Preface

The Abstract Window Tookit (AWT) provides the user interface for Java programs.
Unless you want to construct your own GUI or use a crude text-only interface, the
AWT provides the tools you will use to communicate with the user. Although we
are beginning to see some other APIs for building user interfaces, like Netscape’s
IFC (Internet Foundation Classes), those alternative APIs will not be in widespread
use for some time, and some will be platform specific. Likewise, we are beginning
to see automated tools for building GUIs in Java; Sun’s JavaBeans effort promises
to make such tools much more widespread. (In fact, the biggest changes in Java
1.1 prepare the way for using the various AWT components as JavaBeans.) How-
ever, even with automated tools and JavaBeans in the future, an in-depth knowl-
edge of AWT is essential for the practicing Java programmer.

The major problem facing Java developers these days is that AWT is a moving tar-
get. Java 1.0.2 is being replaced by Java 1.1, with many significant new features. Java
1.1 was released on February 18, 1997, but it isn’t clear how long it will take for 1.1
to be accepted in the market. The problem facing developers is not just learning
about the new features and changes in Java 1.1, but also knowing when they can
afford to use these new features in their code. In practice, this boils down to one
question: when will Netscape Navigator support Java 1.1?7 Rumor has it that the
answer is “as soon as possible’—and we all hope this rumor is correct. But given
the realities of maintaining a very complex piece of software, and the fact that
Netscape is currently in the beta process for Navigator 4.0, there’s a possibility that
“as soon as possible” and “soon” aren’t the same thing. In other words, you should
expect Java 1.0.2 to stick around for a while, especially since Web users won’t all
replace their browsers as soon as Navigator has 1.1 support.

XV

Xvi PREFACE

This state of affairs raises obvious problems for my book. Nothing would have
made me happier than to write a book that covered AWT 1.1 only. It would be sig-
nificantly shorter, for one thing, and I wouldn’t have to spend so much effort
pointing out which features are present in which release. But that’s not the current
reality. For the time being, programmers still need to know about 1.0.2. Therefore,
this book covers both releases thoroughly. There are many examples using 1.0.2;
many more examples that require 1.1; and more examples showing you how to
update 1.0.2 code to use 1.1’s features.

Sun has done a good job of maintaining compatibility between versions: 1.0 code
runs under Java 1.1, with very few exceptions. All of the 1.0 examples in this book
have been tested under Java 1.1. However, Java 1.1—and particularly, AWT
1.1—offer many advantages over older releases. If nothing else, I hope this book
convinces you that you should be looking forward to the day when you can forget
about writing code for Java 1.0.2.

New Features of AWT in Java 1.1

Having spent all this time talking about 1.0.2 and 1.1 and the transitional state
we’re currently in and having alluded briefly to the advantages of Java 1.1, you
deserve a brief summary of what has changed. Of course, you'll find the details in
the book.

Improved event handling
Java 1.1 provides a completely new event model. Instead of propagating events
to all objects that might possibly have an interest, objects in Java 1.1 register
their interest in particular kinds of events and get only the events they’re inter-
ested in hearing. The old event model is still supported, but the new model is
much more efficient.

The new event model is also important in the context of JavaBeans. The old
events were pretty much specific to AWT. The new model has been designed as
a general purpose feature for communication between software components.
Unfortunately, how to use events in this more general sense is beyond the
scope of this book, but you should be aware that it’s possible.

New components and containers
Java 1.1 provides one new component, the PopupMenu, and one new container,
the ScrollPane. Pop-up menus are a staple of modern user interfaces; provid-
ing them fixes a serious omission. ScrollPane makes it trivial to implement
scrolling; in Java 1.0, you had to do scrolling “by hand.” In Java 1.1, you also
get menu shortcuts (i.e., the ability to select menu items using the keyboard),
another standard feature of modern user interfaces.

PREFACE XVii

Java 1.1 also introduces a LightweightPeer, which means that it is possible to
create “lightweight components.” To do so, you subclass Component or Con-
tainer directly; this wasn’t possible in earlier releases. For simple operations,
lightweight components are much more efficient than full-fledged compo-
nents.

Clipboards
Java 1.1 lets you read from and write to the system clipboard and create private
clipboards for use by your programs. The clipboard facility is a down payment
on a larger data transfer facility, which will support drag and drop. (No
promises about when drag and drop will appear.)

Printing
Java 1.1 gives components the ability to print.

The rest
There are many other new features, including more flexible use of cursors; the
ability to use system color schemes, and thus make your program look like
other software in the run-time environment; more image filters to play with;
and the ability to prescale an image.

Deprecated Methods and JavaBeans

One of the biggest changes in Java 1.1 doesn’t concern the feature set at all. This
was the addition of many new methods that differ from a method of Java 1.0 in
name only. There are hundreds of these, particularly in AWT. The new method
names show an important future direction for the AWT package (in fact, all of
Java). The new names obey the naming conventions used by JavaBeans, which
means that all AWT classes are potentially Beans. These conventions make it possi-
ble for an application builder to analyze what a component does based on its pub-
lic methods. For example, the method setFont() changes the value of the
component’s Font property. In turn, this means that you will eventually be able to
build user interfaces and, in some cases, entire applications, inside some other
tool, without writing any Java code at all. An application builder will be able to find
out what it needs to know about any component by looking at the component
itself, and letting you customize the component and its interactions with others.

Comments in the JDK source code indicate that the older method names have
been “deprecated,” which means that you should consider the old names obsolete
and avoid using them; they could disappear in a future release.

Reworking AWT to comply with JavaBeans is both necessary and inevitable. Fur-
thermore, it’s a good idea to get into the habit of following the same conventions
for your own code; the advantages of JavaBeans are much greater than the
inconvenience of changing your coding style.

Xviil PREFACE

Other Changes in Java

Other new features are scattered throughout the rest of the Java classes, most
notably, improvements in the networking and I/O packages and support for inter-
nationalization. Some new features were added to the language itself, of which the
most important is “inner classes.” For the most part, I don’t discuss these changes;
in fact, I stay away from them and base non-AWT code on the 1.0.2. release.
Though these changes are important, covering the new material in AWT is enough
for one book. If I used a new feature at this point, I would feel that I owed you an
explanation, and this book is already long enough. A future edition will update the
code so that it doesn’t rely on any older features.

What This Book Covers

The Java AWT Reference is the definitive resource for programmers working with
AWT. It covers all aspects of the AWT package, in versions 1.0.2 and 1.1. If there
are any changes to AWT after 1.1 (at least two patch releases are expected), we will
integrate them as soon as possible. Watch the book’s Web site
http://www.ora.com/catalog/javawt/ for details on changes.

Specifically, this book completely covers the following packages:

java.awt (1.0 and 1.1)
java.awt.image (1.0 and 1.1)
java.awt.event (new to 1.1)
java.awt.datatransfer (new to 1.1)
java.awt.peer (1.0 and 1.1)
java.applet (1.0 and 1.1)

The book also covers some aspects of the sun.awt package (some interesting and
useful layout managers) and the sun.audio package (some more flexible ways of
working with audio files). It also gives a brief overview of the behind-the-scenes
machinery for rendering images, much of which is in the sun.awt.image package.

Organization

The Java AWT Reference is divided into two large parts. The first part is a thorough
guide to using AWT. Although this guide is organized by class, it was designed to
flow logically, rather than alphabetically. I know that few people read a book like
this from beginning to end, but if you want to, it’s possible. With a few exceptions,
you should be able to read the early chapters without knowing the material that’s
covered in the later chapters. You’ll want to read this section to find out how any
chunk of the AWT package works in detail.

PREFACE Xix

The second part is a set of documentation pages typical of what you find in most
reference sets. It is organized alphabetically by package, and within each package,
alphabetically by class. It is designed to answer questions like “What are the argu-
ments to the FilteredImageSource constructor?” The reference section provides
brief summaries, rather than detailed discussions and examples. When you use a
typical reference book, you're usually trying to look up some detail, rather than
learn how something works from scratch.

In other words, this book provides two views of AWT: terse summaries designed to
help you when you need to look something up quickly, and much more detailed
explanations designed to help you understand how to use AWT to the fullest. In
doing so, it goes well beyond the standard reference manual. A reference manual
alone gives you a great view of hundreds of individual trees; this book gives you the
trees, but also gives you the forest that allows you to put the individual pieces in
context. There are dozens of complete examples, together with background infor-
mation, overview material, and other information that doesn’t fit into the standard
reference manual format.

About the Source Code

The source code for the programs presented in this book is available online. See
http://www.ora.com/catalog/javawt/ for downloading instructions.

Obtaining the Example Programs

The example programs in this book are available electronically in a number of
ways: by FTP, Ftpmail, BITFTP, and UUCP. The cheapest, fastest, and easiest ways
are listed first. If you read from the top down, the first one that works for you is
probably the best. Use FTP if you are directly on the Internet. Use Ftpmail if you
are not on the Internet but can send and receive electronic mail to Internet sites
(this includes CompuServe users). Use BITFTP if you send electronic mail via BIT-
NET. Use UUCP if none of the above works.

FTP

To use FTP, you need a machine with direct access to the Internet. A sample ses-
sion is shown, with what you should type in boldface.

% ftp ftp.ora.com

Connected to ftp.ora.com.

220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.
Name (ftp.ora.com:yourname): anonymous

331 Guest login ok, send domain style e-mail address as password.
Password: yourname@yourhost.cam (useyour user name and host here)

230 Guest login ok, access restrictions apply.

ftp> cd /published/oreilly/java/awt

XX PREFACE

250 CWD command successful.

ftp> binary (Very important! You must specify binary transfer for compressed files.)
200 Type set to I.

ftp> get examples.tar.gz

200 PORT command successful.

150 Opening BINARY mode data connection for examples.tar.gz.

226 Transfer complete.

ftp> quit

221 Goodbye.

%

The file is a compressed tar archive; extract the files from the archive by typing:
% zcat examples.tar.gz | tar xvf -

System V systems require the following {ar command instead:
% zcat examples.tar.gz | tar xof -

If zcat is not available on your system, use separate gunzip and tar commands.

% gunzip examples.tar.gz
% tar xvf examples.tar

Ftpmail

Ftpmail is a mail server available to anyone who can send electronic mail to, and
receive it from, Internet sites. This includes any company or service provider that
allows email connections to the Internet. Here’s how you do it.

You send mail to fipmail@online.ora.com. (Be sure to address the message to fipmail
and not to fip.) In the message body, give the FTP commands you want to run. The
server will run anonymous FTP for you and mail the files back to you. To get a
complete help file, send a message with no subject and the single word “help” in
the body. The following is a sample mail session that should get you the examples.
This command sends you a listing of the files in the selected directory and the
requested example files. The listing is useful if there’s a later version of the exam-
ples you’re interested in.

% mail ftpmail@online.ora.com

Subject:

reply-to yourname@yourhost.com Where you want files mailed
open

cd /published/oreilly/java/awt

dir

mode binary

uuencode

get examples.tar.gz

quit

PREFACE plo:el

A signature at the end of the message is acceptable as long as it appears after
“quit‘”

BITFTP

BITFTP is a mail server for BITNET users. You send it electronic mail messages
requesting files, and it sends you back the files by electronic mail. BITFTP currently
serves only users who send it mail from nodes that are directly on BITNET, EARN,
or NetNorth. BITFTP is a public service of Princeton University. Here’s how it
works.

To use BITFTP, send mail containing your FTP commands to BITFTP@PUCC. For a
complete help file, send HELP as the message body.

The following is the message body you send to BITFTP:

FTP ftp.uu.net NETDATA

USER anonymous

PASS yourname@yourhost.edu Put your Internet email address here (not your BITNET address)
CD /published/oreilly/java/awt

DIR

BINARY

GET examples.tar.gz

QUIT

Once you’ve got the desired file, follow the directions under FTP to extract the
files from the archive. Since you are probably not on a UNIX system, you may need
to get versions of uudecode, uncompress, atob, and tar for your system. VMS, DOS, and
Mac versions are available. The VMS versions are on gatekeeper.dec.com in /pub/VMS.

uucp

UUCP is standard on virtually all UNIX systems and is available for IBM-compatible
PCs and Apple Macintoshes. The examples are available by UUCP via modem from
UUNET; UUNET’s connect-time charges apply.

If you or your company has an account with UUNET, you have a system somewhere
with a direct UUCP connection to UUNET. Find that system, and type:

uucp uunet\!~/published/oreilly/java/awt/examples.tar.gz yourhost\!~/yourname/

The backslashes can be omitted if you use the Bourne shell (sk) instead of c¢sh. The
file should appear some time later (up to a day or more) in the directory
Jusr/spool/uucppublic/yourname. If you don’t have an account, but would like one so
that you can get electronic mail, contact UUNET at 703-204-8000.

Once you’ve got the desired file, follow the directions under FTP to extract the
files from the archive.

Xxii PREFACE

Other Java Books and Resources

This book is part of a series of Java books from O’Reilly & Associates that covers
everything you wanted to know, and then some. The Java AWT Reference is paired
with the Java Fundamental Class Reference to document the entire Core Java API.
Other books in the series provide an introduction (Exploring Java) and document
the virtual machine (Java Virtual Machine), the language (Java Language Reference),
multithreaded programming (Java Threads), and network programming (Java Net-
work Programming), with more to come. Java in a Nutshell is another popular Java
book in the Nutshell series from O’Reilly. For a complete up-to-date list of the
available Java resources, refer to http://www.ora.com/info/java/.

In addition to the resources from O’Reilly, Sun’s online documentation on Java is
maintained at http://www.javasoft.com/nav/download/index.html. Information
on specific Java-capable browsers can be found at their respective Web sites, which
are listed in Table 1. More are sure to be on the way. (Some browsers are platform
specific, while others are multi-platform.)

Table 1: Popular Web Browsers that Support Java

Browser Location

Netscape Navigator http://home.netscape.com/comprod/products/navigator/
Microsoft’s Internet Explorer http://www.microsoft.com/ie

Sun’s HotJava http://www.javasoft.com/HotJava/

Oracle’s PowerBrowser http://www.oracle.com/products/websystem/powerbrowser
Apple’s Cyberdog http://cyberdog.apple.com/

Newsgroups also serve as a discussion area for Java-related topics. The
comp.lang.java group has formally split into several others. The new groups are:

comp.lang.java.advocacy comp.lang.java.machine
comp.lang.java.announce comp.lang.java.programmer

comp.lang.java.beans comp.lang.java.security
comp.lang.java.databases comp.lang.java.setup
comp.lang.java.gui comp.lang.java.softwaretools
comp.lang.java. help comp.lang.java.tech

For folks without time to dig through all the noise, Digital Espresso provides a peri-
odic digest of the newsfeed at http://www.io.org./ mentor/DigitalEspresso.html.
Alist of

PREFACE Xxiil

Java FAQs is at http://www-net.com/java/faq/; one of the most interesting is Cafe
Au Lait, at http://sunsite.unc.edu/javafaq/. (Cafe Au Lait is written by Elliotte
Rusty Harold, author of Java Network Programming.)

Local Java user groups are another good resource. (Having founded one myself,
I’'m biased.) What they offer varies greatly, but unless you look at one, you are
potentially leaving out a vast resource for knowledge and experience. Lists of area
user groups are available from JavaSoft at http://www.javasoft.com/Mail/usr-
grp.html; also check out the Sun User Group’s Special Interest Group for Users of
Java at http://www.sug.org/Java/groups.html. In addition to the usual monthly
meetings and forums, some maintain a mailing list for technical exchanges.

Security is a major issue with Java. If you are interested in reading more about Java
security issues, Princeton University’s Safe Internet Programming Web site at
http://www.cs.princeton.edu/sip/News.html is an excellent resource.

About Java

Java is one of 13,000 islands that makes up Indonesia, whose capital is Jakarta (see
Figure 1). It is home to about 120 million people with an area about 50,000 square
miles. While on the island, you can hear traditional music such as gamelan or
angklung. The island also has a dangerous volcano named Merapi, which makes
up part of the Pacific “Ring of Fire.” In 1891, fossils from Pithecanthropus erectus,
better known as “Java man” (homo javanensis) were discovered on the island by
Eugene Dubois.

Java’s main export is a coffee that is considered spicy and full bodied, with a
strong, slightly acidic flavor. O’Reilly has shown good taste in staying away from the
pervasive coffee theme in its book titles and cover designs. (However, if you’re ever
in Sebastopol, check out the coffee at AromaRoasters in Santa Rosa.)

Conventions Used in This Book

Italic is used for:

* Pathnames, filenames, and program names

e Internet addresses, such as domain names and URLs
Typewriter Font is used for:

* Anything that might appear in a Java program, including keywords, method
names, variables names, class names, and interface names

XX1V PREFACE

BRUNEI

Y |
0
PN
o0

%EOINDONESIA“ 00
= °

JAVA N OCSH CoP 09T

G &[;

XD

o

Indian Ocean

AUSTRALIA

Figure 1: Map of Java, Indonesia

¢ Command lines and options that should be typed verbatim on the screen

® Tags that might appear in an HTML document

To sort out the potential for confusion between different versions, I use the follow-
ing dingbats throughout the book:

* Identifies a method, variable, or constant that is new in Java 1.1.

v Identifies a method from Java 1.0 that has been deprecated. Deprecated meth-
ods are available for compatibility but may disappear in a future release. These
methods are tagged with the @deprecated flag, which causes the Java 1.1 com-
piler to display a warning message if you use them.

Request for Comments

We invite you to help us improve the book. If you have an idea that could make
this a more useful resource, or if you find a bug in an example program or an
error in the text, please let us know by sending email to bookquestions@ora.com.

As Java continues to evolve, we may find it necessary to issue errata for this book or
to release updated examples or reference information. This information will be
found at the book’s Web site http://www.ora.com/ catalog/javawt/ .

PREFACE XXV

Acknowledgments

I am grateful to many people who helped me along while working on this book,
especially my wife, Lisa, and her patience during this whole process. A special
thanks goes to our Old English sheep dog, Sir Dudley Fuzzybuns McDulff for gladly
sharing the house with me during the entire process. I am grateful to the people at
Sun who helped me become involved with Java so early on: Pete Seymour, Anne
Pettitt, Tom McGinn, and Jen Sullivan-Volpe. I am also grateful to my employers,
Rapid Systems Solutions (when I started) and the MageLang Institute (when I fin-
ished), who let me work on the book. Another thanks goes out to Dale Carnegie
Training and John Captain, whose human relations class helped me feel comfort-
able with public speaking, without which I would not have become immersed in
Java so quickly.

Particular thanks are owed to the technical reviewers: Yadu Zambre, Andy Cohen,
David Flanagan, Jen Sullivan-Volpe, and Dan Jacobs. All of them performed an
invaluable service with their thorough reviews and helped spot my errors and
omissions. It seemed everyone contributed many bits of text that eventually found
their way into the final product.

Random thanks go out to the many people on the Internet who I never met but
provided valuable information, from the newsgroups and mailing lists: Simon
“FISH” Morris, Mike Gallant, Eric Link, and many others whose names I did not
write down.

Bits and pieces of various figures were borrowed from David Flanagan’s book, Java
in a Nutshell, and Patrick Niemeyer’s and Joshua Peck’s book, Exploring Java. The
class hierarchy diagrams come from David’s book. These diagrams were based on
similar diagrams by Charles L. Perkins. His original efforts are available at
http://rendezvous.com/java/.

For the gang at O’Reilly who gave me the opportunity to write this work, I thank
everyone who helped along the way. For series editor, Mike Loukides, thanks for
all your time and effort, especially with the early drafts. Best of luck to Mike and
Judy with their new bundle of joy, Alexandra. Special thanks to Jonathan Knudsen
who updated the reference section for the new release. Thanks to Nancy Crump-
ton and John Files for book production and project management, and to Trina
Jackson, Paula Ferguson, and Andy Oram who helped during the review stages.
Thanks also to the O’Reilly Tools group, Ellen Siever, Erik Ray, and Lenny Muell-
ner; to Seth Maislin, the indexer; and David Futato and Danny Marcus who han-
dled the proofreading and QCs.

The final product is much better because of their help.

In this chapter:
* Components
* Peers

* Layouts

* Containers

* And the Rest

* Summary

Abstract Window

Toolkit Overview

For years, programmers have had to go through the hassles of porting software
from BSD-based UNIX to System V Release 4-based UNIX, from OpenWindows to
Motif, from PC to UNIX to Macintosh (or some combination thereof), and
between various other alternatives, too numerous to mention. Getting an applica-
tion to work was only part of the problem; you also had to port it to all the plat-
forms you supported, which often took more time than the development effort
itself. In the UNIX world, standards like POSIX and X made it easier to move appli-
cations between different UNIX platforms. But they only solved part of the prob-
lem and didn’t provide any help with the PC world. Portability became even more
important as the Internet grew. The goal was clear: wouldn’t it be great if you
could just move applications between different operating environments without
worrying about the software breaking because of a different operating system, win-
dowing environment, or internal data representation?

In the spring of 1995, Sun Microsystems announced Java, which claimed to solve
this dilemma. What started out as a dancing penguin (or Star Trek communicator)
named Duke on remote controls for interactive television has become a new
paradigm for programming on the Internet. With Java, you can create a program
on one platform and deliver the compilation output (byte-codes/class files) to
every other supported environment without recompiling or worrying about the
local windowing environment, word size, or byte order. The first generation of Java
programs consisted mostly of fancy animation applets that ran in a web browser
like Netscape Navigator, Internet Explorer, or HotJava. We’re beginning to see the
next generation now: powerful distributed applications in areas ranging from com-
merce to medical imaging to network management. All of these applications
require extreme portability: Joe’s Online Bait Shop doesn’t have the time or

2 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

energy to port its “Online Bait Buyer” program to every platform on the Internet
but doesn’t want to limit its market to a specific platform. Java neatly solves their
problem.

Windowing systems present the biggest challenges for portability. When you move
an application from Windows to the Macintosh, you may be able to salvage most of
the computational guts, but you’ll have to rewrite the window interface code com-
pletely. In Java, this part of the portability challenge is addressed by a package
called AWT, which stands for Abstract Window Toolkit (although people have
come up with many other expansions). AWT provides the magic of maintaining
the local look and feel of the user’s environment. Because of AWT, the same appli-
cation program can look appropriate in any environment. For example, if your
program uses a pull-down list, that list will look like a Windows list when you run
the program under Windows; a Macintosh list when you run the program on a
Mac; and a Motif list when you run the program on a UNIX system under Motif.
The same code works on all platforms. In addition to providing a common set of
user interface components, AWT provides facilities for manipulating images and
generating graphics.

This book is a complete programmer’s guide and reference to the java.awt pack-
age (including java.awt.image, java.awt.event, java.awt.datatransfer, and
java.awt.peer). It assumes that you're already familiar with the Java language and
class libraries. If you aren’t, Exploring Java, by Pat Niemeyer and Josh Peck, pro-
vides a general introduction, and other books in the O’Reilly Java series provide
detailed references and tutorials on specific topics. This chapter provides a quick
overview of AWT: it introduces you to the various GUI elements contained within
the java.awt package and gives you pointers to the chapters that provide more
specific information about each component. If you’re interested in some of the
more advanced image manipulation capabilities, head right to Chapter 12, Image
Processing. The book ends with a reference section that summarizes what you need
to know about every class in AWT.

In using this book, you should be aware that it covers two versions of AWT: 1.0.2
and 1.1. The Java 1.1 JDK (Java Developer’s Kit) occurred in December 1996. This
release includes many improvements and additions to AWT and is a major step for-
ward in Java’s overall functionality. It would be nice if I could say, “Forget about
1.0.2, it’s obsolete—use this book to learn 1.1.” However, I can’t; at this point,
since browsers (Netscape Navigator in particular) still incorporate 1.0.2, and we
have no idea when they will incorporate the new release. As of publication, Naviga-
tor 4.0 is in beta test and incorporates 1.0.2. Therefore, Java release 1.0.2 will con-
tinue to be important, at least for the foreseeable future.

1.1 COMPONENTS 3

In this summary, we’ll point out new features of Java 1.1 as they come up. However,
one feature deserves mention and doesn’t fit naturally into an overview. Many of
the methods of Java 1.0.2 have been renamed in Java 1.1. The old names still work
but are “deprecated.” The new names adhere strictly to the design patterns dis-
cussed in the JavaBeans documentation:* all methods that retrieve the value of an
object’s property begin with “get,” all methods that set the value of a property
begin with “set,” and all methods that test the value of some property begin with
“is.” For example, the size() method is now called getSize(). The Java 1.1 com-
piler issues warnings whenever you used a deprecated method name.

1.1 Components

Modern user interfaces are built around the idea of “components”: reusable gad-
gets that implement a specific part of the interface. They don’t need much intro-
duction: if you have used a computer since 1985 or so, you’re already familiar with
buttons, menus, windows, checkboxes, scrollbars, and many other similar items.
AWT comes with a repertoire of basic user interface components, along with the
machinery for creating your own components (often combinations of the basic
components) and for communicating between components and the rest of the
program.

The next few sections summarize the components that are part of AWT. If you're
new to AWT, you may find it helpful to familiarize yourself with what’s available
before jumping into the more detailed discussions later in this book.

1.1.1 Static Text

The Label class provides a means to display a single line of text on the screen.
That’s about it. They provide visual aids to the user: for example, you might use a
label to describe an input field. You have control over the size, font, and color of
the text. Labels are discussed in Section 5.2. Figure 1-1 displays several labels with
different attributes.

1.1.2 User Input

Java provides several different ways for a user to provide input to an application.
The user can type the information or select it from a preset list of available
choices. The choice depends primarily on the desired functionality of the pro-
gram, the user-base, and the amount of back-end processing that you want to do.

* http://splash.javasoft.com/beans/spec.html

4 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

E%;,Applel Yiewer: labels _ (O] x|
Applet

Dialog Hehlvetica TimesRoman
Courier Dialoginput

CGOR KM E) S &

Applet started.

Figure 1-1: Multiple Label instances

1.1.2.1 The TextField and TextArea classes

Two components are available for entering keyboard input: TextField for single
line input and TextArea for multi-line input. They provide the means to do things
from character-level data validation to complex text editing. These are discussed in
much more detail in Chapter 8, Input Fields. Figure 1-2 shows a screen that con-
tains various TextField and TextArea components.

E%?,Applel Yiewer: texts _ (O] x|

Applet

IEmply String

| Hele Prorkd

ScratchPadonlce =l

" o

Applet started.

Figure 1-2: lextlField and TextArea elements

1.1.2.2 The Checkbox and CheckboxGroup classes

The remaining inputoriented components provide mechanisms for letting the
user select from a list of choices. The first such mechanism is Checkbox, which lets
you select or deselect an option. The left side of the applet in Figure 1-3 shows a
checkbox for a Dialog option. Clicking on the box selects the option and makes

1.1 COMPONENTS 5

the box change appearance. A second click deselects the option.

The CheckboxGroup class is not a component; it provides a means for grouping
checkboxes into a mutual exclusion set, often called a set of radio buttons. Select-
ing any button in the group automatically deselects the other buttons. This behav-
ior is useful for a set of mutually exclusive choices. For example, the right side of
the applet in Figure 1-3 shows a set of checkboxes for selecting a font. It makes
sense to select only one font at a time, so these checkboxes have been put in a
CheckboxGroup.

[E3 Applet Viewer: checkboxes [H[=] EX " = |Applet Viewer: checkboxes.class
Applet fplet

" Helvetica

" TimesAoman +w Helvetica

[T Dialog " Courier ~wTimesRoman
¢ Dialoglnput dDialeg « Courier
~ ZapfDingbats ~ Dialeglnput

wZzapfDingbats

Applet started.

IP.[:nplet started,
Windows Motif
Figure 1-3: Examples of Checkbox and CheckboxGroup

The appearance of a checkbox varies from platform to platform. On the left, Fig-
ure 1-3 shows Windows; the right shows Motif. On most platforms, the appearance
also changes when a checkbox is put into a CheckboxGroup.

1.1.2.3 The Choice class

Checkbox and CheckboxGroup present a problem when the list of choices becomes
long. Every element of a CheckboxGroup uses precious screen real estate, which
limits the amount of space available for other components. The Choice class was
designed to use screen space more efficiently. When a Choice element is displayed
on the screen, it takes up the space of a single item in the list, along with some
extra space for decorations. This leaves more space for other components. When
the user selects a Choice component, it displays the available options next to or
below the Choice. Once the user makes a selection, the choices are removed from
the screen, and the Choice displays the selection. At any time, only one item in a
Choice may be selected, so selecting an item implicitly deselects everything else.
Section 9.1 explores the details of the Choice class. Figure 1-4 shows examples of
open (on the right of the screens) and closed (on the left) Choice items in
Windows 95 and Motif.

6 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

E‘g’ghpplel Yiewer: choicebox

Applet

IDiaIug j Dialog j
Dialog

¥ﬂ;§gﬁ?ﬂan =] Applet Yiewer: choicebox B
Courier
z Applet

ZapfDingbats

Applet started. Dialog _i | Dialeg =

Windows Helvetica

TimesRoman
Courier
Dialeglnput
ZapfDingbats

Motif Applet started.

Figure 1-4: Open and closed Choice items

1.1.2.4 The List class

Somewhere between Choice and CheckboxGroup in the screen real estate business
is a component called List. With a List, the user is still able to select any item.
However, the programmer recommends how many items to display on the screen
at once. All additional choices are still available, but the user moves an attached
scrollbar to access them. Unlike a Choice, a List allows the user to select multiple
items. Section 9.2 covers the List component. Figure 1-5 shows List components
in different states.

ng,.hpplel Yiewer: listex M=
Applet

Dialog a | |Courier -
Helvetica Dialoglnput
TimezRoman > | |ZapiDingbats ﬂ

Helvetica AI
TimezRoman

-

Applet started.

Figure 1-5: List components in different states

1.1 COMPONENTS 7

1.1.2.5 Menus

Most modern user interfaces use menus heavily; therefore, it’s no surprise that Java
supports menus. As you’d expect, Java menus look like the menus in the window-
ing environment under which the program runs. Currently, menus can only
appear within a Frame, although this will probably change in the future. A Menu is a
fairly complex object, with lots of moving parts: menu bars, menu items, etc. Java
1.1 adds hot keys to menus, allowing users to navigate a menu interface using key-
board shortcuts. The details of Menu are explored in Chapter 10, Would You Like to
Choose from the Menu? Figure 1-6 shows frames with open menus for both Windows
and Motif. Since tear-off menus are available on Motif systems, its menus look and
act a little differently. Figure 1-6 also includes a tear-off menu. The shortcuts
(Ctrl+F8) are newly supported in Java 1.1.

* Menu Example !EIE rﬂ Menu Example
File
File | |
Mew'Web Browser Ctl+F8 P File Tear—off
MNew Mail Message Cirl+Shift+F8 New beb Browser 1
MNew Folder New Hail Hessage M
= Mew Folder Hew Hail MHezzage
it Close Mew Folder
Ouit Close
Quit
l |
Windows Motif Tear-off

Figure 1-6: Examples of menus

1.1.2.6 The PopupMenu class

The PopupMenu class is new to Java 1.1. Pop-up menus can be used for context-sen-
sitive, component-level menus. Associated with each Component can be its own pop-
up menu. The details of creating and working with the PopupMenu class and the
fun time you have catching their events are covered in Chapter 10, Would You Like
to Choose from the Menu? Figure 1-7 shows an example of a pop-up menu.

1.1.3 Event Triggers

Java provides two components whose sole purpose is to trigger actions on the
screen: Button and Scrollbar. They provide the means for users to signal that
they are ready to perform an operation. (Note that all components except labels
generate events; I'm singling out buttons and scrollbars because their only pur-
pose is to generate events.)

CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

{Applet Viewer: . M=l E3

Applet

Select Al

Lndo

)
Eejer
Faste
[Delete

Figure 1-7: A Pop-up menu

1.1.3.1 The Scrollbar class

Most people are familiar with scrollbars. In a word processor or a web browser,
when an image or document is too large to fit on the screen, the scrollbar allows
the user to move to another area. With Java, the Scrollbar performs similarly.
Selecting or moving the scrollbar triggers an event that allows the program to pro-
cess the scrollbar movement and respond accordingly. The details of the Scroll-
bar are covered in Section 11.1. Figure 1-8 shows horizontal and vertical scrollbars.

E%'Applel Viewer: scroll
Applet

IS [=] B3

j;l\%l=’_P

Applet Viewer: gri’

Four

r

SEMEN

1

Applet started.

Figure 1-8: Horizontal and vertical scrollbars

Note that a scrollbar is just that. It generates events when the user adjusts it, but
the program using the scrollbar is responsible for figuring out what to do with the
events, such as displaying a different part of an image or the text, etc. Several of

1.1 COMPONENTS 9

the components we’ve discussed, like TextArea and List, have built-in scrollbars,
saving you the trouble of writing your own code to do the actual scrolling. Java 1.1
has a new container called a ScrollPane that has scrolling built in. By using a
scroll pane, you should be able to avoid using scroll bars as a positioning mecha-
nism. An example of ScrollPane appears later in this chapter.

1.1.3.2 The Button class

A button is little more than a label that you can click on. Selecting a button trig-
gers an event telling the program to go to work. Section 5.3 explores the Button
component. Figure 1-9 shows Button examples.

=3 Applet Vie... [H[=]

Applet

Dialog | Helvetica |

TimezRoman |

Courier | Dialoglnput |

ZapliDingbats |

Applet started.

Figure 1-9: Various buttons

The Java Management API includes a fancier button (ImageButton) with pictures
rather than labels. For the time being, this is a standard extension of Java and not
in the Core API. If you don’t want to use these extensions, you’ll have to imple-
ment an image button yourself.

1.1.4 Expansion
1.1.4.1 The Canvas class

The Canvas class is just a blank area; it doesn’t have any predefined appearance.
You can use Canvas for drawing images, building new kinds of components, or cre-
ating super-components that are aggregates of other components. For example,
you can build a picture button by drawing a picture on a Canvas and detecting
mouse click events within the area of the Canvas. Canvas is discussed in Section
5.5.

10 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

1.2 Peers

Java programs always have the look and feel of the platform they are running on. If
you create your program on a UNIX platform and deliver it to Microsoft Windows
users, your program will have Motif’s look and feel while you're developing it, but
users will see Microsoft Windows objects when they use it. Java accomplishes this
through a peer architecture, shown in Figure 1-10.

Native Platform Objects |«—— Peer Interfaces |<«—— Java Components
— —

Win32 / Motif / Mac / ... User Subclasses

Figure 1-10: Peer architecture

There are several layers of software between your Java program and the actual
screen. Let’s say you are working with a scrollbar. On your screen, you see the
scrollbar that’s native to the platform you’re using. This system-dependent scroll-
bar is the “peer” of the Java Scrollbar object. The peer scrollbar deals with events
like mouse clicks first, passing along whatever it deems necessary to the corre-
sponding Java component. The peer interface defines the relationship between
each Java component and its peer; it is what allows a generic component (like a
Scrollbar) to work with scrollbars on different platforms.

Peers are described in Chapter 15, Toolkit and Peers. However, you rarely need to
worry about them; interaction between a Java program and a peer takes place
behind the scenes. On occasion, you need to make sure that a component’s peer
exists in order to find out about platform-specific sizes. This process usually
involves the addNotify () method.

1.3 Layouts

Layouts allow you to format components on the screen in a platform-independent
way. Without layouts, you would be forced to place components at explicit loca-
tions on the screen, creating obvious problems for programs that need to run on
multiple platforms. There’s no guarantee that a TextArea or a Scrollbar or any
other component will be the same size on each platform; in fact, you can bet they
won’t be. In an effort to make your Java creations portable across multiple plat-
forms, Sun created a LayoutManager interface that defines methods to reformat

1.3 LaAvourTs 11

the screen based on the current layout and component sizes. Layout managers try
to give programs a consistent and reasonable appearance, regardless of the plat-
form, the screen size, or actions the user might take.

The standard JDK provides five classes that implement the LayoutManager inter-
face. They are FlowLayout, GridLayout, Borderlayout, CardLayout, and Grid-
BagLayout. All of these layouts are covered in much greater detail in Chapter 7,
Layouts. This chapter also discusses how to create complex layouts by combining
layout managers and how to write your own LayoutManager. The Java 1.1 JDK
includes the LayoutManager? interface. This interface extends the LayoutManager
interface for managers that provide constraint-based layouts.

1.3.1 FlowLayout

The FlowLayout is the default layout for the Panel class, which includes its most
famous subclass, Applet. When you add components to the screen, they flow left to
right (centered within the applet) based upon the order added and the width of
the applet. When there are too many components to fit, they “wrap” to a new row,
similar to a word processor with word wrap enabled. If you resize an applet, the
components’ flow will change based upon the new width and height. Figure 1-11
shows an example both before and after resizing. Section 7.2 contains all the
FlowLayout details.

X

E‘g’,i'.hpplel Viewer: Card_._ [l[=] E3 E%-_%Ap... =] E3

Applet Applet
ﬁl il ll test | applet | M is 1'
test | applet |

flow] flon 3

Applet started. Applet started.

Big Narrow

Figure 1-11: A FlowLayout before and after resizing

1.3.2 GridLayout

The GridLayout is widely used for arranging components in rows and columns. As
with FlowLayout, the order in which you add components is relevant. You start at
row one, column one, move across the row until it’s full, then continue on to the
next row. However, unlike FlowLayout, the underlying components are resized to

12 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

fill the row-column area, if possible. GridLayout can reposition or resize objects
after adding or removing components. Whenever the area is resized, the compo-
nents within it are resized. Figure 1-12 shows an example before and after resizing.
Section 7.4 contains all the details about GridLayout.

[} Applet Viewer: Card... [H[=] B3 EiAp... M=
Applet Applet
thiz 53 a thiz | is a
test applet test |apple
gnd j Igrid j
Applet started. Applet started.
Big Narrow

Figure 1-12: A GridLayout before and after resizing

1.3.3 BorderLayout

BorderLayout is one of the more unusual layouts provided. It is the default layout
for window, along with its children, Frame and Dialog. BorderlLayout provides five
areas to hold components. These areas are named after the four different borders
of the screen, North, South, East, and West, with any remaining space going into
the Center area. When you add a component to the layout, you must specify which
area to place it in. The order in which components are added to the screen is not
important, although you can have only one component in each area. Figure 1-13
shows a BorderLayout that has one button in each area, before and after resizing.
Section 7.3 covers the details of the BorderLayout.

1.3.4 CardLayout

The CardLayout is a bit on the strange side. A CardLayout usually manages several
components, displaying one of them at a time and hiding the rest. All the compo-
nents are given the same size. Usually, the CardLayout manages a group of Panels
(or some other container), and each Panel contains several components of its
own. With a little work, you can use the Cardlayout to create tabbed dialog boxes
or property sheets, which are not currently part of AWT. CardLayout lets you assign
names to the components it is managing and lets you jump to a component by
name. You can also cycle through components in order. Figure 1-11, Figure 1-12,
and Figure 1-13 show multiple cards controlled by a single CardLayout. Selecting
the Choice button displays a different card. Section 7.5 discusses the details of
CardLayout.

1.4 CONTAINERS 13

2} Applet Viewer: Card... EiAp... M=
Applet Applet
thiz thiz
is applet test is | applet | test
a a
border j I border hd |
Applet started. Applet started.
Big Narrow

Figure 1-13: A BorderLayout

1.3.5 GridBaglLayout

GridBaglayout is the most sophisticated and complex of the layouts provided in
the development kit. With the GridBaglayout, you can organize components in
multiple rows and columns, stretch specific rows or columns when space is avail-
able, and anchor objects in different corners. You provide all the details of each
component through instances of the GridBagConstraints class. Figure 1-14 shows
an example of a GridBaglayout. GridBaglayout and GridBagConstraints are dis-
cussed in Section 7.6 and Section 7.7.

E3Applet V.. M= B3

Applet
One | Two Three

Four

- Five
Six | Seven

Applet started.

Figure 1-14: A GridBagl.ayout

1.4 Containers

A Container is a type of component that provides a rectangular area within which
other components can be organized by a LayoutManager. Because Container is a
subclass of Component, a Container can go inside another Container, which can go
inside another Container, and so on, like Russian nesting dolls. Subclassing Con-
tainer allows you to encapsulate code for the components within it. This allows
you to create reusable higher-level objects easily. Figure 1-15 shows the compo-
nents in a layout built from several nested containers.

14 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

Eg_{ihpplet Yiewer: multiimg
Applet
North [Label ||
TextAreg ——f——— Button
Gridlayout Panel Button Fast
BorderLayout Panel —— Button
e
South
FlowLayout Panel | | Button Button Button
Applet started.

Figure 1-15: Components within containers

1.4.1 Panels

A Panel is the basic building block of an applet. It provides a container with no
special features. The default layout for a Panel is FlowLayout. The details of Panel
are discussed in Section 6.2. Figure 1-16 shows an applet that contains panels
within panels within panels.

E%'Applet Yiewer: panelex M= E3

Applet

Di|
He |
i
o
i |
Za|

- | L |2

Di|He| Ti| Co| Di | £Za Di|He| Ti| Co| Di| Za

=]

EEEEEE

™

Applet started.

Figure 1-16: A multilevel panel

1.4.2 Windows

A window provides a top-level window on the screen, with no borders or menu bar.
It provides a way to implement pop-up messages, among other things. The default
layout for a Window is BorderLayout. Section 6.4 explores the Window class in
greater detail. Figure 1-17 shows a pop-up message using a Window in Microsoft
Windows and Motif.

1.4 CONTAINERS 15

. .

Windows Motif

Figure 1-17: Pop-up windows

1.4.3 Frames

A Frame is a Window with all the window manager’s adornments (window title, bor-
ders, window minimize/maximize/close functionality) added. It may also include
a menu bar. Since Frame subclasses Window, its default layout is BorderLayout.
Frame provides the basic building block for screen-oriented applications. Frame
allows you to change the mouse cursor, set an icon image, and have menus. All the
details of Frame are discussed in Section 6.5. Figure 1-18 shows an example Frame.

g_?, My Frame

Figure 1-18: A frame

16 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

1.4.4 Dialog and FileDialog

A Dialog is a Window that accepts input from the user. BorderLayout is the default
layout of Dialog because it subclasses Window. A Dialog is a pop-up used for user
interaction; it can be modal to prevent the user from doing anything with the
application before responding. A FileDialog provides a prebuilt Dialog box that
interacts with the filesystem. It implements the Open/Save dialog provided by the
native windowing system. You will primarily use FileDialog with applications since
there is no guarantee that an applet can interact with the local filesystem.
(Netscape Navigator will throw an exception if you try to use it.) The details of
Dialog are revealed in Section 6.6, while FileDialog is discussed in Section 6.7.
Figure 1-19 shows sample Dialog and FileDialog boxes.

! Open File...
Filter
fhomesiazukow /book/%
Direct: Files

border.gif
button.class
butten.gif
butten.html
button.java
CardlayoutTest.class
CardLayoutTest html

L_L-

o s |

Dialog 7 |CardlayoutTestjava |,
Fii R JE—
(selection
Bpen e 21 | fhome/iazukow/book
- omefjazukow/books
Loak jr: Ia Awtcode j il IE__
glowbuttar.java @ Hellow™1 jug.class |3
Girid |8 Hellaw-z = || open | Filter | Cancel |
gridbag.claszs helloworld.java jug.java @
Gridbag horizbag.class uaTextField. class
gridbag & horizbag @ Labels E Motif FileDiang
gridbag.java horizbag.java £ labels E

1 o
File name: Ichoicebox Open I

Files of ype: [N | Cancel

Windows FileDialog

Figure 1-19: Examples of Dialog and FileDialog boxes

1.5 AND THE REST 17

1.4.5 ScrollPane

Java 1.1 introduces the ScrollPane container. In version 1.0, if you want to have a
scrolling area (for example, to display an image that won'’t fit onto the screen),
you create a panel using BorderLayout that contains scrollbars on the right and
bottom, and display part of the image in the rest of the screen. When the user
scrolls, you capture the event, figure out what part of the image to display, and
update the screen accordingly. Although this works, its performance is poor, and
it’s inconvenient. With version 1.1 of Java, you can tell the ScrollPane what needs
to scroll; it creates the scrollbars and handles all the events automatically. Section
11.4 covers the ScrollPane; Figure 1-20 shows a ScrollPane. Chapter 11, Scrolling,

covers the Adjustable interface that Scrollbar implements and ScrollPane uti-
lizes.

t Applet Yiewer: scroll I [=] 3

Applet
n-2 | Button-3 | Button-4 | Button5 | 2
n-10 | Buiton-11 | Button-12 | Button-13
n-18 | Button-19 | Button-20 | Button-21
r-26 | Button-27 | Button-28 | Button-29 | —
n-34 | Button-35 | Button-36 | Button-37

A _—

Applet started.

Figure 1-20: A ScrollPane

1.5 And the Rest

Several of the remaining classes within java.awt are important to mention here

but did not fit well into a general category. The following sections are a grab bag
that summarize the remaining classes.

1.5.1 Drawing and Graphics

Java provides numerous primitives for drawing lines, squares, circles, polygons,
and images. Figure 1-21 shows a simple drawing. The drawing components of AWT
are discussed in Chapter 2, Simple Graphics.

The Font, FontMetrics, Color, and SystemColor classes provide the ability to alter
the displayed output. With the Font class, you adjust how displayed text will
appear. With FontMetrics, you can find out how large the output will be, for the

18 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

specific system the user is using. You can use the Color class to set the color of text
and graphics. SystemColor is new to Java 1.1; it lets you take advantage of desktop
color schemes. These classes are discussed in Chapter 3, Fonts and Colors.

E%'Applet Yiewer: star H=] E3

Applet

Hi

Applet started.

Figure 1-21: A simple drawing

AWT also includes a number of classes that support more complex graphics
manipulations: displaying images, generating images in memory, and transforming
images. These classes make up the package java.awt.image, which is covered in
Chapter 12.

1.5.2 Events

Like most windows programming environments, AWT is event driven. When an
event occurs (for example, the user presses a key or moves the mouse), the envi-
ronment generates an event and passes it along to a handler to process the event.
If nobody wants to handle the event, the system ignores it. Unlike some windowing
environments, you do not have to provide a main loop to catch and process all the
events, or an infinite busy-wait loop. AWT does all the event management and pass-
ing for you.

Probably the most significant difference between versions 1.0.2 and 1.1 of AWT is
the way events work. In older versions of Java, an event is distributed to every com-
ponent that might conceivably be interested in it, until some component declares
that it has handled the event. This event model can still be used in 1.1, but there is
also a new event model in which objects listen for particular events. This new
model is arguably a little more work for the programmer but promises to be much
more efficient, because events are distributed only to objects that want to hear
about them. It is also how JavaBeans works.

1.6 SUMMARY 19

In this book, examples that are using the older (1.0.2) components use the old
event model, unless otherwise indicated. Examples using new components use the
new event model. Don’t let this mislead you; all components in Java 1.1 support
the new event model. The details of Event for both version 1.0.2 and 1.1 can be
found in Chapter 4, Events.

1.5.3 Applets

Although it is not a part of the java.awt package, the Core Java API provides a
framework for applet development. This includes support for getting parameters
from HTML files, changing the web page a browser is displaying, and playing
audio files. Chapter 14, And Then There Were Applets, describes all the details of the
java.applet package. Because audio support is part of java.applet, portable
audio playing is limited to applets. Chapter 14 also shows a nonportable way to
play audio in applications. Additional audio capabilities are coming to the Java
Core APl in the announced extensions.

1.5.4 Clipboards

In Java 1.1, programs can access the system clipboard. This process makes it easier
to transfer (cut, copy, and paste) data between various other sources and your Java
programs and introduces developers to the concepts involved with JavaBeans.
Chapter 16, Data Transfer, describes the java.awt .datatransfer package.

1.5.5 Printing

Java 1.1 adds the ability to print. Adding printing to an existing program is fairly
simple: you don’t have to do much beside adding a Print menu button. Chapter
17, Printing, describes these capabilities.

1.6 Summary

The java.awt package provides a great deal of functionality and flexibility. The
package goes well beyond the basics presented in this chapter. Do not be intimi-
dated by the vast libraries available to you in Java. With the help of this book, you
should get an excellent grasp of the java.awt, java.awt.image, java.awt.data-
transfer, java.awt.event, and java.applet packages, along with some pieces of
the proprietary sun.awt and sun.audio packages.

Do not feel the need to read this book cover to cover. Pick the section that inter-
ests you most, where you feel you do not fully understand something, or where you
have an immediate question to be answered and dive right in.

In this chapter:
* Graphics

* Point

* Dimension

* Shape

* Rectangle

* Polygon

* Image

* MediaTracker

Simple Graphics

This chapter digs into the meat of the AWT classes. After completing this chapter,
you will be able to draw strings, images, and shapes via the Graphics class in your
Java programs. We discuss geometry-related classes—Polygon, Rectangle, Point,
and Dimension, and the Shape interface—you will see these throughout the
remaining AWT objects. You will also learn several ways to do smooth animation by
using double buffering and the MediaTracker.

After reading this chapter, you should be able to do simple animation and image
manipulation with AWT. For most applications, this should be sufficient. If you
want to look at AWT’s more advanced graphics capabilities, be sure to take a look
at Chapter 12, Image Processing.

2.1 Graphics

The Graphics class is an abstract class that provides the means to access different
graphics devices. It is the class that lets you draw on the screen, display images, and
so forth. Graphics is an abstract class because working with graphics requires
detailed knowledge of the platform on which the program runs. The actual work is
done by concrete classes that are closely tied to a particular platform. Your Java Vir-
tual Machine vendor provides the necessary concrete classes for your environment.
You never need to worry about the platform-specific classes; once you have a
Graphics object, you can call all the methods of the Graphics class, confident that
the platform-specific classes will work correctly wherever your program runs.

You rarely need to create a Graphics object yourself; its constructor is protected
and is only called by the subclasses that extend Graphics. How then do you get a

20

2.1 GRAPHICS 21

Graphics object to work with? The sole parameter of the Component.paint () and
Component .update () methods is the current graphics context. Therefore, a Graph-
ics object is always available when you override a component’s paint() and
update () methods. You can ask for the graphics context of a Component by calling
Component .getGraphics (). However, many components do not have a drawable
graphics context. Canvas and Container objects return a valid Graphics object;
whether or not any other component has a drawable graphics context depends on
the run-time environment. (The latest versions of Netscape Navigator provide a
drawable graphics context for any component, but you shouldn’t get used to writ-
ing platform-specific code.) This restriction isn’t as harsh as it sounds. For most
components, a drawable graphics context doesn’t make much sense; for example,
why would you want to draw on a List? If you want to draw on a component, you
probably can’t. The notable exception is Button, and that may be fixed in future
versions of AWT.

2.1.1 Graphics Methods

Constructors

protected Graphics ()
Because Graphics is an abstract class, it doesn’t have a visible constructor. The
way to get a Graphics object is to ask for one by calling getGraphics() or to
use the one given to you by the Component.paint () or Component.update ()
method.

The abstract methods of the Graphics class are implemented by some windowing
system—specific class. You rarely need to know which subclass of Graphics you are
using, but the classes you actually get (if you are using the JDK) are
sun.awt .win32.Win32Graphics (JDKI1.0), sun.awt.window.WGraphics (JDKI.1),
sun.awt .motif.X11Graphics, or sun.awt .macos.MacGraphics.

Pseudo-constructors

In addition to using the graphics contexts given to you by getGraphics() or in
Component .paint (), you can get a Graphics object by creating a copy of another
Graphics object. Creating new graphics contexts has resource implications. Cer-
tain platforms have a limited number of graphics contexts that can be active. For
instance, on Windows 95 you cannot have more than four in use at one time.
Therefore, it’s a good idea to call dispose() as soon as you are done with a Graph-
ics object. Do not rely on the garbage collector to clean up for you.

public abstract Graphics create ()
This method creates a second reference to the graphics context. It is useful for
clipping (reducing the drawable area).

22 CHAPTER 2: SIMPLE GRAPHICS

public Graphics create (int x, int y, int width, int height)

This method creates a second reference to a subset of the drawing area of the
graphics context. The new Graphics object covers the rectangle from (x, y)
through (x+width-1, y+height-1) in the original object. The coordinate space
of the new Graphics context is translated so that the upper left corner is (0, 0)
and the lower right corner is (width, height). Shifting the coordinate system
of the new object makes it easier to work within a portion of the drawing area
without using offsets.

Drawing strings

These methods let you draw text strings on the screen. The coordinates refer to
the left end of the text’s baseline.

public abstract void drawString (String text, int x, int y)
The drawString () method draws text on the screen in the current font and
color, starting at position (x, y). The starting coordinates specify the left end
of the String’s baseline.

public void drawChars (char text[], int offset, int length, int x, int y)
The drawChars () method creates a String from the char array text starting at
text[offset] and continuing for length characters. The newly created
String is then drawn on the screen in the current font and color, starting at
position (x, y). The starting coordinates specify the left end of the String’s
baseline.

public void drawBytes (byte text[], int offset, int length, int x, int y)
The drawBytes() method creates a String from the byte array text starting
at text[offset] and continuing for length characters. This String is then
drawn on the screen in the current font and color, starting at position (x, y).
The starting coordinates specify the left end of the String’s baseline.

public abstract Font getFont ()
The getFont () method returns the current Font of the graphics context. See
Chapter 3, Fonts and Colors, for more on what you can do with fonts. You can-
not get meaningful results with getFont () until the applet or application is
displayed on the screen (generally, not in init () of an applet or main() of an
application).

public abstract void setFont (Font font)
The setFont () method changes the current Font to font. If font is not avail-
able on the current platform, the system chooses a default. To change the cur-
rent font to 12 point bold TimesRoman:

setFont (new Font ("TimesRoman", Font.BOLD, 12));

2.1 GRAPHICS 23

public FontMetrics getFontMetrics ()
The getFontMetrics () method returns the current FontMetrics object of the
graphics context. You use FontMetrics to reveal sizing properties of the cur-
rent Font—for example, how wide the “Hello World” string will be in pixels
when displayed on the screen.

public abstract FontMetrics getFontMetrics (Font font)
This version of getFontMetrics() returns the FontMetrics for the Font font
instead of the current font. You might use this method to see how much space
a new font requires to draw text.

For more information about Font and FontMetrics, see Chapter 3.

Painting

public abstract Color getColor ()
The getColor () method returns the current foreground Color of the Graph-
ics object. All future drawing operations will use this color. Chapter 3
describes the Color class.

public abstract void setColor (Color color)
The setColor () method changes the current drawing color to color. As you
will see in the next chapter, the Color class defines some common colors for
you. If you can’t use one of the predefined colors, you can create a color from
its RGB values. To change the current color to red, use any of the following:

setColor (Color.red);

setColor (new Color (255, 0, 0));

setColor (new Color (0x£f0000));

public abstract void clearRect (int x, int y, int width, int height)

The clearRect() method sets the rectangular drawing area from (x, y) to
(x+width-1, y+height-1) to the current background color. Keep in mind that
the second pair of parameters is not the opposite corner of the rectangle, but
the width and height of the area to clear.

public abstract void clipRect (int x, int y, int width, int height)
The clipRect () method reduces the drawing area to the intersection of the
current drawing area and the rectangular area from (x, y) to (x+width-1,
y+height-1). Any future drawing operations outside this clipped area will
have no effect. Once you clip a drawing area, you cannot increase its size with
clipRect(); the drawing area can only get smaller. (However, if the
clipRect () call is in paint (), the size of the drawing area will be reset to its
original size on subsequent calls to paint ().) If you want the ability to draw to
the entire area, you must create a second Graphics object that contains a copy
of the drawing area before calling clipRect () or use setClip(). The following
code is a simple applet that demonstrates clipping; Figure 2-1 shows the result.

24 CHAPTER 2: SIMPLE GRAPHICS

import java.awt.*;
public class clipping extends java.applet.Applet {
public void paint (Graphics g) {
g.setColor (Color.red);
Graphics clippedGraphics
clippedGraphics.drawRect

g.create() ;
0,0,100,100) ;

(
clippedGraphics.clipRect (25, 25, 50, 50);
clippedGraphics.drawLine (
clippedGraphics.dispose() ;
clippedGraphics=null;
g.drawLine (0,100,100,0);

0,0,100,100) ;

E%Applet Vie.. W=l E3

Applet

clipping area

Applet started.

Figure 2—1: Clipping vestricts the drawing area

The paint () method for this applet starts by setting the foreground color to
red. It then creates a copy of the Graphics context for clipping, saving the
original object so it can draw on the entire screen later. The applet then draws
a rectangle, sets the clipping area to a smaller region, and draws a diagonal
line across the rectangle from upper left to lower right. Because clipping is in
effect, only part of the line is displayed. The applet then discards the clipped
Graphics object and draws an unclipped line from lower left to upper right
using the original object g.

public abstract void setClip(int x, int y, int width, int height) %
This setClip() method allows you to change the current clipping area based
on the parameters provided. setClip() is similar to clipRect (), except that it
is not limited to shrinking the clipping area. The current drawing area
becomes the rectangular area from (x, y) to (x+width-1, y+height-1); this
area may be larger than the previous drawing area.

2.1 GRAPHICS 25

public abstract void setClip(Shape clip) %
This setClip() method allows you to change the current clipping area based
on the clip parameter, which may be any object that implements the Shape
interface. Unfortunately, practice is not as good as theory, and in practice,
clip must be a Rectangle; if you pass setClip() a Polygon, it throws an
IllegalArgumentException.” (The Shape interface is discussed later in this
chapter.)

public abstract Rectangle getClipBounds () %

public abstract Rectangle getClipRect () ¥
The getClipBounds() methods returns a Rectangle that describes the clip-
ping area of a Graphics object. The Rectangle gives you the (x,y) coordinates
of the top left corner of the clipping area along with its width and height.
(Rectangle objects are discussed later in this chapter.)

getClipRect () is the Java 1.0 name for this method.

public abstract Shape getClip () %
The getClip() method returns a Shape that describes the clipping area of a
Graphics object. That is, it returns the same thing as getClipBounds () but as a
Shape, instead of as a Rectangle. By calling Shape.getBounds (), you can get
the (%, y) coordinates of the top left corner of the clipping area along with its
width and height. In the near future, it is hard to imagine the actual object
that getClip() returns being anything other than a Rectangle.

public abstract void copyArea (int x, int y, int width, int height, int delta_x, int delta_y)

The copyArea () method copies the rectangular area from (x, y) to (x+width,
y+height) to the area with an upper left corner of (x+delta_x, y+delta_y).
The delta_x and delta_y parameters are not the coordinates of the second
point but an offset from the first coordinate pair (%, y). The area copied may
fall outside of the clipping region. This method is often used to tile an area of
the graphics context. copyArea() does not save the contents of the area
copied.

Painting mode

There are two painting or drawing modes for the Graphics class: paint (the
default) and XOR mode. In paint mode, anything you draw replaces whatever is
already on the screen. If you draw a red square, you get a red square, no matter
what was underneath; this is what most programmers have learned to expect.

The behavior of XOR mode is rather strange, at least to people accustomed to
modern programming environments. XOR mode is short for eXclusive-OR mode.

* It should be simple for Sun to fix this bug; one would expect clipping to a Polygon to be the same as
clipping to the Polygon’s bounding rectangle.

26 CHAPTER 2: SIMPLE GRAPHICS

The idea behind XOR mode is that drawing the same object twice returns the
screen to its original state. This technique was commonly used for simple anima-
tions prior to the development of more sophisticated methods and cheaper hard-
ware.

The side effect of XOR mode is that painting operations don’t necessarily get the
color you request. Instead of replacing the original pixel with the new value, XOR
mode merges the original color, the painting color, and an XOR color (usually the
background color) to form a new color. The new color is chosen so that if you
repaint the pixel with the same color, you get the original pixel back. For example,
if you paint a red square in XOR mode, you get a square of some other color on
the screen. Painting the same red square again returns the screen to its original
state.

public abstract void setXORMode (Color xorColor)
The setXORMode () method changes the drawing mode to XOR mode. In XOR
mode, the system uses the xorColor color to determine an alternate color for
anything drawn such that drawing the same item twice restores the screen to
its original condition. The xorColor is usually the current background color
but can be any color. For each pixel, the new color is determined by an exclu-
sive-or of the old pixel color, the painting color, and the xorColor.

For example, if the old pixel is red, the XOR color is blue, and the drawing
color is green, the end result would be white. To see why, it is necessary to look
at the RGB values of the three colors. Red is (255, 0, 0). Blue is (0, 0, 255).
Green is (0, 255, 0). The exclusive-or of these three values is (255, 255, 255),
which is white. Drawing another green pixel with a blue XOR color yields red,
the pixel’s original color, since (255, 255, 255) ~ (0, 0, 255) ~ (0, 255, 0) yields
(255, 0, 0).* The following code generates the display shown in Figure 2-2.

import java.awt.*;
public class xor extends java.applet.Applet {
public void init () {
setBackground (Color.red);
}
public void paint (Graphics g) {
g.setColor (Color.green);
g.setXORMode (Color.blue);
g.fillRect (10, 10, 100, 100);
g.fillRect (10, 60, 100, 100);

}

Although it’s hard to visualize what color XOR mode will pick, there is one impor-
tant special case. Let’s say that there are only two colors: a background color (the

* ~ is the Java XOR operator.

2.1 GRAPHICS 27

E»gjghpplel Yiewer: xor |_ (O] x|

Applet

firstfillRect()

second fillRect()

— L

applet started

Figure 2-2: Drawing in XOR mode

XOR color) and a foreground color (the painting color). Each pixel must be in
one color or the other. Painting “flips” each pixel to the other color. Foreground
pixels become background, and vice versa.

public abstract void setPaintMode ()
The setPaintMode () method puts the system into paint mode. When in paint
mode, any drawing operation replaces whatever is underneath it. Call set-
PaintMode () to return to normal painting when finished with XOR mode.

Drawing shapes

Most of the drawing methods require you to specify a bounding rectangle for the
object you want to draw: the location of the object’s upper left corner, plus its
width and height. The two exceptions are lines and polygons. For lines, you supply
two endpoints; for polygons, you provide a set of points.

Versions 1.0.2 and 1.1 of AWT always draw solid lines that are one pixel wide; there
is no support for line width or fill patterns. A future version should support lines
with variable widths and patterns.

public abstract void drawLine (int x1, int y1, int x2, int y2)
The drawlLine() method draws a line on the graphics context in the current
color from (x1, y1) to (x2, y2). If (x1, y1) and (x2, y2) are the same point, you
will draw a point. There is no method specific to drawing a point. The follow-
ing code generates the display shown in Figure 2-3.

28

CHAPTER 2: SIMPLE GRAPHICS

g.drawLine (5, 5, 50, 75); // line
g.drawLine (5, 75, 5, 75); // point
g.drawLine (50, 5, 50, 5); // point

Eéfg": Drawing Lines H=] E3

points

Figure 2-3: Drawing lines and points with drawLine()

public void drawRect (int x, int y, int width, int height)

The drawRect () method draws a rectangle on the drawing area in the current
color from (x,y) to (x+width, y+height). If width or height is negative, noth-
ing is drawn.

public abstract void fillRect (int x, int y, int width, int height)

The fillRect () method draws a filled rectangle on the drawing area in the
current color from (%, y) to (x+width-1, y+height-1). Notice that the filled
rectangle is one pixel smaller to the right and bottom than requested. If
width or height is negative, nothing is drawn.

public abstract void drawRoundRect (int x, int y, int width, int height, int arcWidth,
int arcHeight)

The drawRoundRect () method draws a rectangle on the drawing area in the
current color from (x,y) to (x+width, y+height). However, instead of perpen-
dicular corners, the corners are rounded with a horizontal diameter of
arcwidth and a vertical diameter of arcHeight. If width or height is a nega-
tive number, nothing is drawn. If width, height, arcWidth, and arcHeight are
all equal, you get a circle.

To help you visualize the arcwWidth and arcHeight of a rounded rectangle, Fig-

ure 2-4 shows one corner of a rectangle drawn with an arcwidth of 20 and a
arcHeight of 40.

public abstract void fillRoundRect (int x, int v, int width, int height, int arcWidth,
int arcHeight)

The fillRoundRect () method draws a filled rectangle on the drawing area in
the current color from (x, y) to (x+width-1, y+height-1). However, instead of
having perpendicular corners, the corners are rounded with a horizontal

2.1 GRAPHICS 29

10 pixels wide

E’g‘ﬁpplet Viewer: arcZ... [lj[=] B3

20 pixels high ——|

Applet started.

Figure 2—-4: Drawing rounded corners

diameter of arciwidth and a vertical diameter of arcHeight for the four cor-
ners. Notice that the filled rectangle is one pixel smaller to the right and bot-
tom than requested. If width or height is a negative number, nothing is filled.
If width, height, arcWidth, and arcHeight are all equal, you get a filled circle.

Figure 2-4 shows how AWT generates rounded corners. Figure 2-5 shows the
collection of rectangles created by the following code. The rectangles in Fig-
ure 2-5 are filled and unfilled, with rounded and square corners.

g.drawRect (25, 10, 50, 75);

g.fillRect (25, 110, 50, 75);

g.drawRoundRect (100, 10, 50, 75, 60, 50);

g.fillRoundRect (100, 110, 50, 75, 60, 50);

public void draw3DRect (int x, int Yy, int width, int height, boolean raised)

The draw3DRect () method draws a rectangle in the current color from (x, y)
to (x+width, y+height); a shadow effect makes the rectangle appear to float
slightly above or below the screen. The raised parameter has an effect only if
the current color is not black. If raised is true, the rectangle looks like a but-
ton waiting to be pushed. If raised is false, the rectangle looks like a
depressed button. If width or height is negative, the shadow appears from
another direction.

public void fill3DRect (int x, int y, int width, int height, boolean raised)
The £il113DRect () method draws a filled rectangle in the current color from
(%, y) to (x+width, y+height); a shadow effect makes the rectangle appear to
float slightly above or below the screen. The raised parameter has an effect

30 CHAPTER 2: SIMPLE GRAPHICS

E%:-‘; Drawing Rectz [l[=] E3

Figure 2-5: Varieties of rectangles

only if the current color is not black. If raised is true, the rectangle looks like
a button waiting to be pushed. If raised is false, the rectangle looks like a
depressed button. To enhance the shadow effect, the depressed area is given a
slightly deeper shade of the drawing color. If width or height is negative, the
shadow appears from another direction, and the rectangle isn’t filled. (Differ-
ent platforms could deal with this differently. Try to ensure the parameters
have positive values.)

Figure 2-6 shows the collection of three-dimensional rectangles created by the
following code. The rectangles in the figure are raised and depressed, filled
and unfilled.

g.setColor (Color.gray);

g.draw3DRect (25, 10, 50, 75, true);

g.draw3DRect (25, 110, 50, 75, false);

g.fill3DRect (100, 10, 50, 75, true);

g.fill3DRect (100, 110, 50, 75, false);

public abstract void drawOval (int x, int vy, int width, int height)

The drawOval () method draws an oval in the current color within an invisible
bounding rectangle from (x, y) to (x+width, y+height). You cannot specify
the oval’s center point and radii. If width and height are equal, you get a cir-
cle. If width or height is negative, nothing is drawn.

public abstract void fillOval (int x, int y, int width, int height)
The filloval() method draws a filled oval in the current color within an
invisible bounding rectangle from (x,y) to (x+width-1, y+height-1). You can-
not specify the oval’s center point and radii. Notice that the filled oval is one
pixel smaller to the right and bottom than requested. If width or height is
negative, nothing is drawn.

2.1 GRAPHICS 31

E%:-‘; Drawing 3dRe... [l[=] E3

Figure 2—6: Filled and unfilled 3D rectangles

Figure 2-7 shows the collection of ovals, filled and unfilled, that were gener-
ated by the following code:

g.drawoval (25, 10, 50, 75);

g.filloval (25, 110, 50, 75);
g.drawoval (100, 10, 50, 50);
g.filloval (100, 110, 50, 50);

E;,_": Drawing Dvalz [E[=]

(H O
0

Figure 2-7: Filled and unfilled ovals

public abstract void drawArc (int x, int y, int width, int height, int startAngle, int arcAngle)
The drawArc () method draws an arc in the current color within an invisible
bounding rectangle from (x, y) to (x+width, y+height). The arc starts at
startAngle degrees and goes to startAngle + arcAngle degrees. An angle of 0
degrees is at the 3 o’clock position; angles increase counter-clockwise. If

32 CHAPTER 2: SIMPLE GRAPHICS

arcAngle is negative, drawing is in a clockwise direction. If width and height
are equal and arcAngle is 360 degrees, drawArc () draws a circle. If width or
height is negative, nothing is drawn.

public abstract void fillArc (int x, int y, int width, int height, int startAngle, int arcAngle)

The £illArc() method draws a filled arc in the current color within an invisi-
ble bounding rectangle from (x, y) to (x+width-1, y+height-1). The arc starts
at startAngle degrees and goes to startAngle + arcAngle degrees. An angle
of 0 degrees is at the 3 o’clock position; angles increase counter-clockwise. If
arcAngle is negative, drawing is in a clockwise direction. The arc fills like a pie
(to the origin), not from arc endpoint to arc endpoint. This makes creating
pie charts easier. If width and height are equal and arcAngle is 360 degrees,
fillArc() draws a filled circle. If width or height is negative, nothing is
drawn.

Figure 2-8 shows a collection of filled and unfilled arcs that were generated by
the following code:
g.drawArc (25, 10, 50, 75, 0, 360);
g.fillarc (25, 110, 50, 75, 0, 360);
(
(

g.drawArc (100, 10, 50, 75, 45, 215);
g.fillArc (100, 110, 50, 75, 45, 215);

B Drawing Arcs =] B3

Figure 2-8: Filled and unfilled arcs

public void drawPolygon (Polygon p)
The drawPolygon() method draws a path for the points in polygon p in the
current color. Section 2.6 discusses the Polygon class in detail.

The behavior of drawPolygon() changes slightly between Java 1.0.2 and 1.1.
With version 1.0.2, if the first and last points of a Polygon are not the same, a
call to drawPolygon () results in an open polygon, since the endpoints are not
connected for you. Starting with version 1.1, if the first and last points are not
the same, the endpoints are connected for you.

2.1 GRAPHICS 33

public abstract void drawPolygon (int xPoints[], int yPoints[], int numPoints)

The drawPolygon () method draws a path of numPoints nodes by plucking one
element at a time out of xPoints and yPoints to make each point. The path is
drawn in the current color. If either xPoints or yPoints does not have num-
Points elements, drawPolygon() throws a run-time exception. In 1.0.2, this
exception is an IllegalArgumentException; in 1.1, it is an ArrayIndexOutOf-
BoundsException. This change shouldn’t break older programs, since you are
not required to catch run-time exceptions.

public abstract void drawPolyline (int xPoints[], int yPoints[], int numPoints) %
The drawPolyline() method functions like the 1.0 version of drawPolygon ().
It plays connect the dots with the points in the xPoints and yPoints arrays
and does not connect the endpoints. If either xPoints or yPoints does not
have numPoints elements, drawPolygon() throws the run-time exception,
ArrayIndexOutOfBoundsException.

Filling polygons is a complex topic. It is not as easy as filling rectangles or ovals
because a polygon may not be closed and its edges may cross. AWT uses an even-
odd rule to fill polygons. This algorithm works by counting the number of times
each scan line crosses an edge of the polygon. If the total number of crossings to
the left of the current point is odd, the point is colored. If it is even, the point is
left alone. Figure 2-9 demonstrates this algorithm for a single scan line that inter-
sects the polygon at x values of 25, 75, 125, 175, 225, and 275.

E%Applet Yiewer: ineint

Applet

x=25 x=15 x=125 x=175 x=125 x=275

Applet started.

Figure 2-9: Polygon fill algorithm

The scan line starts at the left edge of the screen; at this point there haven’t been

34 CHAPTER 2: SIMPLE GRAPHICS

any crossings, so the pixels are left untouched. The scan line reaches the first
crossing when x equals 25. Here, the total number of crossings to the left is one, so
the scan line is inside the polygon, and the pixels are colored. At 75, the scan line
crosses again; the total number of crossings is two, so coloring stops.

public void fillPolygon (Polygon p)
The £illPolygon () method draws a filled polygon for the points in Polygon p
in the current color. If the polygon is not closed, fillPolygon() adds a seg-
ment connecting the endpoints. Section 2.6 discusses the Polygon class in
detail.

public abstract void fillPolygon (int xPoints[], int yPoints[], int nPoints)
The £illPolygon() method draws a polygon of numPoints nodes by plucking
one element at a time out of xPoints and yPoints to make each point. The
polygon is drawn in the current color. If either xPoints or yPoints does not
have numPoints elements, £il1Polygon () throws the run-time exception Ille-
galArgumentException. If the polygon is not closed, fillPolygon() adds a
segment connecting the endpoints.”

Figure 2-10 shows several polygons created by the following code, containing dif-

ferent versions of drawPolygon () and fillPolygon():
int[] xPoints[] {{50, 25, 25, 75, 75},

{50, 25, 25, 75, 75},
{100, 100, 150, 100, 150, 150, 125, 100, 150},
{100, 100, 150, 100, 150, 150, 125, 100, 150}};
int[] yPoints[] = {{10, 35, 85, 85, 35, 10},

{110, 135, 185, 185, 135},

{85, 35, 35, 85, 85, 35, 10, 35, 85},

{185, 135, 135, 185, 185, 135, 110, 135, 185}};
int nPoints[] = {5, 5, 9, 9};
g.drawPolygon (xPoints[0], yPoints[0], nPoints[0]);
g.fillPolygon (xPoints[1], yPoints[1l], nPoints[1]);
g.drawPolygon (new Polygon (xPoints[2], yPoints[2], nPoints[2]1));
g.fillPolygon (new Polygon (xPoints[3], yPoints[3], nPoints[3]));

Drawing images

An TImage is a displayable object maintained in memory. To get an image on the
screen, you must draw it onto a graphics context, using the drawImage () method
of the Graphics class. For example, within a paint() method, you would call
g.drawImage (image, ... , this) to display some image on the screen. In other
situations, you might use the createImage() method to generate an offscreen
Graphics object, then use drawImage () to draw an image onto this object, for dis-
play later.

* In Java 1.1, this method throws ArrayIndexOutOfBoundsException, not I1legalArgumentException.

2.1 GRAPHICS 35

Jova 1.0 [E1TET I = (D <] LLRBN - Drawing Poly M= E3

VN VN

)4)4

Figure 2—10: Filled and unfilled polygons

This begs the question: where do images come from? We will have more to say
about the Image class later in this chapter. For now, it’s enough to say that you can
call getImage () to load an image from disk or across the Net. There are versions of
getImage () in the Applet and Toolkit classes; the latter is for use in applications.
You can also call createImage (), a method of the Component class, to generate an
image in memory.

What about the last argument to drawImage()? What is this for? The last argu-
ment of drawImage () is always an image observer—that is, an object that imple-
ments the ImageObserver interface. This interface is discussed in detail in Chapter
12. For the time being, it’s enough to say that the call to drawImage () starts a new
thread that loads the requested image. An image observer monitors the process of
loading an image; the thread that is loading the image notifies the image observer
whenever new data has arrived. The Component class implements the ImageOb-
server interface; when you’re writing a paint () method, you’re almost certainly
overriding some component’s paint () method; therefore, it’s safe to use this as
the image observer in a call to drawImage (). More simply, we could say that any
component can serve as an image observer for images that are drawn on it.

public abstract boolean drawImage (Image image, int x, int y, ImageObserver observer)
The drawImage () method draws image onto the screen with its upper left cor-
ner at (x, y), using observer as its ImageCbserver. Returns true if the object is
fully drawn, false otherwise.

public abstract boolean drawlmage (Image image, int x, int vy, int width, int height,
ImageObserver observer)
The drawImage () method draws image onto the screen with its upper left cor-
ner at (x, y), using observer as its ImageObserver. The system scales image to
fit into a width height area. The scaling may take time. This method returns
true if the object is fully drawn, false otherwise.

36 CHAPTER 2: SIMPLE GRAPHICS

With Java 1.1, you don’t need to use drawImage () for scaling; you can prescale
the image with the Image.getScaledInstance() method, then use the previ-
ous version of drawImage().

public abstract boolean drawlmage (Image image, int x, int y, Color backgroundColor,
ImageObserver observer)
The drawImage () method draws image onto the screen with its upper left cor-
ner at (x, y), using observer as its ImageObserver. backgroundColor is the
color of the background seen through the transparent parts of the image. If
no part of the image is transparent, you will not see backgroundColor.
Returns true if the object is fully drawn, false otherwise.

public abstract boolean drawlmage (Image image, int x, int y, int width, int height,

Color backgroundColor, ImageObserver observer)
The drawImage () method draws image onto the screen with its upper left cor-
ner at (x, y), using observer as its ImageCbserver. backgroundColor is the
color of the background seen through the transparent parts of the image. The
system scales image to fit into a width x height area. The scaling may take
time. This method returns true if the image is fully drawn, false otherwise.

With Java 1.1, you can prescale the image with the AreaAveragingScaleFilter
or ReplicateScaleFilter described in Chapter 12, then use the previous ver-
sion of drawImage () to display it.

The following code generated the images in Figure 2-11. The images on the left
come from a standard JPEG file. The images on the right come from a file in
GIF89a format, in which the white pixel is “transparent.” Therefore, the gray back-
ground shows through this pair of images.

import java.awt.*;
import java.applet.*;
public class drawingImages extends Applet {

Image i, Jj;

public void init () {
i = getImage (getDocumentBase(), "rosey.jpg");
j = getImage (getDocumentBase(), "rosey.gif");

}
public void paint (Graphics g) {
g.drawImage (i, 10, 10, this);
g.drawImage (i, 10, 85, 150, 200, this);
g.drawImage (j, 270, 10, Color.lightGray, this);
g.drawImage (j, 270, 85, 150, 200, Color.lightGray, this);

}

public abstract boolean drawlmage(Image vmg, int dx1, int dyl, int dx2, int dy2, int sx1,
int syl, int sx2, int sy2, ImageObserver observer) %
The drawImage () method draws a portion of image onto the screen. It takes
the part of the image with corners at (sx1, syl) and (sx2, sy2); it places this

2.1 GRAPHICS

37

Eg_;’,i'hpplel Yiewer: drawinglmages

Applet

@?l YOUCAN DO IT! .. \ You CAN DO IT!
ﬁ‘,{ Build Your Own WebSite _ . Build Your Own WehSite

U I

Nt

Dl

Applet started.

Figure 2—11: Scaled and unscaled images

rectangular
snippet on the screen with one corner at (dx1, dyl) and another at (dx2, dy2),
using observer as its ImageObserver. (Think of d for destination location and

s for source image.) This method returns true if the object is fully drawn,
false otherwise.

drawImage () flips the image if source and destination endpoints are not the
same corners, crops the image if the destination is smaller than the original
size, and scales the image if the destination is larger than the original size. It
does not do rotations, only flips (i.e., it can produce a mirror image or an
image rotated 180 degrees but not an image rotated 90 or 270 degrees).

public abstract boolean drawlmage(Image img, int dx1, int dyl, int dx2, int dy2, int sx1,
int sy, int sx2, int sy2, Color backgroundColor, ImageObserver observer) %

The drawImage () method draws a portion of image onto the screen. It takes
the part of the image with corners at (sx1, syl) and (sx2, sy2); it places this
rectangular snippet on the screen with one corner at (dx1, dyl) and another
at (dx2, dy2), using observer as its ImageObserver. (Think of d for destination
location and s for source image.) backgroundColor is the color of the back-
ground seen through the transparent parts of the image. If no part of the
image is transparent, you will not see backgroundColor. This method returns
true if the object is fully drawn, false otherwise.

Like the previous version of drawImage (), this method flips the image if source
and destination endpoints are not the same corners, crops the image if the

38

CHAPTER 2: SIMPLE GRAPHICS

destination is smaller than the original size, and scales the image if the destina-
tion is larger than the original size. It does not do rotations, only flips (i.e., it
can produce a mirror image or an image rotated 180 degrees but not an
image rotated 90 or 270 degrees).

The following code demonstrates the new drawImage () methods in Java 1.1. They
allow you to scale, flip, and crop images without the use of image filters. The
results are shown in Figure 2-12.

// Java 1.1 only

import java.awt.*;

import java.applet.*;

public class drawingImagesll extends Applet {

Tmage i, J;
public void init () {

i = getImage (getDocumentBase(), "rosey.gif");
}

public void paint (Graphics g) {
g.drawImage (i, 10, 10, this);
g.drawImage (i, 10, 85,
i.getWidth(this)+10, i.getHeight (this)+85,
i.getWidth(this), i.getHeight(this), 0, 0, this);
g.drawImage (i, 270, 10,
i.getWidth(this)+270, i.getHeight (this)*2+10, 0, O,
i.getWidth(this), i.getHeight (this), Color.gray, this);
g.drawImage (i, 10, 170,
i.getWidth(this) *2+10, i.getHeight (this)+170, O,
i.getHeight (this) /2, i.getWidth(this)/2, 0, this);

Miscellaneous methods

public abstract void translate (int x, int y)

The translate() method sets how the system translates the coordinate space
for you. The point at the (%, y) coordinates becomes the origin of this graph-
ics context. Any future drawing will be relative to this location. Multiple trans-

lations are cumulative. The following code leaves the coordinate system trans-
lated by (100, 50).

translate (100, 0);

translate (0, 50);
Note that each call to paint () provides an entirely new Graphics context with
its origin in the upper left corner. Therefore, don’t expect translations to per-
sist from one call to paint () to the next.

2.1 GRAPHICS 39

i Applet Yiewer: drawinglmages11 M [=1 B3
Applet

% YoU CAN DO IT!

Build Your Own WehSite
8}ISUaM umQ IN0A pling Y"! @
ill 0G NY3 R0k @

Figure 2—12: Flipped, mirrored, and cropped images

public abstract void dispose ()
The dispose() method frees any system resources used by the Graphics con-
text. It’s a good idea to call dispose () whenever you are finished with a Graph-
ics object, rather than waiting for the garbage collector to call it automatically
(through finalize()). Disposing of the Graphics object yourself will help
your programs on systems with limited resources. However, you should not dis-
pose the Graphics parameter to Component .paint () or Component.update().

public void finalize ()
The garbage collector calls finalize() when it determines that the Graphics
object is no longer needed. finalize() calls dispose(), which frees any
resources that the Graphics object has used.

public String toString ()
The toString() method of Graphics returns a string showing the current font
and color. However, Graphics is an abstract class, and classes that extend
Graphics usually override toString(). For example, on a Windows 95
machine, sun.awt.win32.Win32Graphics is the concrete class that extends
Graphics. The class’s toString() method displays the current origin of the
Graphics object, relative to the original coordinate system:

sun.awt.win32.Win32Graphics[0, 0]

40 CHAPTER 2: SIMPLE GRAPHICS

2.2 Point

The Point class encapsulates x and y coordinates within a single object. It is proba-
bly one of the most underused classes within Java. Although there are numerous
places within AWT where you would expect to see a Point, its appearances are sur-
prisingly rare. Java 1.1 is starting to use Point more heavily. The Point class is most
often used when a method needs to return a pair of coordinates; it lets the method
return both x and y as a single object. Unfortunately, Point usually is not used
when a method requires x and y coordinates as arguments; for example, you
would expect the Graphics class to have a version of translate() that takes a
point as an argument, but there isn’t one.

The Point class does not represent a point on the screen. It is not a visual object;
there is no drawPoint () method.

2.2.1 Point Methods

Variables

The two public variables of Point represent a pair of coordinates. They are accessi-
ble directly or use the getLocation() method. There is no predefined origin for
the coordinate space.

public int x

The coordinate that represents the horizontal position.
public int y

The coordinate that represents the vertical position.

Constructors

public Point ()
The first constructor creates an instance of Point with an initial x value of 0
and an initial y value of 0.

public Point (int x, inty)
The next constructor creates an instance of Point with an initial x value of x
and an initial y value of y.

public Point (Point p)
The last constructor creates an instance of Point from another point, the x
value of p.x and an initial y value of p.y.

2.3 DIMENSION 41

Locations

public Point getLocation () %
The getLocation() method retrieves the current location of this point as a
new Point.

public void setLocation (int x, inty) %
public void move (int x, int y) =
The setLocation () method changes the point’s location to (x,y).

move () is the Java 1.0 name for this method.

public void setLocation (Point p) %
This setLocation() method changes the point’s location to (p.x, p.y).

public void translate (int x, int y)
The translate () method moves the point’s location by adding the parameters
(x,y) to the corresponding fields of the Point. If the original Point pis (3, 4)
and you call p. translate(4, -5), the new value of pis (7,-1).

Miscellaneous methods

public int hashCode ()
The hashCode() method returns a hash code for the point. The system calls
this method when a Point is used as the key for a hash table.

public boolean equals (Object object)
The equals () method overrides the Object.equals () method to define equal-
ity for points. Two Point objects are equal if their x and y values are equal.

public String toString ()
The toString() method of Point displays the current values of the x and y
variables. For example:

java.awt.Point [x=100,y=200]

2.3 Dimension

The Dimension class is similar to the Point class, except it encapsulates a width and
height in a single object. Like Point, Dimension is somewhat underused; it is used
primarily by methods that need to return a width and a height as a single object;
for example, getSize() returns a Dimension object.

42 CHAPTER 2: SIMPLE GRAPHICS

2.3.1 Dimension Methods

Variables

A Dimension instance has two variables, one for width and one for height. They are
accessible directly or through use of the getSize () method.

public int width
The width variable represents the size of an object along the x axis (left to
right). Width should not be negative; however, there is nothing within the
class to prevent this from happening.

public int height
The height variable represents the size of an object along the y axis (top to
bottom). Height should not be negative; however, there is nothing within the
class to prevent this from happening.

Constructors

public Dimension ()
This constructor creates a Dimension instance with a width and height of 0.
public Dimension (Dimension dim)
This constructor creates a copy of dim. The initial width is dim.width. The ini-
tial height is dim.height.
public Dimension (int width, int height)
This constructor creates a Dimension with an initial width of width and an ini-
tial height of height.

Sizing
public Dimension getSize () %

The getSize() method retrieves the current size as a new Dimension, even
though the instance variables are public.

public void setSize (int width, int height) %
The setSize() method changes the dimension’s size to width height.

public void setSize (Dimension d) %
The setSize() method changes the dimension’s size to d.width d.height.

Miscellaneous methods

public boolean equals (Object object)
The equals () method overrides the Object.equals () method to define equal-
ity for dimensions. Two Dimension objects are equal if their width and height
values are equal.

2.5 RECTANGLE 43

public String toString ()
The toString() method of Dimension returns a string showing the current
width and height settings. For example:

java.awt.Dimension [width=0,height=0]

2.4 Shape

The new Shape interface defines a single method; it requires a geometric object to
be able to report its bounding box. Currently, the Rectangle and Polygon classes
implement Shape; one would expect other geometric classes to implement Shape
in the future. Although Component has the single method defined by the Shape
interface, it does not implement the interface.

2.4.1 Shape Method

public abstract Rectangle getBounds() %
The getBounds () method returns the shape’s bounding Rectangle. Once you
have the bounding area, you can use methods like Graphics.copyArea() to
copy the shape.

2.5 Rectangle

The Rectangle class encapsulates x and y coordinates and width and height (Point
and Dimension information) within a single object. It is often used by methods that
return a rectangular boundary as a single object: for example, Polygon.get-
Bounds (), Component.getBounds (), and Graphics.getClipBounds (). Like Point,
the Rectangle class is not a visual object and does not represent a rectangle on the
screen; ironically, drawRect () and fillRect() don’t take Rectangle as an argu-
ment.

2.5.1 Rectangle Methods

Variables

The four public variables available for Rectangle have the same names as the pub-
lic instance variables of Point and Dimension. They are all accessible directly or
through use of the getBounds () method.

public int x
The x coordinate of the upper left corner.

44 CHAPTER 2: SIMPLE GRAPHICS

public int y
The y coordinate of the upper left corner.

public int width
The width variable represents the size of the Rectangle along the horizontal
axis (left to right). Width should not be negative; however, there is nothing
within the class to prevent this from happening.

public int height
The height variable represents the size of the Rectangle along the vertical axis
(top to bottom). Height should not be negative; however, there is nothing
within the class to prevent this from happening.

Constructors

The following seven constructors create Rectangle objects. When you create a
Rectangle, you provide the location of the top left corner, along with the Rectan-
gle’s width and height. A Rectangle located at (0,0) with a width and height of
100 has its bottom right corner at (99, 99). The Point (100, 100) lies outside the
Rectangle, since that would require a width and height of 101.

public Rectangle ()
This Rectangle constructor creates a Rectangle object in which x, y, width,
and height are all 0.

public Rectangle (int width, int height)
This Rectangle constructor creates a Rectangle with (x, y) coordinates of
(0,0) and the specified width and height. Notice that there is no Rectan-
gle(int x, int y) constructor because that would have the same method sig-
nature as this one, and the compiler would have no means to differentiate
them.

public Rectangle (int x, int y, int width, int height)
The Rectangle constructor creates a Rectangle object with an initial x coordi-
nate of x, y coordinate of y, width of width, and height of height. Height and
width should be positive, but the constructor does not check for this.

public Rectangle (Rectangle r)
This Rectangle constructor creates a Rectangle matching the original. The (x,
y) coordinates are (r.x, r.y), with a width of r.width and a height of
r.height.

2.5 RECTANGLE 45

public Rectangle (Point p, Dimension d)
This Rectangle constructor creates a Rectangle with (x, y) coordinates of
(p.x,p.vy), awidth of d.width, and a height of d.height.

public Rectangle (Point p)
This Rectangle constructor creates a Rectangle with (x, y) coordinates of
(p.x,p.y). The width and height are both zero.

public Rectangle (Dimension d)

The last Rectangle constructor creates a Rectangle with (%, y) coordinates of
(0, 0). The initial Rectangle width is d.width and height is d.height.

Shaping and sizing

public Rectangle getBounds() %
The getBounds () method returns a copy of the original Rectangle.

public void setBounds (int x, int y, int width, int height) %

public void reshape (int x, int y, int width, int height) ¥
The setBounds () method changes the origin of the Rectangle to (x, y) and
changes the dimensions to width by height.

reshape () is the Java 1.0 name for this method.

public void setBounds (Rectangle r) %
The setBounds () method changes the origin of the Rectangle to (r.x, r.y)
and changes the dimensions to r.width by r.height.

public Point getLocation() %
The getLocation () retrieves the current origin of this rectangle as a Point.

public void setLocation (int x, inty) *
public void move (int x, int y) 3¢
The setLocation() method changes the origin of the Rectangle to (x,y).

move () is the Java 1.0 name for this method.

public void setLocation (Point p) *
The setLocation () method changes the Rectangle’s origin to (p.x, p.y).

public void translate (int x, int y)
The translate() method moves the Rectangle’s origin by the amount (x, y).
If the original Rectangle’s location (r) is (3, 4) and you call r.translate (4,
5), then r’s location becomes (7, 9). x and y may be negative. translate() has
no effect on the Rectangle’s width and height.

46 CHAPTER 2: SIMPLE GRAPHICS

public Dimension getSize () %
The getSize() method retrieves the current size of the rectangle as a Dimen-
sion.

public void setSize() (int width, int height) %

public void resize (int width, int height) s<
The setSize() method changes the Rectangle’s dimensions to width x
height.

resize() is the Java 1.0 name for this method.

public void setSize() (Dimension d) %
The setSize() method changes the Rectangle’s dimensions to d.width x
d.height.

public void grow (int horizontal, int vertical)

The grow() method increases the Rectangle’s dimensions by adding the
amount horizontal on the left and the right and adding the amount verti-
cal on the top and bottom. Therefore, all four of the rectangle’s variables
change. If the original location is (x, y), the new location will be (x-horizon-
tal, y-vertical) (moving left and up if both values are positive); if the original
size is (width, height), the new size will be (width+2*horizontal,
height+2*vertical). Either horizontal or vertical can be negative to decrease
the size of the Rectangle. The following code demonstrates the changes:

import java.awt.Rectangle;
public class rect {
public static void main (String[] args) {

Rectangle r = new Rectangle (100, 100, 200, 200);
System.out.println (r);
r.grow (50, 75);
System.out.println (r);
r.grow (-25, -50);
System.out.println (r);

}
This program produces the following output:

java.awt .Rectangle[x=100,y=100,width=200, height=200]
java.awt.Rectangle[x=50,y=25,width=300, height=350]
java.awt .Rectangle[x=75,y=75,width=250, height=250]

public void add (int newX, int newY)
The add() method incorporates the point (newX, newY) into the Rectangle. If

this point is already in the Rectangle, there is no change. Otherwise, the size
of the Rectangle increases to include (newX, newY) within itself.

2.5 RECTANGLE 47

public void add (Point p)
This add() method incorporates the point (p.x, p.y) into the Rectangle. If
this point is already in the Rectangle, there is no change. Otherwise, the size
of the Rectangle increases to include (p.x, p.y) within itself.

public void add (Rectangle r)
This add() method incorporates another Rectangle r into this Rectangle.
This transforms the current rectangle into the union of the two Rectangles.
This method might be useful in a drawing program that lets you select multi-
ple objects on the screen and create a rectangular area from them.

We will soon encounter a method called union() that is almost identical.
add () and union() differ in that add() modifies the current Rectangle, while
union() returns a new Rectangle. The resulting rectangles are identical.

Intersections

public boolean contains (int x, int y) *

public boolean inside (int x, int y) 3
The contains () method determines if the point (x, y) is within this Rectan-
gle. If so, true is returned. If not, false is returned.

inside() is the Java 1.0 name for this method.

public boolean contains (Point p) %
The contains () method determines if the point (p.x, p.y) is within this Rect-
angle. If so, true is returned. If not, false is returned.

public boolean intersects (Rectangle r)
The intersects () method checks whether Rectangle r crosses this Rectangle
at any point. If it does, true is returned. If not, false is returned.

public Rectangle intersection (Rectangle r)
The intersection() method returns a new Rectangle consisting of all points
that are in both the current Rectangle and Rectangle r. For example, if r =
new Rectangle (50, 50, 100, 100) and rl = new Rectangle (100, 100,
75, 75), then r.intersection (rl) is the Rectangle (100, 100, 50, 50), as
shown in Figure 2-13.

public Rectangle union (Rectangle)
The union() method combines the current Rectangle and Rectangle r to
form a new Rectangle. For example, if r = new Rectangle (50, 50, 100,
100) and rl = new Rectangle (100, 100, 75, 75), then r.union (rl) is the
Rectangle (50, 50, 125, 125). The original rectangle is unchanged. Figure
2-14 demonstrates the effect of union(). Because fillRect () fills to width-1

48 CHAPTER 2: SIMPLE GRAPHICS

and height-1, the rectangle drawn appears slightly smaller than you would
expect. However, that’s an artifact of how rectangles are drawn; the returned
rectangle contains all the points within both.

E%; Intersection MI=] E3

Figure 2—13: Rectangle intersection

E%’; Union H=]

Figure 2—14: Rectangle union

Miscellaneous methods

public boolean isEmpty ()
The isEmpty () method checks whether there are any points within the Rect-
angle. If the width and height of the Rectangle are both 0 (or less), the Rect-
angle is empty, and this method returns true. If either width or height is
greater than zero, isEmpty() returns false. This method could be used to
check the results of a call to any method that returns a Rectangle object.

2.6 POLYGON 49

public int hashCode ()
The hashCode() method returns a hash code for the rectangle. The system
calls this method when a Rectangle is used as the key for a hash table.

public boolean equals (Object object)
The equals () method overrides the Object’s equals () method to define what
equality means for Rectangle objects. Two Rectangle objects are equal if their
x,y, width, and height values are equal.

public String toString ()

The toString() method of Rectangle displays the current values of the x, v,
width, and height variables. For example:

java.awt .Rectangle[x=100,y=200,width=300, height=400]

2.6 Polygon

A Polygon is a collection of points used to create a series of line segments. Its pri-
mary purpose is to draw arbitrary shapes like triangles or pentagons. If the points
are sufficiently close, you can create a curve. To display the Polygon, call draw-
Polygon () or £illPolygon ().

2.6.1 Polygon Methods

Variables
The collection of points maintained by Polygon are stored in three variables:

public int npoints
The npoints variable stores the number of points.

public int xpoints[]
The xpoints array holds the x component of each point.

public int ypoints[]
The ypoints array holds the y component of each point.

You might expect the Polygon class to use an array of points, rather than separate
arrays of integers. More important, you might expect the instance variables to be
private or protected, which would prevent them from being modified directly.
Since the three instance variables are public, there is no guarantee that the array
sizes are in sync with each other or with npoints. To avoid trouble, always use add-
Points() to modify your polygons, and avoid modifying the instance variables
directly.

50 CHAPTER 2: SIMPLE GRAPHICS

Constructors

public Polygon ()
This constructor creates an empty Polygon.

public Polygon (int xPoints[], int yPoints[], int numPoints)
This constructor creates a Polygon that consists of numPoints points. Those
points are formed from the first numPoints elements of the xPoints and
yPoints arrays. If the xPoints or yPoints arrays are larger than numPoints, the
additional entries are ignored. If the xPoints or yPoints arrays do not contain
at least numPoints elements, the constructor throws the run-time exception
ArrayIndexOutOfBoundsException.

Miscellaneous methods

public void addPoint (int x, int y)
The addPoint () method adds the point (x, y) to the Polygon as its last point.
If you alter the xpoints, ypoints, and npoints instance variables directly, add-
Point () could add the new point at a place other than the end, or it could
throw the run-time exception ArrayIndexOutOfBoundsException with a mes-
sage showing the position at which it tried to add the point. Again, for safety,
don’t modify a Polygon’s instance variables yourself; always use addPoint ().

public Rectangle getBounds () %

public Rectangle getBoundingBox () v
The getBounds () method returns the Polygon’s bounding Rectangle (i.e., the
smallest rectangle that contains all the points within the polygon). Once you
have the bounding box, it’s easy to use methods like copyArea() to copy the
Polygon.

getBoundingBox () is the Java 1.0 name for this method.

public boolean contains (int x, int y) *

public boolean inside (int x, int y) 3<
The contains () method checks to see if the (x, y) point is within an area that
would be filled if the Polygon was drawn with Graphics.fillPolygon(). A
point may be within the bounding rectangle of the polygon, but contains ()
can still return false if not within a closed part of the polygon.

inside() is the Java 1.0 name for this method.

public boolean contains (Point p) %
The contains() method checks to see if the point p is within an area that
would be filled if the Polygon were drawn with Graphics.fillPolygon().

2.7 IMAGE 51

public void translate (int x, int y) *
The translate () method moves all the Polygon’s points by the amount (x, y).
This allows you to alter the location of the Polygon by shifting the points.

2.7 Image

An Image is a displayable object maintained in memory. AWT has built-in support
for reading files in GIF and JPEG format, including GIF89a animation. Netscape
Navigator, Internet Explorer, HotJava, and Sun’s JDK also understand the XBM
image format. Images are loaded from the filesystem or network by the getIm-
age () method of either Component or Toolkit, drawn onto the screen with draw-
Image() from Graphics, and manipulated by several objects within the
java.awt.image package. Figure 2-15 shows an Image.

REILLY

% PUBLISHING « SOFTWARE + RESEARCH

Figure 2—-15: An Image

Image is an abstract class implemented by many different platform-specific classes.
The system that runs your program will provide an appropriate implementation;
you do not need to know anything about the platform-specific classes, because the
Image class completely defines the API for working with images. If you're curious,
the platform-specific packages used by the JDK are:

® sun.awt.win32.Win32Image on Java 1.0 Windows NT/95 platforms

® sun.awt.windows.WImage on Java 1.1 Windows NT/95 platforms

* sun.awt.motif.X1lImage on UNIX/Motif platforms

e sun.awt.macos.MacImage on the Macintosh

This section covers only the Image object itself. AWT also includes a package

named java.awt.image that includes more advanced image processing utilities.
The classes in java.awt .image are covered in Chapter 12.

52 CHAPTER 2: SIMPLE GRAPHICS

2.7.1 Image Methods

Constants

public static final Object UndefinedProperty
In Java 1.0, the sole constant of Image is UndefinedProperty. It is used as a
return value from the getProperty() method to indicate that the requested
property is unavailable.

Java 1.1 introduces the getScaledInstance() method. The final parameter to the
method is a set of hints to tell the method how best to scale the image. The follow-
ing constants provide possible values for this parameter.

public static final int SCALE_DEFAULT %
The SCALE DEFAULT hint should be used alone to tell getScaledInstance() to
use the default scaling algorithm.

public static final int SCALE_FAST %
The SCALE_FAST hint tells getScaledInstance() that speed takes priority over
smoothness.

public static final int SCALE_SMOOTH %
The SCALE_SMOOTH hint tells getScaledInstance() that smoothness takes pri-
ority over speed.

public static final int SCALE_REPLICATE %
The SCALE_REPLICATE hint tells getScaledInstance() to use ReplicateScale-
Filter or a reasonable alternative provided by the toolkit. ReplicateScale-
Filter is discussed in Chapter 12.

public static final int SCALE_AREA_AVERAGING %
The SCALE_ARFA AVERAGING hint tells getScaledInstance() to use AreaAver-—
agingScaleFilter or a reasonable alternative provided by the toolkit. AreaAv-
eragingScaleFilter is discussed in Chapter 12.

Constructors

There are no constructors for Image. You get an Image object to work with by using
the getImage () method of Applet (in an applet), Toolkit (in an application), or
the createImage () method of Component or Toolkit. getImage() uses a separate
thread to fetch the image. The thread starts when you call drawImage(), pre-
pareImage(), or any other method that requires image information. getImage ()
returns immediately. You can also use the MediaTracker class to force an image to
load before it is needed. MediaTracker is discussed in the next section.

2.7 IMAGE 53

Characteristics

public abstract int getWidth (ImageObserver observer)
The getwidth() method returns the width of the image object. The width may
not be available if the image has not started loading; in this case, getWidth()
returns —1. An image’s size is available long before loading is complete, so it is
often useful to call getwidth () while the image is loading.

public abstract int getHeight (ImageObserver observer)
The getHeight () method returns the height of the image object. The height
may not be available if the image has not started loading; in this case, the
getHeight () method returns —1. An image’s size is available long before load-
ing is complete, so it is often useful to call getHeight () while the image is
loading.

Miscellaneous methods

public Image getScaledInstance (int width, int height, int hints) %

The getScaledInstance () method enables you to generate scaled versions of
images before they are needed. Prior to Java 1.1, it was necessary to tell the
drawImage () method to do the scaling. However, this meant that scaling didn’t
take place until you actually tried to draw the image. Since scaling takes time,
drawing the image required more time; the net result was degraded appear-
ance. With Java 1.1, you can generate scaled copies of images before drawing
them; then you can use a version of drawImage() that does not do scaling, and
therefore is much quicker.

The width parameter of getScaledInstance() is the new width of the image.
The height parameter is the new height of the image. If either is -1, the scal-
ing retains the aspect ratio of the original image. For instance, if the original
image size was 241 by 72 pixels, and width and height were 100 and -1, the
new image size would be 100 by 29 pixels. If both width and height are -1, the
getScaledInstance() method retains the image’s original size. The hints
parameter is one of the Image class constants.

Image 1 = getImage (getDocumentBase(), "rosey.jpg");
Image j = i.getScaledInstance (100, -1, Image.SCALE_FAST) ;

public abstract ImageProducer getSource ()
The getSource () method returns the image’s producer, which is an object of
type ImageProducer. This object represents the image’s source. Once you
have the ImageProducer, you can use it to do additional image processing; for
example, you could create a modified version of the original image by using a
FilteredImageSource. Image producers and image filters are covered in
Chapter 12.

54 CHAPTER 2: SIMPLE GRAPHICS

public abstract Graphics getGraphics ()
The getGraphics() method returns the image’s graphics context. The
method getGraphics () works only for Image objects created in memory with
Component .createImage (int, int). If the image came from a URL or a file
(i.e., from getImage()), getGraphics () throws the run-time exception Class-
CastException.

public abstract Object getProperty (String name, ImageObserver observer)
The getProperty () method interacts with the image’s property list. An object
representing the requested property name will be returned for observer.
observer represents the Component on which the image is rendered. If the
property name exists but is not available yet, getProperty () returns null. If the
property name does not exist, the getProperty() method returns the
Image.UndefinedProperty object.

Each image type has its own property list. A property named comment stores a
comment String from the image’s creator. The CropImageFilter adds a prop-
erty named croprect. If you ask getProperty () for an image’s croprect prop-
erty, you get a Rectangle that shows how the original image was cropped.

public abstract void flush()
The flush() method resets an image to its initial state. Assume you acquire an
image over the network with getImage (). The first time you display the image,
it will be loaded over the network. If you redisplay the image, AWT normally
reuses the original image. However, if you call flush() before redisplaying the
image, AWT fetches the image again from its source. (Images created with
createImage() aren’t affected.) The flush() method is useful if you expect
images to change while your program is running. The following program
demonstrates flush(). It reloads and displays the file flush.gif every time you
click the mouse. If you change the file flush.gif and click on the mouse, you
will see the new file.

import java.awt.*;
public class flushMe extends Frame {
Image im;
flushMe () {
super ("Flushing");
im = Toolkit.getDefaultToolkit () .getImage ("flush.gif");
resize (175, 225);
}
public void paint (Graphics g) {
g.drawImage (im, 0, 0, 175, 225, this);
}
public boolean mouseDown (Event e, int x, int y) {
im.flush() ;
repaint () ;
return true;

2.7 IMAGE 55

public static void main (String [] args) {
Frame f = new flushMe ();
f.show() ;

2.7.2 Simple Animation

Creating simple animation sequences in Java is easy. Load a series of images, then
display the images one at a time. Example 2-1 is an application that displays a sim-
ple animation sequence. Example 2-2 is an applet that uses a thread to run the
application. These programs are far from ideal. If you try them, you’ll probably
notice some flickering or missing images. We discuss how to fix these problems
shortly.

Example 2—1: Animation Application

import java.awt.*;
public class Animate extends Frame {

static Image im[];

static int numImages = 12;

static int counter=0;

Animate () {
super ("Animate");

}

public static void main (String[] args) {
Frame f = new Animate();
f.resize (225, 225);
f.show() ;
im = new Image[numImages];
for (int i=0;i<numImages;i++) {

im[i] = Toolkit.getDefaultToolkit () .getImage ("clock"+i+".Jjpg");

}

}

public synchronized void paint (Graphics g) {
g.translate (insets().left, insets().top);
g.drawImage (im[counter], 0, 0, this);
counter++;
if (counter == numImages)

counter = 0;

repaint (200);

}

This application displays images with the name clockn.jpg, where n is a number
between 0 and 11. It fetches the images using the getImage() method of the
Toolkit class—hence, the call to Toolkit.getDefaultToolkit (), which gets a
Toolkit object to work with. The paint () method displays the images in sequence,
using drawImage (). paint () ends with a call to repaint (200), which schedules
another call to paint () in 200 milliseconds.

56 CHAPTER 2: SIMPLE GRAPHICS

The AnimateApplet, whose code is shown in Example 2-2, does more or less the
same thing. It is able to use the Applet.getImage() method. A more significant
difference is that the applet creates a new thread to control the animation. This
thread calls sleep(200), followed by repaint (), to display a new image every 200
milliseconds.

Example 2-2: Multithreaded Animation Applet

import java.awt.*;
import java.applet.*;
public class AnimateApplet extends Applet implements Runnable {
static Image im[];
static int numImages = 12;
static int counter=0;
Thread animator;
public void init () {
im = new Image[numImages];
for (int i=0;i<numImages;i++)
im[i] = getImage (getDocumentBase(), "clock"+i+".jpg");
}
public void start() {
if (animator == null) {
animator = new Thread (this);
animator.start ();

}
public void stop() {
if ((animator != null) && (animator.isAlive())) {
animator.stop() ;
animator = null;

}
public void run () {

while (animator != null) {
try {
animator.sleep (200) ;
repaint ();
counter++;
if (counter==numImages)
counter=0;

} catch (Exception e) {
e.printStackTrace ();

}
public void paint (Graphics g) {
g.drawImage (im[counter], 0, 0, this);

}
One quick fix will help the flicker problem in both of these examples. The

2.7 IMAGE 57

update () method (which is inherited from the Component class) normally clears
the drawing area and calls paint (). In our examples, clearing the drawing area is
unnecessary and, worse, results in endless flickering; on slow machines, you’ll see
update () restore the background color between each image. It’s a simple matter
to override update () so that it doesn’t clear the drawing area first. Add the follow-
ing method to both of the previous examples:

public void update (Graphics g) {
paint (g);
}
Overriding update () helps, but the real solution to our problem is double buffer-
ing, which we’ll turn to next.

2.7.3 Double Buffering

Double buffering means drawing to an offscreen graphics context and then dis-
playing this graphics context to the screen in a single operation. So far, we have
done all our drawing directly on the screen—that is, to the graphics context pro-
vided by the paint () method. As your programs grow more complex, paint () gets
bigger and bigger, and it takes more time and resources to update the entire draw-
ing area. On a slow machine, the user will see the individual drawing operations
take place, which will make your program look slow and clunky. By using the dou-
ble buffering technique, you can take your time drawing to another graphics con-
text that isn’t displayed. When you are ready, you tell the system to display the
completely new image at once. Doing so eliminates the possibility of seeing partial
screen updates and flickering.

The first thing you need to do is create an image as your drawing canvas. To get an
image object, call the createImage () method. createImage() is a method of the
Component class, which we will discuss in Chapter 5, Components. Since Applet
extends Component, you can call createImage() within an applet. When creating
an application and extending Frame, createImage () returns null until the Frame’s
peer exists. To make sure that the peer exists, call addNotify () in the constructor,
or make sure you call show() before calling createImage (). Here’s the call to the
createImage () method that we’ll use to get an Image object:

Image im = createImage (300, 300); // width and height

Once you have an Image object, you have an area you can draw on. But how do you
draw on it? There are no drawing methods associated with Image; they're all in the
Graphics class. So we need to get a Graphics context from the Image. To do so, call
the getGraphics () method of the Image class, and use that Graphics context for
your drawing:

58 CHAPTER 2: SIMPLE GRAPHICS

Graphics buf = im.getGraphics();

Now you can do all your drawings with buf. To display the drawing, the paint ()
method only needs to call drawImage(im, . . .). Note the hidden connection
between the Graphics object, buf, and the Image you are creating, im. You draw
onto buf; then you use drawImage() to render the image on the on-screen Graph-
ics context within paint ().

Another feature of buffering is that you do not have redraw the entire image with
each call to paint (). The buffered image you’re working on remains in memory,
and you can add to it at will. If you are drawing directly to the screen, you would
have to recreate the entire drawing each time paint() is called; remember,
paint () always hands you a completely new Graphics object. Figure 2-16 shows
how double buffering works.

Image im = createImage (width, height);

Graphics buf = im.getGraphics();
buf.drawStuff(...);

@)

.\

g.drawImage (im, 0, 0, this);

Figure 2—-16: Double buffering

Example 2-3 puts it all together for you. It plays a game, with one move drawn to
the screen each cycle. We still do the drawing within paint (), but we draw into an
offscreen buffer; that buffer is copied onto the screen by g.drawImage (im, 0, 0,
this). If we were doing a lot of drawing, it would be a good idea to move the draw-
ing operations into a different thread, but that would be overkill for this simple

applet.
Example 2-3: Double Buffering— Who Won 2

import java.awt.*;
import java.applet.*;
public class buffering extends Applet {
Image im;
Graphics buf;
int pass=0;
public void init () {
// Create buffer
im = createImage (size().width, size().height);
// Get its graphics context
buf = im.getGraphics();
// Draw Board Once

2.7 IMAGE

Example 2-3: Double Buffering— Who Won? (continued)

buf.setColor
buf.drawLine
buf.drawLine
buf.drawLine
buf.drawLine
buf.setColor

(Color.red) ;
(0, 50, 150, 50)
(0, 100, 150, 100);
(50, 0, 50, 150)
(100, 0, 100, 150)
(Color.black) ;
}
public void paint (Graphics g) {
// Draw image - changes are written onto buf
g.drawImage (im, 0, 0, this);
// Make a move
switch (pass) {
case 0:
buf.drawlLine (50, 50, 100, 100);
buf.drawLine (50, 100, 100, 50);
break;
case 1:
buf.drawOval (0, 0, 50, 50);
break;
case 2:
buf.drawLine (100, 0, 150, 50);
buf.drawLine (150, 0, 100, 50);
break;
case 3:
buf.drawOval (0, 100, 50, 50);
break;
case 4:
buf.drawlLine (0, 50, 50, 100);
buf.drawlLine (0, 100, 50, 50);
break;
case 5:
buf.drawOval (100, 50, 50, 50);
break;
case 6:
buf.drawLine (50, 0, 100, 50);
buf.drawLine (50, 50, 100, 0);
break;
case 7:
buf.drawOval (50, 100, 50, 50);
break;
case 8:
buf.drawline (100, 100, 150, 150);
buf.drawline (150, 100, 100, 150);
break;
}
pass++;
if (pass <= 9)
repaint (500);

60 CHAPTER 2: SIMPLE GRAPHICS

2.8 MediaTracker

The MediaTracker class assists in the loading of multimedia objects across the net-
work. Tracking is necessary because Java loads images in separate threads. Calls to
getImage() return immediately; image loading starts only when you call the
method drawImage (). MediaTracker lets you force images to start loading before
you try to display them; it also gives you information about the loading process, so
you can wait until an image is fully loaded before displaying it.

Currently, MediaTracker can monitor the loading of images, but not audio,
movies, or anything else. Future versions are rumored to be able to monitor other
media types.

2.8.1 MediaTracker Methods

Constants

The MediaTracker class defines four constants that are used as return values from
the class’s methods. These values serve as status indicators.

public static final int LOADING
The LOADING variable indicates that the particular image being checked is still
loading.

public static final int ABORTED
The ABORTED variable indicates that the loading process for the image being
checked aborted. For example, a timeout could have happened during the
download. If something ABORTED during loading, it is possible to flush() the
image to force a retry.

public static final int ERRORED
The ERRORED variable indicates that an error occurred during the loading pro-
cess for the image being checked. For instance, the image file might not be
available from the server (invalid URL) or the file format could be invalid. If
an image has ERRORED, retrying it will fail.

public static final int COMPLETE
The COMPLETE flag means that the image being checked successfully loaded.

If COMPLETE, ABORTED, or ERRORED is set, the image has stopped loading. If you are
checking multiple images, you can OR several of these values together to form a
composite. For example, if you are loading several images and want to find out
about any malfunctions, call statusAll() and check for a return value of ABORTED
| ERRORED.

2.8 MEDIATRACKER 61

Constructors

public MediaTracker (Component component)
The MediaTracker constructor creates a new MediaTracker object to track
images to be rendered onto component.

Adding images

The addImage () methods add objects for the MediaTracker to track. When placing
an object under a MediaTracker’s control, you must provide an identifier for
grouping purposes. When multiple images are grouped together, you can perform
operations on the entire group with a single request. For example, you might want
to wait until all the images in an animation sequence are loaded before starting
the animation; in this case, assigning the same ID to all the images makes good
sense. However, when multiple images are grouped together, you cannot check on
the status of a single image. The moral is: if you care about the status of individual
images, put each into a group by itself.

Folklore has it that the identifier also serves as a loading priority, with a lower ID
meaning a higher priority. This is not completely true. Current implementations
start loading lower IDs first, but at most, this is implementation-specific functional-
ity for the JDK. Furthermore, although an object with a lower identifier might be
told to start loading first, the MediaTracker does nothing to ensure that it finishes
first.

public synchronized void addImage (Image image, int id, int width, int height)
The addImage () method tells the MediaTracker instance that it needs to track
the loading of image. The id is used as a grouping. Someone will eventually
render the image at a scaled size of width height. If width and height are
both -1, the image will be rendered unscaled. If you forget to notify the Medi-
aTracker that the image will be scaled and ask the MediaTracker to waitForID
(1d), it is possible that the image may not be fully ready when you try to draw
it.

public void addImage (Image image, int id)
The addImage () method tells the MediaTracker instance that it needs to track
the loading of image. The id is used as a grouping. The image will be ren-
dered at its actual size, without scaling.

Removing images

Images that have finished loading are still watched by the MediaTracker. The
removeImage () methods, added in Java 1.1, allow you to remove objects from the
MediaTracker. Once you no longer care about an image (usually after waiting for

62 CHAPTER 2: SIMPLE GRAPHICS

it to load), you can remove it from the tracker. Getting rid of loaded images results
in better performance because the tracker has fewer objects to check. In Java 1.0,
you can’t remove an image from MediaTracker.

public void removelmage (Image image) *
The removeImage () method tells the MediaTracker to remove all instances of
image from its tracking list.

public void removelmage (Image image, int id) *
The removeImage () method tells the MediaTracker to remove all instances of
image from group id of its tracking list.

public void removelmage (Image image, int id, int width, int height) %
This removeImage () method tells the MediaTracker to remove all instances of
image from group id and scale width height of'its tracking list.

Waiting

A handful of methods let you wait for a particular image, image group, all images,
or a particular time period. They enable you to be sure that an image has finished
trying to load prior to continuing. The fact that an image has finished loading
does not imply it has successfully loaded. It is possible that an error condition
arose, which caused loading to stop. You should check the status of the image (or
group) for actual success.

public void waitForID (int id) throws InterruptedException
The waitForID() method blocks the current thread from running until the
images added with id finish loading. If the wait is interrupted, waitForID()
throws an InterruptedException.

public synchronized boolean waitForlD (int id, long ms) throws InterruptedException
The waitForID() method blocks the current thread from running until the
images added with id finish loading or until ms milliseconds have passed. If all
the images have loaded, waitForID() returns true; if the timer has expired, it
returns false, and one or more images in the id set have not finished loading.
If ms is 0, it waits until all images added with id have loaded, with no timeout.
If the wait is interrupted, waitForID() throws an InterruptedException.

public void waitForAll () throws InterruptedException
The waitForAll () method blocks the current thread from running until all
images controlled by this MediaTracker finish loading. If the wait is inter-
rupted, waitForAll () throws an InterruptedException.

2.8 MEDIATRACKER 63

public synchronized boolean waitForAll (long ms) throws InterruptedException
The waitForAll () method blocks the current thread from running until all
images controlled by this MediaTracker finish loading or until ms milliseconds
have passed. If all the images have loaded, waitForAll() returns true; if the
timer has expired, it returns false, and one or more images have not finished
loading. If ms is 0, it waits until all images have loaded, with no timeout. When
you interrupt the waiting, waitForAll () throws an InterruptedException.

Checking status

Several methods are available to check on the status of images loading. None of
these methods block, so you can continue working while images are loading.

public boolean checkID (int id)
The checkID() method determines if all the images added with the id tag
have finished loading. The method returns true if all images have completed
loading (successfully or unsuccessfully). Since this can return true on error,
you should also use isErrorID() to check for errors. If loading has not com-
pleted, checkID() returns false. This method does not force images to start
loading.

public synchronized boolean checkID (int id, boolean load)
The checkID() method determines if all the images added with the id tag
have finished loading. If the load flag is true, any images in the id group that
have not started loading yet will start. The method returns true if all images
have completed loading (successfully or unsuccessfully). Since this can return
true on error, you should also use isErrorID() to check for errors. If loading
has not completed, checkID() returns false.

public boolean checkAll ()
The checkAll () method determines if all images associated with the Media-
Tracker have finished loading. The method returns true if all images have
completed loading (successfully or unsuccessfully). Since this can return true
on error, you should also use isErrorAny() to check for errors. If loading has
not completed, checkAll () returns false. This method does not force images
to start loading.

public synchronized boolean checkAll (boolean load)
The checkAll () method determines if all images associated with the Media-
Tracker have finished loading. If the load flag is true, any image that has not
started loading yet will start. The method returns true if all images have com-
pleted loading (successfully or unsuccessfully). Since this can return true on
error, you should also use isErrorAny () to check for errors. If loading has not
completed, checkAll () returns false.

64 CHAPTER 2: SIMPLE GRAPHICS

public int statusID (int id, boolean load)
The statusID() method checks on the load status of the images in the id
group. If there are multiple images in the group, the results are ORed
together. If the load flag is true, any image in the id group that has not
started loading yet will start. The return value is some combination of the class
constants LOADING, ABORTED, ERRORED, and COMPLETE.

public int statusAll (boolean load)
The statusAll() method determines the load status of all the images associ-
ated with the MediaTracker. If this MediaTracker is watching multiple images,
the results are ORed together. If the load flag is true, any image that has not
started loading yet will start. The return value is some combination of the class
constants LOADING, ABORTED, ERRORED, and COMPLETE.

public synchronized boolean isErrorID (int id)
The isErrorId() method checks whether any media in the id group encoun-
tered an error while loading. If any image resulted in an error, isErrorId()
returns true; if there were no errors, it returns false.

public synchronized boolean isErrorAny ()
The isErrorAny() method checks to see if any image associated with the
MediaTracker encountered an error. If there was an error, the method returns
true; if none, false.

public synchronized Object[] getErrorsID (int id)
The getErrorsID() method returns an array of the objects that encountered
errors in the group ID during loading. If loading caused no errors, the
method returns null. The return type is an Object array instead of an Image
array because MediaTracker will eventually support additional media types.

public synchronized Object[] getErrorsAny ()
The getErrorsAny() method returns an array of all the objects that encoun-
tered an error during loading. If there were no errors, the method returns
null. The return type is an Object array instead of an Image array because
MediaTracker will eventually support additional media types.

2.8.2 Using a MediaTracker

The init () method improves the AnimateApplet from Example 2-2 to ensure that
images load before the animation sequence starts. Waiting for images to load is
particularly important if there is a slow link between the computer on which the
applet is running and the server for the image files. Note that in a few cases, like
interlaced GIF files, you might be willing to display an image before it has com-
pletely loaded. However, judicious use of MediaTracker will give you much more
control over your program’s behavior.

2.8 MEDIATRACKER 65

The new init () method creates a MediaTracker, puts all the images in the anima-
tion sequence under the tracker’s control, and then calls waitForAll() to wait
until the images are loaded. Once the images are loaded, it calls isErrorsAny () to

make sure that the images loaded successfully.

public void init () {
MediaTracker mt = new MediaTracker (this);
im = new Image[numImages];
for (int i=0;i<numImages;i++) {
im[i] = getImage (getDocumentBase(), "clock"+i+".jpg");
mt.addImage (im[i], 1i);
}
try {
mt.waitForAll () ;
if (mt.isErrorAny())
System.out.println ("Error loading images");
} catch (Exception e) {
e.printStackTrace ();

In this chapter:

¢ Fonts

* FontMetrics

¢ Color

* SystemColor

* Displaying Colors

* Using Desktop Colors

Fonts and Colors

This chapter introduces the java.awt classes that are used to work with different
fonts and colors. First, we discuss the Font class, which determines the font used to
display text strings, whether they are drawn directly on the screen (with draw-
String()) or displayed within a component like a text field. The FontMetrics class
gives you detailed information about a font, which you can use to position text
strings intelligently. Next, the Color class is used to represent colors and can be
used to specify the background color of any object, as well as the foreground color
used to display a text string or a shape. Finally, the SystemColor class (which is new
to Java 1.1) provides access to the desktop color scheme.

3.1 Fonts

An instance of the Font class represents a specific font to the system. Within AWT,
a font is specified by its name, style, and point size. Each platform that supports
Java provides a basic set of fonts; to find the fonts supported on any platform, call
Toolkit.getDefaultToolkit () .getFontList (). This method returns a String
array of the fonts available. Under Java 1.0, on any platform, the available fonts
were: TimesRoman, Helvetica, Courier, Dialog, Dialoglnput, and ZapfDingbats.
For copyright reasons, the list is substantially different in Java 1.1: the available
font names are TimesRoman 3¢, Serif, Helvetica %, SansSerif, Courier 3%,
Monospaced, Dialog, and DialogInput. The actual fonts available aren’t changing;
the deprecated font names are being replaced by non-copyrighted equivalents.
Thus, TimesRoman is now Serif, Helvetica is now SansSerif, and Courier is
Monospaced. The ZapfDingbats font name has been dropped completely because
the characters in this font have official Unicode mappings in the range \u2700 to
\u27ft.

66

3.1 FoONTS 67

NOTE If you desire non-Latin font support with Java 1.1, use the Unicode
mappings for the characters. The actual font used is specified in a set
of font.properties files in the lib subdirectory under java.home. These
localized font files allow you to remap the “Serif”, “SansSerif”, and
“Monospaced” names to different fonts.

The font’s style is passed with the help of the class variables Font.PLAIN,
Font .BOLD, and Font.ITALIC. The combination Font.BOLD | Font.ITALIC specifies
bold italics.

A font’s size is represented as an integer. This integer is commonly thought of as a
point size; although that’s not strictly correct, this book follows common usage and
talks about font sizes in points.

It is possible to add additional font names to the system by setting properties. For
example, putting the line below in the properties file or a resource file (resource
files are new to Java 1.1) defines the name “AvantGarde” as an alias for the font
SansSerif:

awt . font .avantgarde=SansSerif

With this line in the properties file, a Java program can use “AvantGarde” as a font
name; when this font is selected, AWT uses the font SansSerif for display. The
property name must be all lowercase. Note that we haven’t actually added a new
font to the system; we’ve only created a new name for an old font. See the discus-
sion of getFont () and decode() for more on font properties.

3.1.1 The Font Class

Constants

There are four styles for displaying fonts in Java: plain, bold, italic, and bold italic.
Three class constants are used to represent font styles:

public static final int BOLD
The BOLD constant represents a boldface font.

public static final int ITALIC
The ITALIC constant represents an italic font.

public static final int PLAIN

The PLAIN constant represents a plain or normal font.

The combination BOLD | ITALIC represents a bold italic font. PLAIN combined with
either BOLD or ITALIC represents bold or italic, respectively.

68 CHAPTER 3: FONTS AND COLORS

There is no style for underlined text. If you want underlining, you have to do it
manually, with the help of FontMetrics.

NOTE If you are using Microsoft’s SDK, the com.ms.awt.FontX class
includes direct support for underlined, strike through (line through
middle), and outline fonts.

Variables

Three protected variables access the font setting. They are initially set through the

9., «

Font constructor. To read these variables, use the Font class’s “get” methods.

protected String name
The name of the font.

protected int size
The size of the font.

protected int style
The style of the font. The style is some logical combination of the constants
listed previously.

Constructors

public Font (String name, int style, int size)
There is a single constructor for Font. It requires a name, style, and size.
name represents the name of the font to create, case insensitive.

setFont (new Font ("TimesRoman", Font.BOLD | Font.ITALIC, 20));

Characteristics

public String getName ()
The getName() method returns the font’s logical name. This is the name
passed to the constructor for the specific instance of the Font. Remember that
system properties can be used to alias font names, so the name used in the
constructor isn’t necessarily the actual name of a font on the system.

public String getFamily ()
The getFamily() method returns the actual name of the font that is being
used to display characters. If the font has been aliased to another font, the
getFamily () method returns the name of the platform-specific font, not the
alias. For example, if the constructor was new Font ("AvantGarde",
Font.PLAIN, 10) and the awt.font.avantgarde=Helvetica property is set,

3.1 FonTs 69

then getName() returns AvantGarde, and getFamily() returns Helvetica. If
nobody set the property, both methods return AvantGarde, and the system
uses the default font (since AvantGarde is a nonstandard font).

public int getStyle ()
The getStyle() method returns the current style of the font as an integer.
Compare this value with the constants Font.BOLD, Font.PLAIN, and
Font.ITALIC to see which style is meant. It is easier to use the isPlain(),
isBold(), and isItalic() methods to find out the current style. getStyle() is
more useful if you want to copy the style of some font when creating another.

public int getSize ()
The getSize() method retrieves the point size of the font, as set by the size
parameter in the constructor. The actual displayed size may be different.

public FontPeer getPeer () %
The getPeer () method retrieves the platform-specific peer object. The object
FontPeer is a platform-specific subclass of sun.awt.PlatformFont. For ex-
ample, on a Windows 95 platform, this would be an instance of sun.awt.win-
dows .WFontPeer.

Styles

public boolean isPlain ()
The isPlain() method returns true if the current font is neither bold nor
italic. Otherwise, it returns false.

public boolean isBold ()
The isBold() method returns true if the current font is either bold or bold
and italic. Otherwise, it returns false.

public boolean isltalic ()
The isItalic() method returns true if the current font is either italic or bold
and italic. Otherwise, it returns false.

Font properties

Earlier, you saw how to use system properties to add aliases for fonts. In addition to
adding aliases, you can use system properties to specify which fonts your program
will use when it runs. This allows your users to customize their environments to
their liking; your program reads the font settings at run-time, rather than using
hard-coded settings. The format of the settings in a properties file is:

propname=fontname-style-size

where propname is the name of the property being set, fontname is any valid font

70 CHAPTER 3: FONTS AND COLORS

name (including aliases), style is plain, bold, italic, or bolditalic, and size
represents the desired size for the font. style and size default to plain and 12
points. Order is important; the font’s style must always precede its size.

For example, let’s say you have three areas on your screen: one for menus, one for
labels, and one for input. In the system properties, you allow users to set three
properties: myPackage.myClass.menuFont, myPackage.myClass.labelFont, and
myPackage.myClass. inputFont. One user sets two:

myPackage .myClass .menuFont=TimesRoman-italic-24
myPackage.myClass . inputFont=Helvetica

The user has specified a Times font for menus and Helvetica for other input. The
property names are up to the developer. The program uses getFont () to read the
properties and set the fonts accordingly.

NOTE The location of the system properties file depends on the run-time
environment and version you are using. Normally, the file goes into a
subdirectory of the installation directory, or for environments where
users have home directories, in a subdirectory for the user. Sun’s
HotJava, JDK, and appletviewer tools use the properties file in the
.hotjava directory.

Most browsers do not permit modifying properties, so there is no
file.

Java 1.1 adds the idea of “resource files,” which are syntactically simi-
lar to properties files. Resource files are then placed on the server or
within a directory found in the CLASSPATH. Updating the properties
file is no longer recommended.

public static Font getFont (String name)
The getFont () method gets the font specified by the system property name. If
name is not a valid system property, null is returned. This method is imple-
mented by a call to the next version of getFont (), with the defaultFont
parameter set to null.

Assuming the properties defined in the previous example, if you call the
getFont () method with name set to myPackage.myClass.menuFont, the return
value is a 24-point, italic, TimesRoman Font object. If called with name set to
myPackage.myClass. inputFont, getFont () returns a 12-point, plain Helvetica
Font object. If called with myPackage.myClass.labelFont as name, getFont ()
returns null because this user did not set the property myPack-
age.myClass.labelFont.

3.1 FoNTS 71

public static Font getFont (String name, Font defaultFont)
The getFont () method gets the font specified by the system property name. If
name is not a valid system property, this version of getFont () returns the Font
specified by defaultFont. This version allows you to provide defaults in the
event the user does not wish to provide his own font settings.

public static Font decode (String name) %

The decode () method provides an explicit means to decipher font property
settings, regardless of where the setting comes from. (The getFont () method
can decipher settings, but only if they’re in the system properties file.) In par-
ticular, you can use decode() to look up font settings in a resource file. The
format of name is the same as that used by getFont (). If the contents of name
are invalid, a 12-point plain font is returned. To perform the equivalent of
getFont ("myPackage.myClass.menuFont") without using system properties,
see the following example. For a more extensive example using resource files,
see Appendix A.

// Java 1.1 only
InputStream is = instance.getClass() .getResourceAsStream("propfile");
Properties p = new Properties();
try {

p.load (is);

Font f = Font.decode (p.getProperty ("myPackage.myClass.menuFont")) ;
} catch (IOException e) {

System.out.println ("error loading props...");

}

Miscellaneous methods

public int hashCode ()
The hashCode () method returns a hash code for the font. This hash code is
used whenever a Font object is used as the key in a Hashtable.

public boolean equals (Object o)
The equals() method overrides the equals() method of Object to define
equality for Font objects. Two Font objects are equal if their size, style, and
name are equal. The following example demonstrates why this is necessary.

Font a = new Font ("TimesRoman", Font.PLAIN, 10);

Font b = new Font ("TimesRoman", Font.PLAIN, 10);

// displays false since the objects are different objects
System.out.println (a == b);

// displays true since the objects have equivalent settings
System.out.println (a.equals (b));

72 CHAPTER 3: FONTS AND COLORS

public String toString ()
The toString() method of Font returns a string showing the current family,
name, style, and size settings. For example:

java.awt.Font [family=TimesRoman, name=TimesRoman, style=bolditalic, size=20]

3.2 FontMetrics

The abstract FontMetrics class provides the tools for calculating the actual width
and height of text when displayed on the screen. You can use the results to posi-
tion objects around text or to provide special effects like shadows and underlining.

Like the Graphics class, FontMetrics is abstract. The run-time Java platform pro-
vides a concrete implementation of FontMetrics. You don’t have to worry about
the actual class; it is guaranteed to implement all the methods of FontMetrics.
In case you’re curious, on a Windows 95 platform, either the class
sun.awt .win32.Win32FontMetrics (JDKI1.0) or the class sun.awt .windows .WFont-
Metrics (JDKI.1) extends FontMetrics. On a UNIX/Motif platform, the class is
sun.awt.motif.X11FontMetrics. With the Macintosh, the «class is
sun.awt .macos .MacFontMetrics. If you’re not using the JDK, the class names may
be different, but the principle still applies: you don’t have to worry about the con-
crete class.

3.2.1 The FontMetrics Class

Variables

protected Font font
The font whose metrics are contained in this FontMetrics object; use the
getFont () method to get the value.

Constructors

protected FontMetrics (Font font)

There is no visible constructor for FontMetrics. Since the class is abstract, you
cannot create a FontMetrics object. The way to get the FontMetrics for a font
is to ask for it. Through the current graphics context, call the method
getGraphics () .getFontMetrics () to retrieve the FontMetrics for the current
font. If a graphics context isn’t available, you can get a FontMetrics object
from the default Toolkit by calling the method Toolkit.getDefault-
Toolkit () .getFontMetrics (aFontObject).

3.2 FONTMETRICS 73

Font height

Four variables describe the height of a font: leading (pronounced like the metal),
ascent, descent, and height. Leading is the amount of space required between
lines of the same font. Ascent is the space above the baseline required by the tallest
character in the font. Descent is the space required below the baseline by the low-
est descender (the “tail” of a character like “y”). Height is the total of the three:
ascent, baseline, and descent. Figure 3-1 shows these values graphically.

g% metrics _ O] %] Ieafmg
' e |
ascent

height

baseline

descent i
4 !

leading

height

Figure 3—1: Font height metrics

If that were the entire story, it would be simple. Unfortunately, it isn’t. Some spe-
cial characters (for example, capitals with umlauts or accents) are taller than the
“tallest” character in the font; so Java defines a value called maxAscent to account
for these. Similarly, some characters descend below the “greatest” descent, so Java
defines a maxDescent to handle these cases.

NOTE It seems that on Windows and Macintosh platforms there is no differ-
ence between the return values of getMaxAscent () and getAscent (),
or between getMaxDescent () and getDescent (). On UNIX platforms,
they sometimes differ. For developing truly portable applications, the
max methods should be used where necessary.

74 CHAPTER 3: FONTS AND COLORS

public int getLeading ()
The getLeading () method retrieves the leading required for the FontMetrics
of the font. The units for this measurement are pixels.

public int getAscent ()
The getaAscent () method retrieves the space above the baseline required for
the tallest character in the font. The units for this measurement are pixels. You
cannot get the ascent value for a specific character.

public int getMaxAscent ()
getMaxAscent () retrieves the height above the baseline for the character that’s
really the tallest character in the font, taking into account accents, umlauts,
tildes, and other special marks. The units for this measurement are pixels. If
you are using only ordinary ASCII characters below 128 (i.e., the English lan-
guage character set), getMaxAscent () is not necessary.

If you’re using getMaxAscent (), avoid getHeight (); getHeight () is based on
getAscent () and doesn’t account for extra space.

For some fonts and platforms, getAscent () may include the space for the dia-
critical marks.

public int getDescent ()
The getDescent () method retrieves the space below the baseline required for
the deepest character for the font. The units for this measurement are pixels.
You cannot get the descent value for a specific character.

public int getMaxDescent ()

public int getMaxDecent ()
Some fonts may have special characters that extend farther below the baseline
than the value returned by getDescent (). getMaxDescent () returns the real
maximum descent for the font, in pixels. In most cases, you can still use the
getDescent () method; visually, it is okay for an occasional character to extend
into the space between lines. However, if it is absolutely, positively necessary
that the descent space does not overlap with the next line’s ascent require-
ments, use getMaxDescent () and avoid getDescent () and getHeight ().

An early beta release of the AWT API included the method getMaxDecent ().
It is left for compatibility with early beta code. Avoid using it; it is identical to
getMaxDescent () in every way except spelling. Unfortunately, it is not flagged
as deprecated.

3.2 FONTMETRICS 75

public int getHeight ()
The getHeight () method returns the sum of getDescent (), getAscent (), and
getLeading (). In most cases, this will be the distance between successive base-
lines when you are displaying multiple lines of text. The height of a font in
pixels is not necessarily the size of a font in points.

Don’t use getHeight () if you are displaying characters with accents, umlauts,
and other marks that increase the character’s height. In this case, compute the
height yourself using the getMaxAscent () method. Likewise, you shouldn’t
use the method getHeight () if you are using getMaxDescent () instead of get-
Descent ().

Character width

In the horizontal dimension, positioning characters is relatively simple: you don’t
have to worry about ascenders and descenders, you only have to worry about how
far ahead to draw the next character after you have drawn the current one. The
“how far” is called the advance width of a character. For most cases, the advance
width is the actual width plus the intercharacter space. However, it’s not a good
idea to think in these terms; in many cases, the intercharacter space is actually neg-
ative (i.e., the bounding boxes for two adjacent characters overlap). For example,
consider an italic font. The top right corner of one character probably extends
beyond the character’s advance width, overlapping the next character’s bounding
box. (To see this, look back at Figure 3-1; in particular, look at the in O’Reilly.) If
you think purely in terms of the advance width (the amount to move horizontally
after drawing a character), you won’t run into trouble. Obviously, the advance
width depends on the character, unless you’re using a fixed width font.

public int charWidth (char character)
This version of the charWidth() method returns the advance width of the
given character in pixels.

public int charWidth (int character)
The charwidth() method returns the advance width of the given character in
pixels. Note that the argument has type int rather than char. This version is
useful when overriding the Component . keyDown () method, which gets the inte-
ger value of the character pressed as a parameter. With the KeyEvent class,
you should use the previous version with its getKeyChar () method.

76 CHAPTER 3: FONTS AND COLORS

public int stringWidth (String string)
The stringWidth() method calculates the advance width of the entire string
in pixels. Among other things, you can use the results to underline or center
text within an area of the screen. Example 3-1 and Figure 3-2 show an example
that centers several text strings (taken from the command-line arguments) in
a Frame.

Example 3—1: Centering Text in a Frame

import java.awt.*;
public class Center extends Frame {
static String text[];
private Dimension dim;
static public void main (String argsl[]) {
if (args.length == 0) {
System.err.println ("Usage: java Center <some text>");
return;
}
text = args;
Center f = new Center();
f.show() ;
}
public void addNotify() {
super .addNotify () ;
int maxWidth = 0;
FontMetrics fm = getToolkit () .getFontMetrics (getFont()) ;
for (int i=0;i<text.length;i++) {
maxiWidth = Math.max (maxWidth, fm.stringWidth (text[i]));
}
Insets inset = insets();
dim = new Dimension (maxWidth + inset.left + inset.right,
text.length*fm.getHeight () + inset.top + inset.bottom);
resize (dim);
}
public void paint (Graphics g) {
g.translate(insets() .left, insets().top);
FontMetrics fm = g.getFontMetrics();
for (int i=0;i<text.length;i++) {
int x,v;
x (size() .width - fm.stringWidth (text[i]))/2;
y = (i+l)*fm.getHeight()-1;
g.drawString (text[i], x, Vy);

}

This application extends the Frame class. It stores its command-line arguments in
the String array text[]. The addNotify () method sizes the frame appropriately.
It computes the size needed to display the arguments and resizes the Frame accord-
ingly. To compute the width, it takes the longest stringWidth() and adds the left
and right insets. To compute the height, it takes the current font’s height,

3.2 FONTMETRICS 77

[=3 Untitled M= E3

Testing
This is a test
What iz going on in thiz place?
Help me

Figure 3-2: Centering text in a frame

multiplies it by the number of lines to display, and adds insets. Then it is up to the
paint () method to use stringWidth() and getHeight () to figure out where to put
each string.

public int charsWidth (char data[], int offset, int length)
The charswidth() method allows you to calculate the advance width of the
char array data, without first converting data to a String and calling the
stringWidth() method. The offset specifies the element of data to start
with; length specifies the number of elements to use. The first element of the
array has an offset of zero. If offset or length is invalid, charswidth()
throws the run-time exception ArrayIndexOutOfBoundsException.

public int bytesWidth (byte data[], int offset, int length)
The byteswidth() method allows you to calculate the advance width of the
byte array data, without first converting data to a String and calling the
stringWidth () method. The offset specifies the element of data to start with;
length specifies the number of elements to use. The first element of the array
has an offset of zero. If offset or length is invalid, bytesWidth () throws the
run-time exception ArrayIndexOutOfBoundsException.

public int[] getWidths ()
The getwWidths () method returns an integer array of the advance widths of the
first 255 characters in the FontMetrics font. getWidths () is very useful if you
are continually looking up the widths of ASCII characters. Obtaining the
widths as an array and looking up individual character widths yourself results
in less method invocation overhead than making many calls to charWidth().

public int getMaxAdvance ()
The getMaxAdvance () method returns the advance pixel width of the widest
character in the font. This allows you to reserve enough space for characters
before you know what they are. If you know you are going to display only
ASCII characters, you are better off calculating the maximum value returned
from getWidths(). When unable to determine the width in advance, the
method getMaxAdvance () returns —1.

78 CHAPTER 3: FONTS AND COLORS

Miscellaneous methods

public Font getFont ()
The getFont () method returns the specific font for this FontMetrics instance.

public String toString ()
The tostring() method of FontMetrics returns a string displaying the cur-
rent font, ascent, descent, and height. For example:

sun.awt.win32.Win32FontMetrics[font=java.awt.Font [family=TimesRoman,
name=TimesRoman, style=bolditalic, size=20]ascent=17, descent=6, height=24]

Because this is an abstract class, the concrete implementation could return
something different.

3.2.2 Font Display Example

Example 3-2 displays all the available fonts in the different styles at 12 points. The
code uses the FontMetrics methods to ensure that there is enough space for each
line. Figure 3-3 shows the results, using the Java 1.0 font names, on several plat-
forms.

Example 3—2: Font Display

import java.awt.*;
public class Display extends Frame {
static String[] fonts;
private Dimension dim;
Display () {
super ("Font Display");
fonts = Toolkit.getDefaultToolkit () .getFontList();
}
public void addNotify () {
Font f;
super.addNotify () ;
int height =0;
int maxiwidth = 0;
final int vMargin = 5, hMargin = 5;
for (int i=0;i<fonts.length;i++) {
f = new Font (fonts[i], Font.PLAIN, 12);
height += getHeight (f);
f = new Font (fonts[i], Font.BOLD, 12);
height += getHeight (f);
f = new Font (fonts[i], Font.ITALIC, 12);
height += getHeight (f);
f = new Font (fonts[i], Font.BOLD | Font.ITALIC, 12);
height += getHeight (f);
maxWidth = Math.max (maxWidth, getWidth (£, fonts[i] + " BOLDITALIC"));
}
Insets inset = insets();
dim = new Dimension (maxWidth + inset.left + inset.right + hMargin,
height + inset.top + inset.bottom + vMargin) ;

3.3 COLOR 79

Example 3-2: Font Display (continued)

resize (dim);

}

static public void main (String args[]) {
Display f = new Display();
f.show() ;

}
private int getHeight (Font f) {
FontMetrics fm = Toolkit.getDefaultToolkit () .getFontMetrics(f);
return fm.getHeight();
}
private int getWidth (Font £, String s) {
FontMetrics fm = Toolkit.getDefaultToolkit () .getFontMetrics (f);
return fm.stringWidth(s) ;
}
public void paint (Graphics g) {
int x = 0;
int v = 0;
g.translate(insets() .left, insets().top);
for (int i=0;i<fonts.length;i++) {
Font plain = new Font (fonts[i], Font.PLAIN, 12);
Font bold = new Font (fonts[i], Font.BOLD, 12);
Font italic = new Font (fonts[i], Font.ITALIC, 12);
Font bolditalic = new Font (fonts[i], Font.BOLD | Font.ITALIC, 12);
.setFont (plain);
+= getHeight (plain);
drawString (fonts[i] + " PLAIN", X, V);
setFont (bold);
+= getHeight (bold);
.drawString (fonts[i] + " BOLD", X, VY);
.setFont (italic);
+= getHeight (italic);
.drawString (fonts[i] + " ITALIC", X, VY);
.setFont (bolditalic);
+= getHeight (bolditalic);
drawString (fonts[i] + " BOLDITALIC", X, V);

@Ko oaukgaxag

}

resize (dim);

3.3 Color

Not so long ago, color was a luxury; these days, color is a requirement. A program
that uses only black and white seems hopelessly old fashioned. AWT’s Color class
lets you define and work with Color objects. When we discuss the Component class
(see Chapter 5, Components), you will see how to use these color objects, and our
discussion of the SystemColor subclass (new to Java 1.1; discussed later in this
chapter) shows you how to control the colors that are painted on the screen.

80 CHAPTER 3: FONTS AND COLORS

Navigator =y = B3 Sl =1 Font Disploy = E3
Dialog FLAIN s
Dialog BOLD Dindur ATALH
it AL Dizloy BELOITFALIE
Diafog B DIFAL I Helvetica PLAIN
Helvatica PLAIN ie':\'f‘:_ca ?T?ﬂll?c

. alvatica

HEWIPa SolL Helvetica BOLDITALIC
Helvietica STALIC TimesFoman PLATH
Helvetica BOLDITALIC TimesRoman BOLD
TimesRoman PLATH TimesRoman ITALIC
TimesRoman BOLD TimesFoman BOLDITALIC
Timeas Roman ITALIC e

Courier BOLD

TimesRoman BOLDITALIC Courier ITALIC
Courier PLAIN Courier BOLDITALIC
Courier BOLD Dialoglnput PLAIM

. Dialoginput BOLD
Courier ITALIC Dizbuplgoet ATALIE
Courier BOLDTTALIC g%mfi%giﬂfg ores

- 95 2HE St

Symbol PLAIN CHOPIXMLJ G+ BPpO?
Symbol BOLD GIBIATHE ISR SREDE S
Symbol ITALIC CBHACHE LG5 ABOCERFOEL
Symbol BOLDITALIC | Warning: Applet Window

Figure 3-3: Fonts available with the Netscape Navigator 3.0 and Internet Explorer 3.0

A few words of warning: while colors give you the opportunity to make visually
pleasing applications, they also let you do things that are incredibly ugly. Resist the
urge to go overboard with your use of color; it’s easy to make something hideous
when you are trying to use every color in the palette. Also, realize that colors are
fundamentally platform dependent, and in a very messy way. Java lets you use the
same Color objects on any platform, but it can’t guarantee that every display will
treat the color the same way; the result depends on everything from your software
to the age of your monitor. What looks pink on one monitor may be red on
another. Furthermore, when running in an environment with a limited palette,
AWT picks the available color that is closest to what you requested. If you really
care about appearance, there is no substitute for testing.

3.3.1 Color Methods

Constants

The Color class has predefined constants (all of type public static final Color)
for frequently used colors. These constants, their RGB values, and their HSB val-
ues (hue, saturation, brightness) are given in Table 3-1.

3.3 COLOR 81

Table 3—1: Comparison of RGB and HSB Colors

Color Red | Green | Blue | Hue Saturation | Brightness
black 0 0 0 0 0 0

blue 0 0 255 666667 | 1 1

cyan 0 255 255 5 1 1
darkGray | 64 64 64 0 0 .25098
gray 128 | 128 128 0 0 .501961
green 0 255 0 333333 | 1 1
lightGray | 192 | 192 192 0 0 752941
magenta | 255 | 0 255 .833333 | 1 1
orange 255 | 200 0 130719 | 1 1

pink 255 | 175 175 0 .313726 1

red 255 | 0 0 0 1 1

white 255 | 255 255 0 0 1
yellow 255 | 255 0 166667 | 1 1

These constants are used like any other class variable: for example, Color.red is a
constant Color object representing the color red. Many other color constants are
defined in the SystemColor class.

Constructors

When you’re not using a predefined constant, you create Color objects by specify-
ing the color’s red, green, and blue components. Depending on which constructor
you use, you can specify the components as integers between 0 and 255 (most
intense) or as floating point intensities between 0.0 and 1.0 (most intense). The
result is a 24-bit quantity that represents a color. The remaining 8 bits are used to
represent transparency: that is, if the color is painted on top of something, does
whatever was underneath show through? The Color class doesn’t let you work with
the transparency bits; all Color objects are opaque. However, you can use trans-
parency when working with images; this topic is covered in Chapter 12, Image Pro-
cessing.

public Color (int red, int green, int blue)
This constructor is the most commonly used. You provide the specific red,
green, and blue values for the color. Valid values for red, green, and blue are
between 0 and 255. The constructor examines only the low-order byte of the
integer and ignores anything outside the range, including the sign bit.

82 CHAPTER 3: FONTS AND COLORS

public Color (int rgb)
This constructor allows you to combine all three variables in one parameter,
rgb. Bits 16-23 represent the red component, and bits 8-15 represent the
green component. Bits 0-7 represent the blue component. Bits 24-31 are
ignored. Going from three bytes to one integer is fairly easy:

(((red & OxFF) << 16) | ((green & OxFF) << 8) | ((blue & OxFF) << 0))

public Color (float red, float green, float blue)
This final constructor allows you to provide floating point values between 0.0
and 1.0 for each of red, green, and blue. Values outside of this range yield
unpredictable results.

Settings
public int getRed ()

The getRed() method retrieves the current setting for the red component of
the color.

public int getGreen ()
The getGreen() method retrieves the current setting for the green compo-
nent of the color.

public int getBlue ()
The getBlue() method retrieves the current setting for the blue component
of the color.

public int getRGB ()
The getRGB() method retrieves the current settings for red, green, and blue in
one combined value. Bits 16-23 represent the red component. Bits 8-15 repre-
sent the green component. Bits 0-7 represent the blue component. Bits 24-31
are the transparency bits; they are always 0xff (opaque) when using the
default RGB ColorModel.

public Color brighter ()
The brighter() method creates a new Color that is somewhat brighter than
the current color. This method is useful if you want to highlight something on
the screen.

NOTE Black does not get any brighter.

public Color darker ()
The darker () method returns a new Color that is somewhat darker than the
current color. This method is useful if you are trying to de-emphasize an
object on the screen. If you are creating your own Component, you can use a

3.3 COLOR 83

darker () Color to mark it inactive.

Color properties

Color properties are very similar to Font properties. You can use system properties
(or resource files) to allow users to select colors for your programs. The settings
have the form 0xRRGGBB, where RR is the red component of the color, GG represents
the green component, and BB represents the blue component. 0x indicates that
the number is in hexadecimal. If you (or your user) are comfortable using decimal
values for colors (0x112233 is 1122867 in decimal), you can, but then it is harder
to see the values of the different components.

NOTE The location of the system properties file depends on the run-time
environment and version you are using. Ordinarily, the file will go
into a subdirectory of the installation directory or, for environment’s
where users have home directories, in a subdirectory for the user.
Sun’s HotJava, JDK, and appletviewer tools use the properties file in the
.hotjava directory.

Most browsers do not permit modifying properties, so there is no
file.

Java 1.1 adds the idea of “resource files,” which are syntactically simi-
lar to properties files. Resource files are then placed on the server or
within a directory found in the CLASSPATH. Updating the properties
file is no longer recommended.

For example, consider a screen that uses four colors: one each for the foreground,
the background, inactive components, and highlighted text. In the system proper-
ties file, you allow users to select colors by setting the following properties:

myPackage.myClass . foreground
myPackage.myClass . background
myPackage .myClass.inactive
myPackage.myClass.highlight

One particular user set two:

myPackage .myClass . foreground=0xf£00£ff #magenta
myPackage .myClass .background=0xe0e0e0 #light gray

These lines tell the program to use magenta as the foreground color and light gray
for the background. The program will use its default colors for inactive compo-
nents and highlighted text.

84 CHAPTER 3: FONTS AND COLORS

public static Color getColor (String name)
The getColor () method gets the color specified by the system property name.
If name is not a valid system property, getColor () returns null. If the property
value does not convert to an integer, getColor () returns null.

For the properties listed above, if you call getColor() with name set to the
property myPackage .myClass. foreground, it returns a magenta Color object.
If called with name set to myPackage.myClass.inactive, getColor () returns
null.

public static Color getColor (String name, Color defaultColor)
The getColor () method gets the color specified by the system property name.
This version of the getColor () method returns defaultColor if name is not a
valid system property or the property’s value does not convert to an integer.

For the previous example, if getColor() is called with name set to myPack-
age.myClass.inactive, the
getColor () method returns the value of defaultColor. This allows you to pro-
vide defaults for properties the user doesn’t wish to set explicitly.

public static Color getColor (String name, int defaultColor)

This getColor () method gets the color specified by the system property name.
This version of the getColor () method returns defaultColor if name is not a
valid system property or the property’s value does not convert to an integer.
The default color is specified as an integer in which bits 16-23 represent the
red component, 8-15 represent the green component, and 0-7 represent the
blue component. Bits 24-31 are ignored. If the property value does not con-
vert to an integer, defaultColor is returned.

public static Color decode (String name) %

The decode () method provides an explicit means to decipher color property
settings, regardless of where the setting comes from. (The getColor () method
can decipher settings but only if they’re in the system properties file.) In par-
ticular, you can use decode() to look up color settings in a resource file. The
format of name is the same as that used by getColor (). If the contents of name
do not translate to a 24-bit integer, the NumberFormatException run-time
exception is thrown. To perform the equivalent of getColor ("myPack-
age.myClass. foreground"), without using system properties, see the following
example. For a more extensive example using resource files, see Appendix A.

// Java 1.1 only
InputStream is = instance.getClass () .getResourceAsStream("propfile");
Properties p = new Properties();
try {

p.load (is);

Color ¢ = Color.decode (p.getProperty ("myPackage.myClass. foreground")) ;
} catch (IOException e) {

3.3 COLOR 85

System.out.println ("error loading props...");

Hue, saturation, and brightness

So far, the methods we have seen work with a color’s red, green, and blue compo-
nents. There are many other ways to represent colors. This group of methods
allows you to work in terms of the HSB (hue, saturation, brightness) model. Hue
represents the base color to work with: working through the colors of the rainbow,
red is represented by numbers immediately above 0; magenta is represented by
numbers below 1; white is 0; and black is 1. Saturation represents the color’s
purity, ranging from completely unsaturated (either white or black depending
upon brightness) to totally saturated (just the base color present). Brightness is
the desired level of luminance, ranging from black (0) to the maximum amount
determined by the saturation level.

public static float[] RGBtoHSB (int red, int green, int blue, float[] hsbvalues)
The RGBtoHSB () method allows you to convert a specific red, green, blue value
to the hue, saturation, and brightness equivalent. RGBtoHSB() returns the
results in two different ways: the parameter hsbvalues and the method’s
return value. The values of these are the same. If you do not want to pass an
hsbvalues array parameter, pass null. In both the parameter and the return
value, the three components are placed in the array as follows:

hsbvalues[0] contains hue
hsbvalues[1] contains saturation
hsbvalues[2] contains brightness

public static Color getHSBColor (float hue, float saturation, float brightness)
The getHSBColor () method creates a Color object by using hue, saturation,
and brightness instead of red, green, and blue values.

public static int HSBtoRGB (float hue, float saturation, float brightness)
The HSBtoRGB() method converts a specific hue, saturation, and brightness
to a Color and returns the red, green, and blue values as an integer. As with
the constructor, bits 16-23 represent the red component, 8-15 represent the
green component, and 0-7 represent the blue component. Bits 24-31 are
ignored.

86 CHAPTER 3: FONTS AND COLORS

Miscellaneous methods

public int hashCode ()
The hashCode () method returns a hash code for the color. The hash code is
used whenever a color is used as a key in a Hashtable.

public boolean equals (Object o)
The equals () method overrides the equals () method of the Object to define
equality for Color objects. Two Color objects are equivalent if their red, green,
and blue values are equal.

public String toString ()
The toString() method of Color returns a string showing the color’s red,
green, and blue settings. For example System.out.println (Color.orange)
would result in the following:

java.awt.Color [r=255,g=200,b=0]

3.4 SystemColor

In Java 1.1, AWT provides access to desktop color schemes, or themes. To give you
an idea of how these themes work, with the Windows Standard scheme for the
Windows 95 desktop, buttons have a gray background with black text. If you use
the control panel to change to a High Contrast Black scheme, the button’s back-
ground becomes black and the text white. Prior to 1.1, Java didn’t know anything
about desktop colors: all color values were hard coded. If you asked for a particu-
lar shade of gray, you got that shade, and that was it; applets and applications had
no knowledge of the desktop color scheme in effect, and therefore, wouldn’t
change in response to changes in the color scheme.

Starting with Java 1.1, you can write programs that react to changes in the color
scheme: for example, a button’s color will change automatically when you use the
control panel to change the color scheme. To do so, you use a large number of
constants that are defined in the SystemColor class. Although these constants are
public static final, they actually have a very strange behavior. Your program is
not allowed to modify them (like any other constant). However, their initial values
are loaded at run-time, and their values may change, corresponding to changes in
the color scheme. This has one important consequence for programmers: you
should not use equals () to compare a SystemColor with a “regular” Color; use the
getRGB() methods of the colors you are comparing to ensure that you compare
the current color value.” Section 3.6 contains a usage example.

* The omission of an equals () method that can properly compare a SystemColor with a Color is unfor-
tunate.

3.4 SySTEMCOLOR 87

Because SystemColor is a subclass of Color, you can use a SystemColor anywhere
you can use a Color object. You will never create your own SystemColor objects;
there is no public constructor. The only objects in this class are the twenty or so
SystemColor constants.

3.4.1 SystemColor Methods

Constants

There are two sets of constants within SystemColor. The first set provides names
for indices into the internal system color lookup table; you will probably never
need to use these. All of them have corresponding constants in the second set,
except SystemColor .NUM_COLORS, which tells you how many SystemColor constants
are in the second set.

public final static int ACTIVE_CAPTION %

public final static int ACTIVE_CAPTION_BORDER %
public final static int ACTIVE_CAPTION_TEXT %
public final static int CONTROL %

public final static int CONTROL_DK_SHADOW %
public final static int CONTROL_HIGHLIGHT %
public final static int CONTROL_LT_HIGHLIGHT %
public final static int CONTROL_SHADOW %

public final static int CONTROL_TEXT %

public final static int DESKTOP %

public final static int INACTIVE_CAPTION %

public final static int INACTIVE_CAPTION_BORDER %
public final static int INACTIVE_CAPTION_TEXT %
public final static int INFO %

public final static int INFO_TEXT %

public final static int MENU %

public final static int MENU_TEXT %

public final static int NUM_COLORS %

public final static int SCROLLBAR %

public final static int TEXT %

public final static int TEXT_HIGHLIGHT %

public final static int TEXT HIGHLIGHT TEXT %
public final static int TEXT INACTIVE_TEXT %
public final static int TEXT TEXT %

public final static int WINDOW %

