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Abstract
This article covers the mathematical fundamentals of digital predistor-
tion (DPD) and how it is implemented in a transceiver’s microprocessor 
and hardware. It addresses why DPD is needed in modern communication 
systems and explores how the mathematical model captures real-world 
signal distortion.

Introduction
DPD is an acronym that will be familiar to many RF (radio frequency) engineers, 
signal processing enthusiasts, and embedded software developers. DPD is ubiq-
uitous in our cellular communications systems, enabling power amplifiers (PAs) 
to efficiently deliver maximum power to an antenna. As 5G drives up the antenna 
count in base stations and our spectrum becomes ever more congested, DPD 
has emerged as a key technology to allow for the development of efficient, cost-
effective, and specification compliant cellular systems.

Many of us have a unique understanding of DPD based on our own perspectives, be 
that from the purely mathematical viewpoint or the more constrained implementa-
tion on a microprocessor. Perhaps you’re an engineer evaluating the performance 
of DPD in your RF base station product or an algorithm developer who is curious as 
to how mathematical modeling techniques are implemented in real world-systems. 
This article aims to broaden your knowledge and empower you to fully grasp the 
topic from all angles.

What Is DPD and Why Is It Used?
When an RF signal is outputted from a base station radio (see Figure 1), it needs 
to be amplified before it is transmitted through the antenna. An RF PA is used 
to do this. In an ideal world, the PA takes an input signal and outputs a higher 
power signal that is proportional to its input. It also does this in the most power 
efficient way possible so that most of the DC power supply provided to the 
amplifier is converted into signal output power.
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Figure 1. Block diagram of a simplified radio structure with and without DPD.

However, this isn’t an ideal world. PAs are made from transistors, which are 
active devices and inherently nonlinear. Now if we use PAs in their “linear” region 
(linear here is a relative term; hence, the quotation marks) as shown in Figure 2, 
then the output power is relatively proportional to the input power. The downside 
of this approach is that the PA is generally used in a very inefficient state with 
most of the power provided being lost as heat. We often want to use PAs at the 
point where they are beginning to compress. That means if the input signal is 
increased by a set amount (say 3 dB), the PA output does not increase by the 
same amount (maybe only by 1 dB). Obviously, the signal is being significantly 
distorted at this point by the amplifier.

https://www.analog.com
https://www.analog.com
https://ez.analog.com
https://www.youtube.com/user/AnalogDevicesInc
https://twitter.com/adi_news
https://www.linkedin.com/company/analog-devices
https://www.facebook.com/AnalogDevicesInc
https://flipboard.com/@AnalogDevices


2 DIGITAL PREDISTORTION FOR RF COMMUNICATIONS: FROM EQUATIONS TO IMPLEMENTATION

 

Po
w

er
 O

ut
pu

t (
dB

m
)

Power Input (dBm)

Compression
Region

Linear
Response

Actual
Response

Figure 2. PA input power vs. output power plot (shows projection of sample input/output signals).

This distortion happens at known places in the frequency domain dependent on 
the input signal. Figure 3 shows these locations and the relationship between the 
fundamental frequencies and these distortion products. In RF systems, the only 
distortions we need to compensate for are those close to the fundamental signal, 
which are the odd order intermodulation products. Filtering in the system takes 
care of the out of band products (harmonics and even order intermodulation 
products). Figure 4 shows the output of an RF PA run near its compression point. 
The intermodulation products (especially the third order) are clearly visible. They 
look like “skirts” around the desired signal.
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Figure 3. Location of intermodulation and harmonic distortion for 2 tone input.

 
Figure 4. 2× 20 MHz carriers passed through SKY66391-12 RF PA. The center frequency = 1850 MHz.

DPD aims to characterize this distortion by observing the PA output and, knowing 
the wanted output signal, altering the input signal so that the PA output is closer 
to the ideal. This can only be done effectively in fairly specific circumstances. We 
need to have the amplifier and input signal configured such that the amplifier is 
compressing somewhat but not completely saturating.

The Math Behind Modeling PA Distortion
Do the sight of Greek letters and other mathematical symbols tend to bring on 
terrifying flashbacks of college exams of yesteryear? You’re not alone! People 
can be unnecessarily put off by the fundamentals when one of the first refer-
ences they are given is a math heavy academic paper. The paper “A Generalized 
Memory Polynomial Model for Digital Predistortion of RF Power Amplifiers”1 is a 
seminal work that introduces the widely adopted generalized memory polyno-
mial (GMP) approach to DPD. If you just dabble in the signal processing side of 
things, it may be a little heavy for an introduction to the subject. So, as a start, 
let’s try and break down the GMP approach and reach a more intuitive understand-
ing of what the math is doing.

The Volterra series is the mathematical backbone of DPD. It is used to model 
nonlinear systems with memory. Memory simply means that the present output 
of the system can depend on the current and past inputs. Volterra series is very 
general (and, hence, powerful) and is used in many fields outside of electrical 
engineering. For PA DPD, the Volterra series can be slimmed down and made 
such that it is more implementable and stable in real-time digital systems. GMP  
is one such slimmed down approach.

Figure 5 describes how GMP is used to model the relationship between the input, 
x, of the PA and its output, y. You’ll see the three separate summation blocks of 
the equation are very similar to each other. Let’s focus on the first one for now 
highlighted in red below. The |x(…)|k term is referred to as the envelope of the input 
signal, where k is the polynomial order. l incorporates memory into the system. 
If La = {0,1,2}, then the model allows the output yGMP (n) to depend on the current 
input x(n) and past inputs x(n – 1) and x(n – 2). Figure 6 examines the effect of the 
polynomial order k on a sample vector. The vector, x, is a single 20 MHz carrier 
and is plotted at complex baseband. The GMP modeling equation is simplified by 
removing the memory component. The plots of x|x|k show a clear similarity to 
the real-world distortion visible in Figure 4.

Each polynomial order (k) and memory lag (l) has an associated complex weight 
(akl). When the complexity of the model has been chosen (which values of k and 
l will be included), it is then necessary to solve for these weights based on real-
world observations of the PAs output for a known input signal. Figure 7 converts 
the simplified equation into matrix form. The mathematical notation used allows 
for a concise representation of the model. However, for the actual implementa-
tion of DPD on buffers of digital data, it is easiest and more representative to 
view things in matrix notation.

Let’s briefly look at the second and third lines of the equation in Figure 6 that 
were ignored for simplicity. Note that if m is set to zero, then these lines become 
identical to the first one. These lines allow for delays (both positive and negative) 
to be added between the envelope term and the complex baseband signal. These 
are called lagging and leading crossterms and can improve the modeling accu-
racy of DPD significantly. They offer an extra level of freedom in our attempts to 
model the amplifier’s behavior. Note that Mb, Mc, Kb, and Kc do not contain zero; 
otherwise, we would be repeating terms from the first line. 
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So how do we settle on the order of the model, the number of memory terms, 
and what crossterms we should add? This is where a certain amount of “black 
magic” comes into things. It is possible to be guided to some degree by our 
knowledge of the physics of the distortion. The type of amplifier and the material  
it is manufactured out of and the bandwidth of the signal being played through it  
all impact on the modeling terms and allow an engineer experienced in the area  
to put bounds on what model should be used. However, there is also a degree of 
trial and error involved on top of this.

The last aspect of the problem to be addressed from a mathematical viewpoint, 
now that a modeling structure is available, is how to solve for the weighting 
coefficients. In a practical scenario, there is a tendency to solve for the inverse 
of the model described above. It turns out that there is a nice reciprocity with 
these model coefficients, in that the same weights can be used to postdistort 

the captured PA output vector to remove nonlinearities and to predistort the 
transmitted signal sent through the PA so that the PA output appears as linear 
as possible. Figure 8 shows a block diagram of how the weight coefficient estima-
tion and predistortion are carried out.
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Figure 8. Block diagram describing indirect implementation of modeling and predistortion.
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Figure 6. Plot of effect of order (k) on signal in frequency domain of a signal x.
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Figure 7. Convert the simplified equation to matrix operation on data buffers (closer to how it is implemented digitally).
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For the inverse model, the matrix equation given in Figure 7 is swapped around 
to give X ̂ = Yw. Here the matrix Y is formed in the same way as X was in the 
other case, as shown in Figure 9. For this example, a memory term has been 
included and the number of polynomial orders included has been reduced. 
To solve for w, we need to get the inverse of Y. Y is not square (it’s a tall, slim 
matrix) so this is achieved using the matrix “pseudo inverse” (see Equation 1). 
This solves for w in a least squares sense, that is, it minimizes the square of 
the difference between X ̂ and Yw, which is what we want!

(1)w = (YHY)–1YH x 
This can be refined a bit further to take into account that it’s being applied in a 
live environment with varying signals. Here the coefficients are constrained by 
being updated from their previous value. μ is a constant value between 0 and 1 
that controls how much the weights can change per iteration. If μ = 1 and w0 = 0, 
then this equation reverts to the basic least squares solution immediately. If μ 
is set to a value less than 1, then it will take a number of iterations for the coef-
ficients to converge.

(2)wi+1 = wi + µ(YHY)–1YH e, e = x – x ˆ

Note that the modeling and estimation techniques described here are not the 
only way to do DPD. Techniques such as dynamic deviation reduction (DDR)-based 
modeling can also be used instead of or in addition to it. The estimation techniques 
described for solving for the coefficients can also be done in numerous ways. 
Given this is a short article and not a book, let’s leave it there.

How Do We Implement This in a Microprocessor?
Okay, so the math has been thoroughly covered. The next question is how is it 
applied in real-world communication systems? It is implemented in the digital 
baseband, generally in a microprocessor or an FPGA. ADI’s RadioVerse® transceiver 
products such as the ADRV902x family have built-in microprocessor cores, with 
a structure specifically put in place to allow for easy DPD implementation.

There are two distinct aspects to DPD implementation in embedded software. The 
first is the DPD actuator, which is where the predistortion of the live transmitted 
data is performed in real time, and the second is the DPD adaption engine, which is 
where the DPD coefficients are updated based on observations of the PA output.

The key to how DPD and many other signal processing concepts are implemented 
in real time in a microprocessor or similar is through the use of lookup tables 
(LUTs). LUTs allow for expensive run-time calculations to be replaced with a 
simpler array indexing operation. Let’s consider how the DPD actuator applies 
predistortion to a transmitted sample of data. The notation is as shown in Figure 8, 
where u(n) is the raw sample of data to be transmitted and x(n) is the predis-
torted version. Figure 10 shows the calculations required to obtain one predis-
torted sample for a given scenario. This is a relatively limited example with the 
highest polynomial order being third order and only one memory tap and a single 
crossterm. Even for this case, there are clearly a lot of multiplication, power of, 
and addition calculations needed to gain this one sample of data.

This is where LUTs come into play to ease the real-time computation burden. 
Figure 10 can be rewritten as Figure 11 where the data that will be entered in  
the LUTs become more evident. Each LUT contains the result of the highlighted 
element of the equation for a large number of possible values for |u(n)|. The 
resolution depends on the size of the LUT that can be implemented in the 
available hardware. The magnitude of the current input sample is quantized 
depending on the resolution of the LUT and used as an index to access the cor-
rect LUT element for that given input.

    

x(n) = u(n) [a00 + a10|u(n)|1 + a20|u(n)|2 +
           u(n – 1) [a01 + a11|u(n – 1)|1 + a21|u(n – 1)|2] +
           u(n) [b201|u(n – 1)|2] 
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Figure 11. Regrouping equation elements to show LUT’s structure.
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Figure 9. Inverse approach equation in matrix form. Some memory has been included here.

Figure 10. Predistortion calculation for third-order case with one memory tap and one third-order crossterm element.

Ka = {0, 1, 2}
La = {0, 1}
Kb = {2}
Lb = {0}
Ma = {1}

x(n) = a00u(n) + a10u(n)|u(n)|1 + a20u(n)|u(n)|2 + a01u(n – 1)
       + a11u(n – 1)|u(n – 1)|1 + a21u(n – 1)|u(n – 1)|2 + b201u(n )|u(n – 1)|2 
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Figure 12 shows how the LUTs are incorporated into the full predisortion actua-
tor implementation for our example case. Note that this is just one possible 
implementation out of many. One example of a change that could be made while 
still maintaining the same output is that the delay element, z–1, could be moved to 
the right of LUT2. 
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Figure 12. Block diagram of possible implementation of DPD using LUTs.

The adaption engine is tasked with solving for the coefficients that are used to 
calculate the LUT values in the actuator. This involves solving for the w vector 
described in equations 1 and 2. The pseudoinverse matrix operation, (YH Y)-1 YH, is 
computationally hungry. Equation 1 can be rewritten as 

(3)YHYw = YH x 

If CYY = YHY and CYx = YH x, then Equation 3 becomes

(4)CYYw = CYx 
CYY is a square matrix and can be decomposed into the product of an upper 
triangular matrix, L, and its conjugate transpose (CYY =L H L) using Cholesky 
decomposition. This allows us to solve for w by introducing a dummy variable  
z and solving for it as shown:

(5)LHz = CYx 

Then substitute this dummy variable back in to solve for  
(6)Lw = CYx 

Because L and LH are upper and lower triangular matrices, respectively, Equation 5  
and Equation 6 are easy to solve with minimal computational expense to give 

w. Every time the adaption engine is run and new values for w are found, it is 
necessary to update the actuator LUTs to reflect them. The adaption engine may  
be performed at set regular intervals or at more irregular intervals based on  
the observation of the PA output or the operator’s knowledge of changes to the 
signal to be transmitted.

The implementation of DPD in an embedded system requires a lot of checks and 
balances to ensure the stability of the system. It is of utmost importance that the 
transmitted data buffer and capture buffer data are time aligned to ensure the 
mathematical relationship established between them is correct and holds true 
as it is applied over time. If this alignment is lost, then the coefficients returned 
by the adaption engine will not predistort the system correctly and may lead to 
instability in the system. The predistorted actuator output should also be checked 
to ensure that the signal will not saturate the DAC.

Conclusion
Hopefully, this article has cleared up some of the mystery around DPD by examin-
ing the underlying mathematics and its implementation in hardware. This is 
just the tip of the iceberg on this fascinating topic and may prompt the reader 
to look further into the application of signal processing techniques in commu-
nications systems. The study of Pratt and Kearney is a good source about DPD 
applied to an ultrawide bandwidth use case in a wired communications system.2 
ADI’s RadioVerse transceiver products are uniquely placed to incorporate algorithms 
such as DPD as they provide highly integrated RF hardware and configurable 
software tools to customers.
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