
Published on Crash Course (http://crashcourse.ca)

Home > INTERMISSION: Let's talk about header files ... (FREE LESSON)

INTERMISSION: Let's talk about header files
... (FREE LESSON)

By rpjday
Created 2010-06-30 06:07

More free stuff? Cool.

As with the previous "lesson," this isn't an official course lesson but it's
something you might find useful so I'll throw it in as bonus content, and we'll
pick up with subscriber-only courseware in the next installment. Don't thank
me -- it's what I live for.

So what's to know about header files? I'm glad you asked.

Anyone who has even a smattering of C language development knows that,
in your typical C program, you'll include a number of header files that
contain, say, macros you're about to use or declarations of routines you're
about to call. These header files represent what you use in user space
programming and normally match the functions that you're going to invoke
from the standard C library. These header files normally reside under the
/usr/include/ directory and, on my current Ubuntu 10.04 system, are part of
the libc6-dev package. None of this should come as a major revelation -- it's
just a standard part of C language programming.

When you get into Linux kernel programming, however, you quickly learn
that there is a whole new set of header files you're going to be using.
Because the kernel code and modules you write are going to be running
exclusively in kernel space, you will have absolutely no use for all that user
space stuff like the standard C library and the associated header files.

Instead, your kernel code is going to work exclusively with the header files
you can find in your kernel source tree, many of which can be found in the
top-level include/ directory you can see. (I'm assuming that you have a
kernel source tree to peruse; if you don't, it's your job to run out and get
one. Course students should already have a git clone of the current
development tree, and I explain how to get one back in Lesson 1.)

INTERMISSION: Let's talk about header files http://crashcourse.ca/print/introduction-linux-k...

1 of 6 09/04/2015 11:18 AM

So, to recap, if you're programming in user space, you have all of the
standard C library and header files at your disposal. If you're writing kernel
code, you are working exclusively with the header files that come with the
kernel source tree, and there is no mixing of the two. It sounds simple
enough. But wait. As always, there's more.

Where else can you get those kernel header files?

As I've mentioned earlier in this course, if you're going to be writing
loadable modules or any other code that runs in kernel space, you
absolutely must have the kernel header files against which to compile your
code. In a simple case, you could have a full kernel source tree -- that would
certainly work.

On the other hand, you don't actually need the entire tree -- all you really
need is that portion of it that contains the header files and a few other
things, and most distributions provide a package that gives you exactly that.
Under Ubuntu, this would be a package with a name resembling linux-
headers-2.6.32.22.23-generic (or whatever matches your current kernel):

$ apt-cache show linux-headers-2.6.32-22-generic
... snip ...
Description: Linux kernel headers for version 2.6.32 on x86/x86_64
 This package provides kernel header files for version 2.6.32 on
 x86/x86_64.
 .
 This is for sites that want the latest kernel headers. Please read
 /usr/share/doc/linux-headers-2.6.32-22/debian.README.gz for details.

You can see where these kernel space header files would be installed with:

$ dpkg -L linux-headers-2.6.32-22-generic
/.
/usr
/usr/src
/usr/src/linux-headers-2.6.32-22-generic
/usr/src/linux-headers-2.6.32-22-generic/.config
/usr/src/linux-headers-2.6.32-22-generic/scripts
/usr/src/linux-headers-2.6.32-22-generic/scripts/basic
... snip ...

In short, if you want to do kernel programming, there is a package
corresponding to each running kernel that you can install that provides the
kernel space header files against which you can compile your loadable
modules so that you don't even need a full kernel source tree. So far, so
good. But, as always, there's more to the story.

Header files for both spaces

There are times when you're programming for user space but you need
header files that define kernel space structures since you're going to be

INTERMISSION: Let's talk about header files http://crashcourse.ca/print/introduction-linux-k...

2 of 6 09/04/2015 11:18 AM

defining a structure that you want to pass into kernel space, almost
certainly via a system call, and you need to get a declaration for that
structure somewhere, which leads us to introduce a third type of header file
-- the kind that are relevant for both kernel and user space.

Such header files are carefully selected from the header files in the kernel
source tree, they're "cleaned" (using a process that will be explained
shortly), and they're bundled into yet another package that you'll see in a
minute. So ... where do these header files come from? At the top of your
kernel source tree, simply run:

$ make distclean [optional]
$ make headers_install

at which point a carefully selected subset of the kernel header files
scattered around the tree are collected, sanitized and placed carefully under
the kernel source tree directory usr/include/, where you can examine them
with:

$ find usr/include | less
usr/include
usr/include/linux
usr/include/linux/virtio_9p.h
usr/include/linux/in_route.h
usr/include/linux/auxvec.h
usr/include/linux/sockios.h
usr/include/linux/joystick.h
usr/include/linux/netfilter_bridge
usr/include/linux/netfilter_bridge/ebt_802_3.h
... etc etc ...

What you're looking at in the output above is the collection of kernel header
files that are also deemed to be appropriate for user space programmers
who want to, perhaps, define structures that they will be passing to kernel
code. More to the point, these header files have already been packaged for
you and are almost certainly already on your system. In the case of Ubuntu
10.04, this would be the linux-libc-dev package:

$ dpkg -L linux-libc-dev
/.
/usr
/usr/include
/usr/include/asm-generic
/usr/include/asm-generic/errno-base.h
/usr/include/asm-generic/auxvec.h
/usr/include/asm-generic/bitsperlong.h
/usr/include/asm-generic/errno.h
/usr/include/asm-generic/fcntl.h
/usr/include/asm-generic/int-l64.h
... and on and on ...

And make sure you understand what you're looking at above -- this is a
package of header files that are available for inclusion in your user space
programs, but are meant only for defining kernel space structures and other

INTERMISSION: Let's talk about header files http://crashcourse.ca/print/introduction-linux-k...

3 of 6 09/04/2015 11:18 AM

information so that your user code and kernel code can share the same
declarations and definitions.

Exercise for the student: The obvious exercise -- take a few minutes and
compare some of the the header files that were generated in your kernel
source tree and verify that they exist under /usr/include/ on your system.
Any sane Linux development system should have some installed package
that corresponds to exactly those headers.

And who decides which kernel header files are exported?

When you run:

$ make headers_install

from the top of your kernel source tree, who or what decides precisely which
kernel header files will get bundled up and stashed under the kernel source
directory usr/include for later "exporting" to user space? That's easy.

The header files to be exported are defined by the Kbuild files scattered
throughout the kernel source tree. The one at the very top level is the
engine, while elsewhere throughout the tree, you'll find Kbuild files like, say,
this one:

$ cat include/Kbuild
header-y += asm-generic/
header-y += linux/
header-y += sound/
header-y += mtd/
header-y += rdma/
header-y += video/
header-y += drm/
header-y += xen/
header-y += scsi/
$

That file simply defines that the export process should recursively continue
into those subdirectories and keep checking for more Kbuild files.

If we check further, we'll start to see Kbuild files like:

$ cat include/linux/Kbuild
header-y += byteorder/
header-y += can/
header-y += dvb/
header-y += hdlc/
header-y += isdn/
... snip ...
header-y += affs_hardblocks.h
header-y += aio_abi.h
header-y += arcfb.h
header-y += atmapi.h
header-y += atmarp.h
... snip ...

INTERMISSION: Let's talk about header files http://crashcourse.ca/print/introduction-linux-k...

4 of 6 09/04/2015 11:18 AM

which clearly represents a combination of more recursive directories, plus
immediate header files. Quite simply, all kernel Kbuild files have that general
structure and, collectively (throughout the entire kernel source tree), they
define all of the kernel header files to be exported to user space.

But there's one more detail ...

What does it mean to "sanitize" one of those header files?

In many cases, the header files to be exported contain some content that is
meaningful only in kernel space, and it's only a subset of the header file that
needs to be exported. Kernel-only code is normally surrounded by a
preprocessor conditional that checks the value of the __KERNEL__ macro, and
part of the the job of the export process (when you run make headers_install) is
to examine each file that is being exported, identify the code that is relevant
only in kernel space, and remove it. Quite simple, really.

That's why (for example) the kernel version of the header file include/video
/edid.h looks like this:

#ifndef __linux_video_edid_h__
#define __linux_video_edid_h__

#if !defined(__KERNEL__) || defined(CONFIG_X86)

struct edid_info {
 unsigned char dummy[128];
};

#ifdef __KERNEL__
extern struct edid_info edid_info;
#endif /* __KERNEL__ */

#endif

#endif /* __linux_video_edid_h__ */

but by the time it ends up in user space and is placed at /usr/include/video
/edid.h, it looks like this:

#ifndef __linux_video_edid_h__
#define __linux_video_edid_h__

struct edid_info {
unsigned char dummy[128];

};

#endif /* __linux_video_edid_h__ */

Technically, there's no actual harm in leaving in that kernel-only content
since, when you're compiling in user space, you're guaranteed that the
preprocessor macro __KERNEL__ will never be set, but it's cleaner to just strip

INTERMISSION: Let's talk about header files http://crashcourse.ca/print/introduction-linux-k...

5 of 6 09/04/2015 11:18 AM

out that irrelevant content during the export process.

Aside: If you look carefully, you'll notice that many of the Kbuild files contain
both the variables header-y and unifdef-y to identify the header files to be
sanitized and exported. The latter is now deprecated and Kbuild files should
now contain only the first form, but the older form is still supported.

Exercise for the student: You can list the files in a Ubuntu package with
the dpkg -L command. So list the exported header files in the linux-libc-dev
package with:

$ dpkg -L linux-libc-dev

and compare that output with what was generated by:

$ make headers_install

And that should do it. Next lesson: Back to subscriber-only content and
debugging the kernel with gdb. Or something like that.

OBLIGATORY MARKETING SPIEL: If you were just passing by and stopped
in to read this tutorial, make sure you check out the kernel programming
course itself.

All content herein subject to the GPL ©2009

Source URL: http://crashcourse.ca/introduction-linux-kernel-programming/intermission-
lets-talk-about-header-files-free-lesson

Links:
[1] http://crashcourse.ca/introduction-linux-kernel-programming/lesson-1-building-
and-running-new-linux-kernel
[2] http://crashcourse.ca/introduction-linux-kernel-programming/introduction-linux-kernel-
programming

INTERMISSION: Let's talk about header files http://crashcourse.ca/print/introduction-linux-k...

6 of 6 09/04/2015 11:18 AM

