and tuple.

P0061R1 __has_include A preprocessor operator to check whether an inclusion is possible.

P0188R1
P0189R1
P0212R1

Attribute
[[fallthrough]]
Attribute
[[nodiscard]]
Attribute
[[maybe_unused]]

A new set of standardised attributes. The attributes formally have
no required semantics, but implementations are encouraged to
emit or suppress the appropriate diagnostics (warnings).

P0137R1 launder A language support tool (an “optimisation barrier”) to allow
libraries to reuse storage and access that storage through an old
pointer, which was previously not allowed. (This is an expert tool
for implementers and not expected to show up in “normal” code.)

P0298R3 A byte type A new type byte is defined in <cstddef> (not in <stddef.h>, and
only in namespace std!) which has the layout of unsigned char,
shares the aliasing allowances of the existing char types, and has
bitwise operations defined.

New library features

Document Summary Examples, notes

P0226R1 Mathematical special functions The contents of the former international standard
ISO/IEC 29124:2010 (mathematical special
functions) are now part of C++. The functions were
added only to <cmath>, not to <math.h>, and are
only available in namespace std.

P0218R0,
P0219R1,
P0317R1,
P0392R0,
P0430R2,
P0492R2

Filesystem The contents of the Filesystems Technical
Specification are now part of C++. The filesystems
library allows portable interaction with directories
and directory-like structures (listing directory
contents, moving files, etc.). It is largely modelled
on POSIX, but flexible enough to be implementable
for a wide variety of systems.

http://wg21.link/p0170r1
http://wg21.link/p0018r3
http://wg21.link/p0386r2
http://wg21.link/p0217r3
http://wg21.link/p0615r0
http://wg21.link/p0061r1
http://wg21.link/p0188r1
http://wg21.link/p0189r1
http://wg21.link/p0212r1
http://wg21.link/p0137r1
http://wg21.link/p0298r3
http://wg21.link/p0226r1
http://wg21.link/p0218r0
http://wg21.link/p0219r1
http://wg21.link/p0317r1
http://wg21.link/p0392r0
http://wg21.link/p0430r2
http://wg21.link/p0492r2

2019/6/11 Changes between C++14 and C++17

https://isocpp.org/files/papers/p0636r0.html 5/12

Document Summary Examples, notes

P0024R2,
P0336R1,
P0394R4,
P0452R1,
P0467R2,
P0502R0,
P0518R1,
P0523R1,
P0574R1,
P0623R0

Parallelism The contents of the Parallelism Technical
Specification are now part of C++. This adds new
overloads, taking an additional execution policy
argument, to many algorithms, as well as entirely
new algorithms (see below). Three execution
policies are supported, which respectively provide
sequential, parallel, and vectorized execution.

P0024R2 New algorithms The Parallelism Technical Specification adds
several new algorithms to the standard library.
They are motivated by their potential for efficient
parallel execution, but are available in the usual
simple form as well: for_each_n, reduce,
transform_reduce, exclusive_scan,
inclusive_scan, transform_exclusive_scan,
transform_inclusive_scan. Note that reduce
looks similar to the existing accumulate, but does
not guarantee any particular order of operations.

P02202,
P0254R2,
P0403R1

New type: string_view (and
basic_string_view)

The new string_view class is the preferred
interface vocabulary type for APIs that need to view
a string without wanting to take ownership or to
modify it. It is constructible from char pointers, but
all other classes that are string-like should offer
conversions to string_view.

P02202,
P0032R3,
P0504R0

New type: any The type any type-erases copyable objects. There
are essentially three things you can do with an any:
1. put a value of type T into it. 2. Make a copy of it.
3. Ask it whether it contains a value of type U and
get that value out, which succeeds if and only if U is
T.

P0088R3,
P0393R3,
P0032R3,
P0504R0,
P0510R0

New class template: variant A variant models a disjoint union (or discriminated
union). A value of variant<A, B, C> contains one
of an A, a B, or a C at any one time.

P02202,
P0307R2,
P0032R3,
P0504R0

New class template: optional An optional value. A optional<T> represents either
a T value, or no value (which is signified by the tag
type nullopt_t). In some respects this can be
thought of as equivalent to variant<nullopt_t,
T>, but with a purpose-built interface.

N4169 invoke A facility to uniformly invoke callable entities. This
allows users to write libraries with the same
behaviour as the standard’s magic INVOKE rule.

P0077R2,
P0604R0

is_invocable, is_invocable_r,
invoke_result

Traits to reason about invocability and invocation
results.

http://wg21.link/p0024r2
http://wg21.link/p0336r1
http://wg21.link/p0394r4
http://wg21.link/p0452r1
http://wg21.link/p0467r2
http://wg21.link/p0502r0
http://wg21.link/p0518r1
http://wg21.link/p0523r1
http://wg21.link/p0574r1
http://wg21.link/p0623r0
http://wg21.link/p0024r2
http://wg21.link/p0220r1
http://wg21.link/p0254r2
http://wg21.link/p0403r1
http://wg21.link/p0220r1
http://wg21.link/p0032r3
http://wg21.link/p0504r0
http://wg21.link/p0088r3
http://wg21.link/p0393r3
http://wg21.link/p0032r3
http://wg21.link/p0504r0
http://wg21.link/p0510r0
http://wg21.link/p0220r1
http://wg21.link/p0307r2
http://wg21.link/p0032r3
http://wg21.link/p0504r0
http://wg21.link/n4169
http://wg21.link/p0077r2
http://wg21.link/p0604r0

2019/6/11 Changes between C++14 and C++17

https://isocpp.org/files/papers/p0636r0.html 6/12

Document Summary Examples, notes

P0067R5 Elementary string conversions Functions to_chars, from_chars that produce or
parse string representations of numbers. These are
intended to form an efficient, low-level basis for a
replacement for printf and iostream formatted
operations. They follow idiomatic C++ algorithm
style.

N3911 Alias template void_t template <class...> using void_t = void;
Surprisingly useful for metaprogramming, to
simplify use of SFINAE.

N4389 Alias template bool_constant template <bool B> using bool_constant =
integral_constant<bool, B>

P0013R1 Logical operation metafunctions Variadic metafunctions conjunction, disjunction,
and negation for metaprogramming. These traits
short-circuit in the metaprogramming sense:
template specializations that are not required to
determine the result are not instantiated.

P0185R1 Traits for SFINAE-friendly swap New traits is_{,nothrow_}swappable,
is_{,nothrow_}swappable_with.

LWG 2911 Trait is_aggregate Whether a type is an aggregate. Useful for example
to tell whether a generic type should be list- or non-
list-initialized.

P0258R2 Trait
has_unique_object_representations

This trait may be used to reason about whether
certain value-based operations like comparison and
hashing can be replaced with representation-based
operations (e.g. memcmp).

P0007R1 as_const Given an lvalue x, as_const(x) returns the const-
qualified version. Does not bind to rvalues.

N4280 Non-member size, data, empty The additional functions complement the existing
free functions begin, end etc. to access containers
and arrays in a uniform fashion. Note that unlike
begin/end, the new functions are not customisation
points for anything and are only provided for
convenience.

P0025R0 clamp clamp(x, low, high) returns either x if x is within
the interval [low, high], or the nearest bound
otherwise.

P0295R0 gcd and lcm Number-theoretic functions to compute the
greatest common divisor and least common
multiple of two integers.

N4508 Class shared_mutex A reader-writer mutex, which can be locked in
either shared or exclusive mode.

http://wg21.link/p0067r5
http://wg21.link/n3911
http://wg21.link/n4389
http://wg21.link/p0013r1
http://wg21.link/p0185r1
http://wg21.link/lwg2911
http://wg21.link/p0258r2
http://wg21.link/p0007r1
http://wg21.link/n4280
http://wg21.link/p0025r0
http://wg21.link/p0295r0
http://wg21.link/n4508

2019/6/11 Changes between C++14 and C++17

https://isocpp.org/files/papers/p0636r0.html 7/12

Document Summary Examples, notes

P0154R1 Interference sizes Two new implementation-defined constants
hardware_{con,de}structive_interference_size
that effectively allow the platform to document its
cache line sizes so that users can avoid false
sharing (destructive interference) and improve
locality (constructive interference). Two separate
constants are defined to support heterogeneous
architectures.

P0220R1 Tuple apply Invokes a callable with arguments extracted from a
given tuple.

P0209R2 Construction from tuples A new function template make_from_tuple that
initializes a value of type T from the elements of a
given tuple. It is like apply applied to a constructor.

P0005R4,
P0358R1

Universal negator not_fn A call wrapper that negates its wrapped callable.
This works with callables of any arity and replaces
the old not1 and not2 wrappers.

P0220R1 Memory resources A new set of components comprised of a memory
resource base class for dynamically selectable
memory providers, as well as three concrete
implementations (synchronized_pool_resource,
unsynchronized_pool_resource,
monotonic_buffer_resource). See next item for
use cases.

P0220R1,
P0337R0

A polymorphic allocator An allocator that uses a memory resource, which
can be changed at runtime and is not part of the
allocator type. Also contains convenience type
aliases like std::pmr::vector<T> =
std::vector<T, polymorphic_allocator<T>>.

P0220R1,
P0253R1

Searcher functors Substring searcher functors implementing the
Boyer-Moore and Boyer-Moore-Horspool
algorithms, and a search algorithm using those
functors.

Modifications to existing features

Document Summary Examples, notes

N3928 Single-argument
static_assert

The static_assert declaration no longer requires a
second argument: static_assert(N > 0);

N4230 Nested namespace declarations namespace foo::bar { /* ... */ }

N4051 Allow typename in template
template parameters

template <template <typename> typename Tmpl>
struct X; Previously, template template parameters
were required to use the keyword class.

http://wg21.link/p0154r1
http://wg21.link/p0220r1
http://wg21.link/p0209r2
http://wg21.link/p0005r4
http://wg21.link/p0358r1
http://wg21.link/p0220r1
http://wg21.link/p0220r1
http://wg21.link/p0337r0
http://wg21.link/p0220r1
http://wg21.link/p0253r1
http://wg21.link/n3928
http://wg21.link/n4230
http://wg21.link/n4051

2019/6/11 Changes between C++14 and C++17

https://isocpp.org/files/papers/p0636r0.html 8/12

Document Summary Examples, notes

P0184R0 Range-based for takes
separate begin/end types

The rewrite rule for for (decl : expr) now says
auto __begin = begin-expr; auto __end = end-
expr;, as opposed to auto __begin = begin-expr,
__end = end-expr; before. This prepares the range-
based for statement for the new Ranges (work in
progress).

P0195R2 Pack expansion in using-
declarations

template <typename ...Args> struct X :
Args... { using Args::f...; };

P0138R2 Construction for values of fixed
enums

A variable of a fixed enumeration E can now be
defined with E e { 5 }; and no longer requires the
the more cumbersome E e { E(5) };.

N4259 uncaught_exceptions() The function uncaught_exception is deprecated, the
new function uncaught_exceptions returns a count
rather than a boolean. The previous feature was
effectively unusable; N4152 explains the details.

N4266 Attributes in namespaces and
enumerators

Namespaces and enumerators can now be annotated
with attributes. This allows, for example, to deprecate
namespaces or enumerators.

P0028R4 Attribute namespaces without
repetition

This simplifies the use of attribute namespace
qualifications when a namespace is used repeatedly.

N4279 Improved insertion for unique-
key maps

m.try_emplace(key, arg1, arg2, arg3) does
nothing if key already exists in the map, and
otherwise inserts a new element constructed from the
arguments. This interface guarantees that even if the
arguments are bound to rvalue references, they are
not moved from if the insertion does not take place.

P0084R2 Return type of emplace Sequence containers whose
emplace{,_front,_back} member function templates
used to return void now return a reference to the
newly inserted element. (Associative containers are
not affected, since their insertion functions have
always returned iterators to the relevant element.)

P0083R3,
P0508R0

Splicing maps and sets A new mechanism, node handles, has been added to
the container library that allows transplanting
elements between different map/set objects without
touching the contained object. Moreover, this
technique enables mutable access to key values of
extracted nodes.

P0272R1 Non-const string::data There is now a non-const overload of
basic_string::data that returns a mutable pointer.
Moreover, C++17 allows writing to the null
terminator, provided that the value zero is written.
This makes the string classes a bit more convenient to
use with C-style interfaces.

http://wg21.link/p0184r0
http://wg21.link/p0195r2
http://wg21.link/p0138r2
http://wg21.link/n4259
http://wg21.link/n4152
http://wg21.link/n4266
http://wg21.link/p0028r4
http://wg21.link/n4279
http://wg21.link/p0084r2
http://wg21.link/p0083r3
http://wg21.link/p0508r0
http://wg21.link/p0272r1

2019/6/11 Changes between C++14 and C++17

https://isocpp.org/files/papers/p0636r0.html 9/12

Document Summary Examples, notes

P0156R0,
P0156R2

A variadic version of
lock_guard called
scoped_lock

A new, variadic class template
scoped_lock<Args...> that locks multiple lockable
objects at once (using the same algorithm as lock)
and releases them in the destructor. Initially it was
suggested to simply change the definition of
lock_guard to become variadic, but this was
discovered to be a breaking change, and so instead
we now have a new class template scoped_lock that
is strictly superior to the old lock_guard and should
be used instead.

P0006R0 Variable templates for traits For every standard type trait foo with a single, static
member constant foo<Args...>::value, there is now
a variable template foo_v<Args...>.

P0152R1 atomic::is_always_lock_free A new static member constant is_always_lock_free
that documents whether the operations of a given
atomic type are always lock-free. The existing non-
static member function is_lock_free may give
different answers for different values of the atomic
type.

P0220R1,
P0414R2

shared_ptr for arrays The class template shared_ptr now supports C-style
arrays by passing T[] or T[N] as the template
argument, and the constructor from a raw pointer will
install an appropriate array deleter.

P0163R0 shared_ptr::weak_type The class shared_ptr<T> now has a member type
weak_type which is weak_ptr<T>. This allows generic
code to name the corresponding weak pointer type
without having to destructure the shared pointer
type.

P0030R1 Three-dimensional hypotenuse The three-dimensional hypotenuse hypot(x, y, z) is
added as an additional set of overloads to <cmath>
(but not to <math.h> and only to namespace std).

P0040R3 Further uninitialized
algorithms

Additional algorithms to create objects in
uninitialized memory and to destroy objects. Separate
versions for default- and value-initialization are
included.

N4510 Incomplete type support for
allocators

This change relaxes the requirements on allocators to
have complete value types, and allows, for example,
recursive structures like: struct X {
std::vector<X> data; };

P0092R1,
P0505R0

Changes to <chrono> Adds floor, ceiling, division and rounding for time
points; makes most member functions constexpr.

P0426R1 Constexpr for char_traits All specializations required for char_traits now
have constexpr member functions length, compare,
find and assign, allowing string views to be more
widely used in constant expressions.

http://wg21.link/p0156r0
http://wg21.link/p0156r2
http://wg21.link/p0006r0
http://wg21.link/p0152r1
http://wg21.link/p0220r1
http://wg21.link/p0414r2
http://wg21.link/p0163r0
http://wg21.link/p0030r1
http://wg21.link/p0040r3
http://wg21.link/n4510
http://wg21.link/p0092r1
http://wg21.link/p0505r0
http://wg21.link/p0426r1

2019/6/11 Changes between C++14 and C++17

https://isocpp.org/files/papers/p0636r0.html 10/12

Document Summary Examples, notes

N4387 Improving pair and tuple This change makes the constructors of pair and
tuple as explicit as the corresponding element type
constructors.

P0435R1,
P0548R1

Changes to common_type Because it’s not a new standard if we didn’t make
changes to common_type…

Miscellaneous

Document Summary Examples, notes

P0063R3 C++ refers to
C11

The C++ standard now refers normatively to C11 (ISO/IEC
9899:2011) as “The C Standard”. Not only does ISO require that
references to other international standards refer to the latest
published version, and not to a historic version, but this also gives
us access to aligned_alloc, which is useful for the improvements
to our dynamic memory management.

P0180R2 Reserved
namespaces

All top-level namespaces of the form stdX, where X is a sequence of
digits, are reserved.

P0175R1 C library
synopses

A purely editorial change: all headers of the “C library” part of the
standard library are now presented as complete synopses in the
C++ standard document, rather than as just lists of names. This
makes the changes in semantics from C easier to appreciate (e.g.
additional overloads, overloads on language linkage).

N4262
P0134R0
P0391R0
N4284

Term “forwarding
reference”
Term “default
member
initializer”
Term “templated
entity”
Term “contiguous
iterator”

These changes have no normative impact, but they establish official
terminology for concepts that have so far only emerged from the
language rules. Having precise and well-known terms simplifies
talking about C++ and simplifies the specification.

P0346R1 Change “random
number
generator” to
“random bit
generator”

Similarly, this change has no normative impact, but clarifies the
design and intended use of this aspect of the <random> facilities.

Unlisted papers
The following papers were moved at committee meetings, but their contents are too specific to call out as
separate features: N3922, N4089, N4258, N4261, N4268, N4277, N4285, P0017R1, P0031R0, P0033R1,
P0074R0, P0136R1, P0250R3, P0270R3, P0283R2, P0296R2, P0418R2, P0503R0, P0509R1, P0513R0,
P0516R0, P0517R0, P0558R1, P0599R1, P0607R0, P0612R0

The following papers contain issues that have been accepted as defect reports. CWG issues are handled
by N4192, N4457, P0164R0, P0167R2, P0263R1, P0384R0, P0398R0, P0490R0, P0507R0, P0519R0,
P0520R0, P0522R0, P0575R1, P0576R1, P0613R0, P0622R0. LWG issues are handled by N4245, N4366,

http://wg21.link/n4387
http://wg21.link/p0435r1
http://wg21.link/p0548r1
http://wg21.link/p0063r3
http://wg21.link/p0180r2
http://wg21.link/p0175r1
http://wg21.link/n4262
http://wg21.link/p0134r0
http://wg21.link/p0391r0
http://wg21.link/n4284
http://wg21.link/p0346r1
http://wg21.link/n3922
http://wg21.link/n4089
http://wg21.link/n4258
http://wg21.link/n4261
http://wg21.link/n4268
http://wg21.link/n4277
http://wg21.link/n4285
http://wg21.link/p0017r1
http://wg21.link/p0031r0
http://wg21.link/p0033r1
http://wg21.link/p0074r0
http://wg21.link/p0136r1
http://wg21.link/p0250r3
http://wg21.link/p0270r3
http://wg21.link/p0283r2
http://wg21.link/p0296r2
http://wg21.link/p0418r2
http://wg21.link/p0503r0
http://wg21.link/p0509r1
http://wg21.link/p0513r0
http://wg21.link/p0516r0
http://wg21.link/p0517r0
http://wg21.link/p0558r1
http://wg21.link/p0599r1
http://wg21.link/p0607r0
http://wg21.link/p0612r0
http://wg21.link/n4192
http://wg21.link/n4457
http://wg21.link/p0164r0
http://wg21.link/p0167r2
http://wg21.link/p0263r1
http://wg21.link/p0384r0
http://wg21.link/p0398r0
http://wg21.link/p0490r0
http://wg21.link/p0507r0
http://wg21.link/p0519r0
http://wg21.link/p0520r0
http://wg21.link/p0522r0
http://wg21.link/p0575r1
http://wg21.link/p0576r1
http://wg21.link/p0613r0
http://wg21.link/p0622r0
http://wg21.link/n4245
http://wg21.link/n4366

2019/6/11 Changes between C++14 and C++17

https://isocpp.org/files/papers/p0636r0.html 11/12

N4383, N4525, P0165R0, P0165R1, P0165R2, P0165R2, P0165R3, P0165R4, P0304R1, P0397R0,
P0610R0, P0625R0. Only specific issues may have been selected from each paper; the meeting minutes
contain the details.

Assorted snippets demonstrating C++17

std::unordered_map<std::string, std::unique_ptr<Foo>> items;
std::vector<std::unique_ptr<Foo>> standby;

// If there is currently no item 'id', installs 'foo' as item 'id'.
// Otherwise stores 'foo' for later use and puts it on standby.

// Before C++17

void f(std::string id, std::unique_ptr<Foo> foo) {
 auto it = items.find(id);
 if (it == items.end()) {
 auto p = items.emplace(std::move(id), std::move(foo));
 p.first->second->launch();
 } else {
 standby.push_back(std::move(foo));
 standby.back()->wait_for_notification();
 }

 // Notes:
 // * Variable 'id' can no longer be used (moved-from); or...
 // * ...would need to use parameter 'const string& id' and force copying.
 // * Map lookup performed twice. Ordered map could use lower_bound + hint, but
unordered map cannot.
 // * (Cannot emplace unconditionally, because it might destroy *foo.)
}

// With C++17

void f(std::string_view id, std::unique_ptr<Foo> foo) {
 if (auto [pos, inserted] = items.try_emplace(id, std::move(foo)); inserted) {
 pos->second->launch();
 } else {
 standby.emplace_back(std::move(foo))->wait_for_notification();
 }
}

The next snippet illustrates the utility of template <auto> on the example of a class template which
delegates a free function call to a member function bound to a class instance, and the member function is
part of the delegate type.

// Before C++17

template <typename T, int (T::* MF)(int, int)> // two params: one type, one non-
type
struct Delegate { /* ... */ };

int n = Delegate<MyComplexClass, &MyComplexClass::an_imporant_function>(&obj)(10,
20);

http://wg21.link/n4383
http://wg21.link/n4525
http://wg21.link/p0165r0
http://wg21.link/p0165r1
http://wg21.link/p0165r2
http://wg21.link/p0165r2
http://wg21.link/p0165r3
http://wg21.link/p0165r4
http://wg21.link/p0304r1
http://wg21.link/p0397r0
http://wg21.link/p0610r0
http://wg21.link/p0625r0

2019/6/11 Changes between C++14 and C++17

https://isocpp.org/files/papers/p0636r0.html 12/12

// With C++17

template <auto> struct Delegate; // one (non-type) param
template <typename T, int (T::* MF)(int, int)>
struct Delegate<MF> { /* ... */ }; // implement as before, but as
partial specialization

int n = Delegate<&MyComplexClass::an_imporant_function>(&obj)(10, 20);

The next snippet shows the utility of fold expressions in generic code.

// Call f(n) for all f in the pack.
template <typename ...F>
void ApplyAll(int n, const F&... f) {
 (f(n), ...); // unary fold (over the comma operator)
}

// Compute f(a, b) for each f in the pack and return the sum.
template <typename ...F>
int ApplyAndSum(int a, int b, const F&... f) {
 return (f(a, b) + ... + 0); // binary fold
}

The next snippet shows array support for shared pointers.

// Before C++17
std::shared_ptr<char> p(new char[N], std::default_delete<char[]>()); // would be
wrong without the deleter

// With C++17
std::shared_ptr<char[]> p(new char[N]); // deleter uses “delete[]”

