
Preface

The Abstract Window Tookit (AWT) provides the user interface for Java programs.
Unless you want to construct your own GUI or use a crude text-only interface, the
AWT provides the tools you will use to communicate with the user. Although we
are beginning to see some other APIs for building user interfaces, like Netscape’s
IFC (Internet Foundation Classes), those alternative APIs will not be in widespread
use for some time, and some will be platform specific. Likewise, we are beginning
to see automated tools for building GUIs in Java; Sun’s JavaBeans effort promises
to make such tools much more widespread. (In fact, the biggest changes in Java
1.1 prepare the way for using the various AWT components as JavaBeans.) How-
ever, even with automated tools and JavaBeans in the future, an in-depth knowl-
edge of AWT is essential for the practicing Java programmer.

The major problem facing Java developers these days is that AWT is a moving tar-
get. Java 1.0.2 is being replaced by Java 1.1, with many significant new features. Java
1.1 was released on February 18, 1997, but it isn’t clear how long it will take for 1.1
to be accepted in the market. The problem facing developers is not just learning
about the new features and changes in Java 1.1, but also knowing when they can
afford to use these new features in their code. In practice, this boils down to one
question: when will Netscape Navigator support Java 1.1? Rumor has it that the
answer is “as soon as possible”—and we all hope this rumor is correct. But given
the realities of maintaining a very complex piece of software, and the fact that
Netscape is currently in the beta process for Navigator 4.0, there’s a possibility that
“as soon as possible” and “soon” aren’t the same thing. In other words, you should
expect Java 1.0.2 to stick around for a while, especially since Web users won’t all
replace their browsers as soon as Navigator has 1.1 support.

xv

10 July 2002 22:16

xvi PREFACE

This state of affairs raises obvious problems for my book. Nothing would have
made me happier than to write a book that covered AWT 1.1 only. It would be sig-
nificantly shorter, for one thing, and I wouldn’t have to spend so much effort
pointing out which features are present in which release. But that’s not the current
reality. For the time being, programmers still need to know about 1.0.2. Therefore,
this book covers both releases thoroughly. There are many examples using 1.0.2;
many more examples that require 1.1; and more examples showing you how to
update 1.0.2 code to use 1.1’s features.

Sun has done a good job of maintaining compatibility between versions: 1.0 code
runs under Java 1.1, with very few exceptions. All of the 1.0 examples in this book
have been tested under Java 1.1. However, Java 1.1—and particularly, AWT
1.1 — offer many advantages over older releases. If nothing else, I hope this book
convinces you that you should be looking forward to the day when you can forget
about writing code for Java 1.0.2.

New Features of AWT in Java 1.1
Having spent all this time talking about 1.0.2 and 1.1 and the transitional state
we’re currently in and having alluded briefly to the advantages of Java 1.1, you
deser ve a brief summary of what has changed. Of course, you’ll find the details in
the book.

Improved event handling
Java 1.1 provides a completely new event model. Instead of propagating events
to all objects that might possibly have an interest, objects in Java 1.1 register
their interest in particular kinds of events and get only the events they’re inter-
ested in hearing. The old event model is still supported, but the new model is
much more efficient.

The new event model is also important in the context of JavaBeans. The old
events were pretty much specific to AWT. The new model has been designed as
a general purpose feature for communication between software components.
Unfortunately, how to use events in this more general sense is beyond the
scope of this book, but you should be aware that it’s possible.

New components and containers
Java 1.1 provides one new component, the PopupMenu, and one new container,
the ScrollPane. Pop-up menus are a staple of modern user interfaces; provid-
ing them fixes a serious omission. ScrollPane makes it trivial to implement
scrolling; in Java 1.0, you had to do scrolling “by hand.” In Java 1.1, you also
get menu shortcuts (i.e., the ability to select menu items using the keyboard),
another standard feature of modern user interfaces.

10 July 2002 22:16

Java 1.1 also introduces a LightweightPeer, which means that it is possible to
create “lightweight components.” To do so, you subclass Component or Con-
tainer directly; this wasn’t possible in earlier releases. For simple operations,
lightweight components are much more efficient than full-fledged compo-
nents.

Clipboards
Java 1.1 lets you read from and write to the system clipboard and create private
clipboards for use by your programs. The clipboard facility is a down payment
on a larger data transfer facility, which will support drag and drop. (No
promises about when drag and drop will appear.)

Printing
Java 1.1 gives components the ability to print.

The rest
There are many other new features, including more flexible use of cursors; the
ability to use system color schemes, and thus make your program look like
other software in the run-time environment; more image filters to play with;
and the ability to prescale an image.

Deprecated Methods and JavaBeans
One of the biggest changes in Java 1.1 doesn’t concern the feature set at all. This
was the addition of many new methods that differ from a method of Java 1.0 in
name only. There are hundreds of these, particularly in AWT. The new method
names show an important future direction for the AWT package (in fact, all of
Java). The new names obey the naming conventions used by JavaBeans, which
means that all AWT classes are potentially Beans. These conventions make it possi-
ble for an application builder to analyze what a component does based on its pub-
lic methods. For example, the method setFont() changes the value of the
component’s Font property. In turn, this means that you will eventually be able to
build user interfaces and, in some cases, entire applications, inside some other
tool, without writing any Java code at all. An application builder will be able to find
out what it needs to know about any component by looking at the component
itself, and letting you customize the component and its interactions with others.

Comments in the JDK source code indicate that the older method names have
been “deprecated,” which means that you should consider the old names obsolete
and avoid using them; they could disappear in a future release.

Reworking AWT to comply with JavaBeans is both necessary and inevitable. Fur-
thermore, it’s a good idea to get into the habit of following the same conventions
for your own code; the advantages of JavaBeans are much greater than the
inconvenience of changing your coding style.

PREFACE xvii

10 July 2002 22:16

xviii PREFACE

Other Changes in Java
Other new features are scattered throughout the rest of the Java classes, most
notably, improvements in the networking and I/O packages and support for inter-
nationalization. Some new features were added to the language itself, of which the
most important is “inner classes.” For the most part, I don’t discuss these changes;
in fact, I stay away from them and base non-AWT code on the 1.0.2. release.
Though these changes are important, covering the new material in AWT is enough
for one book. If I used a new feature at this point, I would feel that I owed you an
explanation, and this book is already long enough. A future edition will update the
code so that it doesn’t rely on any older features.

What This Book Covers
The Java AWT Reference is the definitive resource for programmers working with
AWT. It covers all aspects of the AWT package, in versions 1.0.2 and 1.1. If there
are any changes to AWT after 1.1 (at least two patch releases are expected), we will
integrate them as soon as possible. Watch the book’s Web site
http://www.ora.com/catalog/javawt/ for details on changes.

Specifically, this book completely covers the following packages:

java.awt (1.0 and 1.1)
java.awt.image (1.0 and 1.1)
java.awt.event (new to 1.1)
java.awt.datatransfer (new to 1.1)
java.awt.peer (1.0 and 1.1)
java.applet (1.0 and 1.1)

The book also covers some aspects of the sun.awt package (some interesting and
useful layout managers) and the sun.audio package (some more flexible ways of
working with audio files). It also gives a brief overview of the behind-the-scenes
machiner y for rendering images, much of which is in the sun.awt.image package.

Organization
The Java AWT Reference is divided into two large parts. The first part is a thorough
guide to using AWT. Although this guide is organized by class, it was designed to
flow logically, rather than alphabetically. I know that few people read a book like
this from beginning to end, but if you want to, it’s possible. With a few exceptions,
you should be able to read the early chapters without knowing the material that’s
covered in the later chapters. You’ll want to read this section to find out how any
chunk of the AWT package works in detail.

10 July 2002 22:16

The second part is a set of documentation pages typical of what you find in most
reference sets. It is organized alphabetically by package, and within each package,
alphabetically by class. It is designed to answer questions like “What are the argu-
ments to the FilteredImageSource constructor?” The reference section provides
brief summaries, rather than detailed discussions and examples. When you use a
typical reference book, you’re usually trying to look up some detail, rather than
learn how something works from scratch.

In other words, this book provides two views of AWT: terse summaries designed to
help you when you need to look something up quickly, and much more detailed
explanations designed to help you understand how to use AWT to the fullest. In
doing so, it goes well beyond the standard reference manual. A reference manual
alone gives you a great view of hundreds of individual trees; this book gives you the
trees, but also gives you the forest that allows you to put the individual pieces in
context. There are dozens of complete examples, together with background infor-
mation, overview material, and other information that doesn’t fit into the standard
reference manual format.

About the Source Code
The source code for the programs presented in this book is available online. See
http://www.ora.com/catalog/javawt/ for downloading instructions.

Obtaining the Example Programs
The example programs in this book are available electronically in a number of
ways: by FTP, Ftpmail, BITFTP, and UUCP. The cheapest, fastest, and easiest ways
are listed first. If you read from the top down, the first one that works for you is
probably the best. Use FTP if you are directly on the Internet. Use Ftpmail if you
are not on the Internet but can send and receive electronic mail to Internet sites
(this includes CompuServe users). Use BITFTP if you send electronic mail via BIT-
NET. Use UUCP if none of the above works.

FTP

To use FTP, you need a machine with direct access to the Internet. A sample ses-
sion is shown, with what you should type in boldface.

% ftp ftp.ora.com
Connected to ftp.ora.com.
220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.
Name (ftp.ora.com:yourname): anonymous
331 Guest login ok, send domain style e-mail address as password.
Password: yourname@yourhost.com (use your user name and host here)
230 Guest login ok, access restrictions apply.
ftp> cd /published/oreilly/java/awt

PREFACE xix

10 July 2002 22:16

xx PREFACE

250 CWD command successful.
ftp> binary (Very important! You must specify binary transfer for compressed files.)
200 Type set to I.
ftp> get examples.tar.gz
200 PORT command successful.
150 Opening BINARY mode data connection for examples.tar.gz.
226 Transfer complete.
ftp> quit
221 Goodbye.
%

The file is a compressed tar archive; extract the files from the archive by typing:

% zcat examples.tar.gz | tar xvf -

System V systems require the following tar command instead:

% zcat examples.tar.gz | tar xof -

If zcat is not available on your system, use separate gunzip and tar commands.

% gunzip examples.tar.gz
% tar xvf examples.tar

Ftpmail

Ftpmail is a mail server available to anyone who can send electronic mail to, and
receive it from, Internet sites. This includes any company or service provider that
allows email connections to the Internet. Here’s how you do it.

You send mail to ftpmail@online.ora.com. (Be sure to address the message to ftpmail
and not to ftp.) In the message body, give the FTP commands you want to run. The
ser ver will run anonymous FTP for you and mail the files back to you. To get a
complete help file, send a message with no subject and the single word “help” in
the body. The following is a sample mail session that should get you the examples.
This command sends you a listing of the files in the selected directory and the
requested example files. The listing is useful if there’s a later version of the exam-
ples you’re interested in.

% mail ftpmail@online.ora.com
Subject:
reply-to yourname@yourhost.com Where you want files mailed
open
cd /published/oreilly/java/awt
dir
mode binary
uuencode
get examples.tar.gz
quit
.

10 July 2002 22:16

A signature at the end of the message is acceptable as long as it appears after
“quit.”

BITFTP

BITFTP is a mail server for BITNET users. You send it electronic mail messages
requesting files, and it sends you back the files by electronic mail. BITFTP currently
ser ves only users who send it mail from nodes that are directly on BITNET, EARN,
or NetNorth. BITFTP is a public service of Princeton University. Here’s how it
works.

To use BITFTP, send mail containing your FTP commands to BITFTP@PUCC. For a
complete help file, send HELP as the message body.

The following is the message body you send to BITFTP:

FTP ftp.uu.net NETDATA
USER anonymous
PASS yourname@yourhost.edu Put your Internet email address here (not your BITNET address)
CD /published/oreilly/java/awt
DIR
BINARY
GET examples.tar.gz
QUIT

Once you’ve got the desired file, follow the directions under FTP to extract the
files from the archive. Since you are probably not on a UNIX system, you may need
to get versions of uudecode, uncompress, atob, and tar for your system. VMS, DOS, and
Mac versions are available. The VMS versions are on gatekeeper.dec.com in /pub/VMS.

UUCP

UUCP is standard on virtually all UNIX systems and is available for IBM-compatible
PCs and Apple Macintoshes. The examples are available by UUCP via modem from
UUNET; UUNET’s connect-time charges apply.

If you or your company has an account with UUNET, you have a system somewhere
with a direct UUCP connection to UUNET. Find that system, and type:

uucp uunet\!˜/published/oreilly/java/awt/examples.tar.gz yourhost\!˜/yourname/

The backslashes can be omitted if you use the Bourne shell (sh) instead of csh. The
file should appear some time later (up to a day or more) in the directory
/usr/spool/uucppublic/yourname. If you don’t have an account, but would like one so
that you can get electronic mail, contact UUNET at 703-204-8000.

Once you’ve got the desired file, follow the directions under FTP to extract the
files from the archive.

PREFACE xxi

10 July 2002 22:16

xxii PREFACE

Other Java Books and Resources
This book is part of a series of Java books from O’Reilly & Associates that covers
ever ything you wanted to know, and then some. The Java AWT Reference is paired
with the Java Fundamental Class Reference to document the entire Core Java API.
Other books in the series provide an introduction (Exploring Java) and document
the virtual machine (Java Virtual Machine), the language (Java Language Reference),
multithreaded programming (Java Threads), and network programming (Java Net-
work Programming), with more to come. Java in a Nutshell is another popular Java
book in the Nutshell series from O’Reilly. For a complete up-to-date list of the
available Java resources, refer to http://www.ora.com/info/java/.

In addition to the resources from O’Reilly, Sun’s online documentation on Java is
maintained at http://www.javasoft.com/nav/download/index.html. Information
on specific Java-capable browsers can be found at their respective Web sites, which
are listed in Table 1. More are sure to be on the way. (Some browsers are platform
specific, while others are multi-platform.)

Table 1: Popular Web Browsers that Support Java

Browser Location

Netscape Navigator http://home.netscape.com/comprod/products/navigator/

Microsoft’s Internet Explorer http://www.microsoft.com/ie

Sun’s HotJava http://www.javasoft.com/HotJava/

Oracle’s PowerBrowser http://www.oracle.com/products/websystem/powerbrowser

Apple’s Cyberdog http://cyberdog.apple.com/

Newsgroups also serve as a discussion area for Java-related topics. The
comp.lang.java group has formally split into several others. The new groups are:

comp.lang.java.advocacy comp.lang.java.machine
comp.lang.java.announce comp.lang.java.programmer
comp.lang.java.beans comp.lang.java.security
comp.lang.java.databases comp.lang.java.setup
comp.lang.java.gui comp.lang.java.softwaretools
comp.lang.java.help comp.lang.java.tech

For folks without time to dig through all the noise, Digital Espresso provides a peri-
odic digest of the newsfeed at http://www.io.org./˜mentor/DigitalEspresso.html.
A list of

10 July 2002 22:16

Java FAQs is at http://www-net.com/java/faq/; one of the most interesting is Cafe
Au Lait, at http://sunsite.unc.edu/javafaq/. (Cafe Au Lait is written by Elliotte
Rusty Harold, author of Java Network Programming.)

Local Java user groups are another good resource. (Having founded one myself,
I’m biased.) What they offer varies greatly, but unless you look at one, you are
potentially leaving out a vast resource for knowledge and experience. Lists of area
user groups are available from JavaSoft at http://www.javasoft.com/Mail/usr-
grp.html; also check out the Sun User Group’s Special Interest Group for Users of
Java at http://www.sug.org/Java/groups.html. In addition to the usual monthly
meetings and forums, some maintain a mailing list for technical exchanges.

Security is a major issue with Java. If you are interested in reading more about Java
security issues, Princeton University’s Safe Internet Programming Web site at
http://www.cs.princeton.edu/sip/News.html is an excellent resource.

About Java
Java is one of 13,000 islands that makes up Indonesia, whose capital is Jakarta (see
Figure 1). It is home to about 120 million people with an area about 50,000 square
miles. While on the island, you can hear traditional music such as gamelan or
angklung. The island also has a dangerous volcano named Merapi, which makes
up part of the Pacific “Ring of Fire.” In 1891, fossils from Pithecanthropus erectus,
better known as “Java man” (homo javanensis) were discovered on the island by
Eugene Dubois.

Java’s main export is a coffee that is considered spicy and full bodied, with a
strong, slightly acidic flavor. O’Reilly has shown good taste in staying away from the
per vasive coffee theme in its book titles and cover designs. (However, if you’re ever
in Sebastopol, check out the coffee at AromaRoasters in Santa Rosa.)

Conventions Used in This Book
Italic is used for:

• Pathnames, filenames, and program names

• Internet addresses, such as domain names and URLs

Typewriter Font is used for:

• Anything that might appear in a Java program, including keywords, method
names, variables names, class names, and interface names

PREFACE xxiii

10 July 2002 22:16

xxiv PREFACE

JAVA

Indian Ocean

BRUNEI

MALAYSIA
MALAYSIA

Jakarta

AUSTRALIA

I N D O N E S I A

Figure 1: Map of Java, Indonesia

• Command lines and options that should be typed verbatim on the screen

• Tags that might appear in an HTML document

To sort out the potential for confusion between different versions, I use the follow-
ing dingbats throughout the book:

� Identifies a method, variable, or constant that is new in Java 1.1.

✩ Identifies a method from Java 1.0 that has been deprecated. Deprecated meth-
ods are available for compatibility but may disappear in a future release. These
methods are tagged with the @deprecated flag, which causes the Java 1.1 com-
piler to display a warning message if you use them.

Request for Comments
We invite you to help us improve the book. If you have an idea that could make
this a more useful resource, or if you find a bug in an example program or an
error in the text, please let us know by sending email to bookquestions@ora.com.

As Java continues to evolve, we may find it necessary to issue errata for this book or
to release updated examples or reference information. This information will be
found at the book’s Web site http://www.ora.com/catalog/javawt/.

10 July 2002 22:16

Acknowledgments
I am grateful to many people who helped me along while working on this book,
especially my wife, Lisa, and her patience during this whole process. A special
thanks goes to our Old English sheep dog, Sir Dudley Fuzzybuns McDuff for gladly
sharing the house with me during the entire process. I am grateful to the people at
Sun who helped me become involved with Java so early on: Pete Seymour, Anne
Pettitt, Tom McGinn, and Jen Sullivan-Volpe. I am also grateful to my employers,
Rapid Systems Solutions (when I started) and the MageLang Institute (when I fin-
ished), who let me work on the book. Another thanks goes out to Dale Carnegie
Training and John Captain, whose human relations class helped me feel comfort-
able with public speaking, without which I would not have become immersed in
Java so quickly.

Particular thanks are owed to the technical reviewers: Yadu Zambre, Andy Cohen,
David Flanagan, Jen Sullivan-Volpe, and Dan Jacobs. All of them performed an
invaluable service with their thorough reviews and helped spot my errors and
omissions. It seemed everyone contributed many bits of text that eventually found
their way into the final product.

Random thanks go out to the many people on the Internet who I never met but
provided valuable information, from the newsgroups and mailing lists: Simon
“FISH” Morris, Mike Gallant, Eric Link, and many others whose names I did not
write down.

Bits and pieces of various figures were borrowed from David Flanagan’s book, Java
in a Nutshell, and Patrick Niemeyer’s and Joshua Peck’s book, Exploring Java. The
class hierarchy diagrams come from David’s book. These diagrams were based on
similar diagrams by Charles L. Perkins. His original efforts are available at
http://rendezvous.com/java/.

For the gang at O’Reilly who gave me the opportunity to write this work, I thank
ever yone who helped along the way. For series editor, Mike Loukides, thanks for
all your time and effort, especially with the early drafts. Best of luck to Mike and
Judy with their new bundle of joy, Alexandra. Special thanks to Jonathan Knudsen
who updated the reference section for the new release. Thanks to Nancy Crump-
ton and John Files for book production and project management, and to Trina
Jackson, Paula Ferguson, and Andy Oram who helped during the review stages.
Thanks also to the O’Reilly Tools group, Ellen Siever, Erik Ray, and Lenny Muell-
ner; to Seth Maislin, the indexer; and David Futato and Danny Marcus who han-
dled the proofreading and QCs.

The final product is much better because of their help.

PREFACE xxv

10 July 2002 22:16

10 July 2002 22:16

1

Abstract Window
Toolkit Overview

In this chapter:
• Components
• Peers
• Layouts
• Containers
• And the Rest
• Summary

For years, programmers have had to go through the hassles of porting software
from BSD-based UNIX to System V Release 4–based UNIX, from OpenWindows to
Motif, from PC to UNIX to Macintosh (or some combination thereof), and
between various other alternatives, too numerous to mention. Getting an applica-
tion to work was only part of the problem; you also had to port it to all the plat-
forms you supported, which often took more time than the development effort
itself. In the UNIX world, standards like POSIX and X made it easier to move appli-
cations between different UNIX platforms. But they only solved part of the prob-
lem and didn’t provide any help with the PC world. Portability became even more
important as the Internet grew. The goal was clear: wouldn’t it be great if you
could just move applications between different operating environments without
worr ying about the software breaking because of a different operating system, win-
dowing environment, or internal data representation?

In the spring of 1995, Sun Microsystems announced Java, which claimed to solve
this dilemma. What started out as a dancing penguin (or Star Trek communicator)
named Duke on remote controls for interactive television has become a new
paradigm for programming on the Internet. With Java, you can create a program
on one platform and deliver the compilation output (byte-codes/class files) to
ever y other supported environment without recompiling or worrying about the
local windowing environment, word size, or byte order. The first generation of Java
programs consisted mostly of fancy animation applets that ran in a web browser
like Netscape Navigator, Internet Explorer, or HotJava. We’re beginning to see the
next generation now: powerful distributed applications in areas ranging from com-
merce to medical imaging to network management. All of these applications
require extreme portability: Joe’s Online Bait Shop doesn’t have the time or

1

10 July 2002 22:16

2 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

energy to port its “Online Bait Buyer” program to every platform on the Internet
but doesn’t want to limit its market to a specific platform. Java neatly solves their
problem.

Windowing systems present the biggest challenges for portability. When you move
an application from Windows to the Macintosh, you may be able to salvage most of
the computational guts, but you’ll have to rewrite the window interface code com-
pletely. In Java, this part of the portability challenge is addressed by a package
called AWT, which stands for Abstract Window Toolkit (although people have
come up with many other expansions). AWT provides the magic of maintaining
the local look and feel of the user’s environment. Because of AWT, the same appli-
cation program can look appropriate in any environment. For example, if your
program uses a pull-down list, that list will look like a Windows list when you run
the program under Windows; a Macintosh list when you run the program on a
Mac; and a Motif list when you run the program on a UNIX system under Motif.
The same code works on all platforms. In addition to providing a common set of
user interface components, AWT provides facilities for manipulating images and
generating graphics.

This book is a complete programmer’s guide and reference to the java.awt pack-
age (including java.awt.image, java.awt.event, java.awt.datatransfer, and
java.awt.peer). It assumes that you’re already familiar with the Java language and
class libraries. If you aren’t, Exploring Java, by Pat Niemeyer and Josh Peck, pro-
vides a general introduction, and other books in the O’Reilly Java series provide
detailed references and tutorials on specific topics. This chapter provides a quick
over view of AWT: it introduces you to the various GUI elements contained within
the java.awt package and gives you pointers to the chapters that provide more
specific information about each component. If you’re interested in some of the
more advanced image manipulation capabilities, head right to Chapter 12, Image
Processing. The book ends with a reference section that summarizes what you need
to know about every class in AWT.

In using this book, you should be aware that it covers two versions of AWT: 1.0.2
and 1.1. The Java 1.1 JDK (Java Developer’s Kit) occurred in December 1996. This
release includes many improvements and additions to AWT and is a major step for-
ward in Java’s overall functionality. It would be nice if I could say, “Forget about
1.0.2, it’s obsolete — use this book to learn 1.1.” However, I can’t; at this point,
since browsers (Netscape Navigator in particular) still incorporate 1.0.2, and we
have no idea when they will incorporate the new release. As of publication, Naviga-
tor 4.0 is in beta test and incorporates 1.0.2. Therefore, Java release 1.0.2 will con-
tinue to be important, at least for the foreseeable future.

10 July 2002 22:16

In this summary, we’ll point out new features of Java 1.1 as they come up. However,
one feature deserves mention and doesn’t fit naturally into an overview. Many of
the methods of Java 1.0.2 have been renamed in Java 1.1. The old names still work
but are “deprecated.” The new names adhere strictly to the design patterns dis-
cussed in the JavaBeans documentation:* all methods that retrieve the value of an
object’s property begin with “get,” all methods that set the value of a property
begin with “set,” and all methods that test the value of some property begin with
“is.” For example, the size() method is now called getSize(). The Java 1.1 com-
piler issues warnings whenever you used a deprecated method name.

1.1 Components
Modern user interfaces are built around the idea of “components”: reusable gad-
gets that implement a specific part of the interface. They don’t need much intro-
duction: if you have used a computer since 1985 or so, you’re already familiar with
buttons, menus, windows, checkboxes, scrollbars, and many other similar items.
AWT comes with a repertoire of basic user interface components, along with the
machiner y for creating your own components (often combinations of the basic
components) and for communicating between components and the rest of the
program.

The next few sections summarize the components that are part of AWT. If you’re
new to AWT, you may find it helpful to familiarize yourself with what’s available
before jumping into the more detailed discussions later in this book.

1.1.1 Static Te xt
The Label class provides a means to display a single line of text on the screen.
That’s about it. They provide visual aids to the user: for example, you might use a
label to describe an input field. You have control over the size, font, and color of
the text. Labels are discussed in Section 5.2. Figure 1-1 displays several labels with
different attributes.

1.1.2 User Input
Java provides several different ways for a user to provide input to an application.
The user can type the information or select it from a preset list of available
choices. The choice depends primarily on the desired functionality of the pro-
gram, the user-base, and the amount of back-end processing that you want to do.

* http://splash.javasoft.com/beans/spec.html

1.1 COMPONENTS 3

10 July 2002 22:16

4 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

Figure 1–1: Multiple Label instances

1.1.2.1 The Te xtField and TextArea classes

Two components are available for entering keyboard input: TextField for single
line input and TextArea for multi-line input. They provide the means to do things
from character-level data validation to complex text editing. These are discussed in
much more detail in Chapter 8, Input Fields. Figure 1-2 shows a screen that con-
tains various TextField and TextArea components.

Figure 1–2: TextField and TextArea elements

1.1.2.2 The Checkbox and CheckboxGroup classes

The remaining input-oriented components provide mechanisms for letting the
user select from a list of choices. The first such mechanism is Checkbox, which lets
you select or deselect an option. The left side of the applet in Figure 1-3 shows a
checkbox for a Dialog option. Clicking on the box selects the option and makes

10 July 2002 22:16

the box change appearance. A second click deselects the option.

The CheckboxGroup class is not a component; it provides a means for grouping
checkboxes into a mutual exclusion set, often called a set of radio buttons. Select-
ing any button in the group automatically deselects the other buttons. This behav-
ior is useful for a set of mutually exclusive choices. For example, the right side of
the applet in Figure 1-3 shows a set of checkboxes for selecting a font. It makes
sense to select only one font at a time, so these checkboxes have been put in a
CheckboxGroup.

Windows Motif

Figure 1–3: Examples of Checkbox and CheckboxGroup

The appearance of a checkbox varies from platform to platform. On the left, Fig-
ure 1-3 shows Windows; the right shows Motif. On most platforms, the appearance
also changes when a checkbox is put into a CheckboxGroup.

1.1.2.3 The Choice class

Checkbox and CheckboxGroup present a problem when the list of choices becomes
long. Every element of a CheckboxGroup uses precious screen real estate, which
limits the amount of space available for other components. The Choice class was
designed to use screen space more efficiently. When a Choice element is displayed
on the screen, it takes up the space of a single item in the list, along with some
extra space for decorations. This leaves more space for other components. When
the user selects a Choice component, it displays the available options next to or
below the Choice. Once the user makes a selection, the choices are removed from
the screen, and the Choice displays the selection. At any time, only one item in a
Choice may be selected, so selecting an item implicitly deselects everything else.
Section 9.1 explores the details of the Choice class. Figure 1-4 shows examples of
open (on the right of the screens) and closed (on the left) Choice items in
Windows 95 and Motif.

1.1 COMPONENTS 5

10 July 2002 22:16

6 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

Windows

Motif

Figure 1–4: Open and closed Choice items

1.1.2.4 The List class

Somewhere between Choice and CheckboxGroup in the screen real estate business
is a component called List. With a List, the user is still able to select any item.
However, the programmer recommends how many items to display on the screen
at once. All additional choices are still available, but the user moves an attached
scrollbar to access them. Unlike a Choice, a List allows the user to select multiple
items. Section 9.2 covers the List component. Figure 1-5 shows List components
in different states.

Figure 1–5: List components in different states

10 July 2002 22:16

1.1.2.5 Menus

Most modern user interfaces use menus heavily; therefore, it’s no surprise that Java
supports menus. As you’d expect, Java menus look like the menus in the window-
ing environment under which the program runs. Currently, menus can only
appear within a Frame, although this will probably change in the future. A Menu is a
fairly complex object, with lots of moving parts: menu bars, menu items, etc. Java
1.1 adds hot keys to menus, allowing users to navigate a menu interface using key-
board shortcuts. The details of Menu are explored in Chapter 10, Would You Like to
Choose from the Menu? Figure 1-6 shows frames with open menus for both Windows
and Motif. Since tear-off menus are available on Motif systems, its menus look and
act a little differently. Figure 1-6 also includes a tear-off menu. The shortcuts
(Ctrl+F8) are newly supported in Java 1.1.

Windows Motif Tear-off

Figure 1–6: Examples of menus

1.1.2.6 The PopupMenu class

The PopupMenu class is new to Java 1.1. Pop-up menus can be used for context-sen-
sitive, component-level menus. Associated with each Component can be its own pop-
up menu. The details of creating and working with the PopupMenu class and the
fun time you have catching their events are covered in Chapter 10, Would You Like
to Choose from the Menu? Figure 1-7 shows an example of a pop-up menu.

1.1.3 Event Triggers
Java provides two components whose sole purpose is to trigger actions on the
screen: Button and Scrollbar. They provide the means for users to signal that
they are ready to perform an operation. (Note that all components except labels
generate events; I’m singling out buttons and scrollbars because their only pur-
pose is to generate events.)

1.1 COMPONENTS 7

10 July 2002 22:16

8 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

Figure 1–7: A Pop-up menu

1.1.3.1 The Scrollbar class

Most people are familiar with scrollbars. In a word processor or a web browser,
when an image or document is too large to fit on the screen, the scrollbar allows
the user to move to another area. With Java, the Scrollbar per forms similarly.
Selecting or moving the scrollbar triggers an event that allows the program to pro-
cess the scrollbar movement and respond accordingly. The details of the Scroll-

bar are covered in Section 11.1. Figure 1-8 shows horizontal and vertical scrollbars.

Figure 1–8: Horizontal and vertical scrollbars

Note that a scrollbar is just that. It generates events when the user adjusts it, but
the program using the scrollbar is responsible for figuring out what to do with the
events, such as displaying a different part of an image or the text, etc. Several of

10 July 2002 22:16

the components we’ve discussed, like TextArea and List, have built-in scrollbars,
saving you the trouble of writing your own code to do the actual scrolling. Java 1.1
has a new container called a ScrollPane that has scrolling built in. By using a
scroll pane, you should be able to avoid using scroll bars as a positioning mecha-
nism. An example of ScrollPane appears later in this chapter.

1.1.3.2 The Button class

A button is little more than a label that you can click on. Selecting a button trig-
gers an event telling the program to go to work. Section 5.3 explores the Button

component. Figure 1-9 shows Button examples.

Figure 1–9: Various buttons

The Java Management API includes a fancier button (ImageButton) with pictures
rather than labels. For the time being, this is a standard extension of Java and not
in the Core API. If you don’t want to use these extensions, you’ll have to imple-
ment an image button yourself.

1.1.4 Expansion
1.1.4.1 The Canvas class

The Canvas class is just a blank area; it doesn’t have any predefined appearance.
You can use Canvas for drawing images, building new kinds of components, or cre-
ating super-components that are aggregates of other components. For example,
you can build a picture button by drawing a picture on a Canvas and detecting
mouse click events within the area of the Canvas. Canvas is discussed in Section
5.5.

1.1 COMPONENTS 9

10 July 2002 22:16

10 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

1.2 Peers
Java programs always have the look and feel of the platform they are running on. If
you create your program on a UNIX platform and deliver it to Microsoft Windows
users, your program will have Motif’s look and feel while you’re developing it, but
users will see Microsoft Windows objects when they use it. Java accomplishes this
through a peer architecture, shown in Figure 1-10.

Peer Interfaces Java ComponentsNative Platform Objects

Win32 / Motif / Mac / … User Subclasses

Figure 1–10: Peer architecture

There are several layers of software between your Java program and the actual
screen. Let’s say you are working with a scrollbar. On your screen, you see the
scrollbar that’s native to the platform you’re using. This system-dependent scroll-
bar is the “peer” of the Java Scrollbar object. The peer scrollbar deals with events
like mouse clicks first, passing along whatever it deems necessary to the corre-
sponding Java component. The peer interface defines the relationship between
each Java component and its peer; it is what allows a generic component (like a
Scrollbar) to work with scrollbars on different platforms.

Peers are described in Chapter 15, Toolkit and Peers. However, you rarely need to
worr y about them; interaction between a Java program and a peer takes place
behind the scenes. On occasion, you need to make sure that a component’s peer
exists in order to find out about platform-specific sizes. This process usually
involves the addNotify() method.

1.3 Layouts
Layouts allow you to format components on the screen in a platform-independent
way. Without layouts, you would be forced to place components at explicit loca-
tions on the screen, creating obvious problems for programs that need to run on
multiple platforms. There’s no guarantee that a TextArea or a Scrollbar or any
other component will be the same size on each platform; in fact, you can bet they
won’t be. In an effort to make your Java creations portable across multiple plat-
forms, Sun created a LayoutManager inter face that defines methods to reformat

10 July 2002 22:16

the screen based on the current layout and component sizes. Layout managers try
to give programs a consistent and reasonable appearance, regardless of the plat-
form, the screen size, or actions the user might take.

The standard JDK provides five classes that implement the LayoutManager inter-
face. They are FlowLayout, GridLayout, BorderLayout, CardLayout, and Grid-

BagLayout. All of these layouts are covered in much greater detail in Chapter 7,
Layouts. This chapter also discusses how to create complex layouts by combining
layout managers and how to write your own LayoutManager. The Java 1.1 JDK
includes the LayoutManager2 inter face. This interface extends the LayoutManager

inter face for managers that provide constraint-based layouts.

1.3.1 FlowLayout
The FlowLayout is the default layout for the Panel class, which includes its most
famous subclass, Applet. When you add components to the screen, they flow left to
right (centered within the applet) based upon the order added and the width of
the applet. When there are too many components to fit, they “wrap” to a new row,
similar to a word processor with word wrap enabled. If you resize an applet, the
components’ flow will change based upon the new width and height. Figure 1-11
shows an example both before and after resizing. Section 7.2 contains all the
FlowLayout details.

Big Narrow

Figure 1–11: A FlowLayout before and after resizing

1.3.2 GridLayout
The GridLayout is widely used for arranging components in rows and columns. As
with FlowLayout, the order in which you add components is relevant. You start at
row one, column one, move across the row until it’s full, then continue on to the
next row. However, unlike FlowLayout, the underlying components are resized to

1.3 LAYOUTS 11

10 July 2002 22:16

12 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

fill the row-column area, if possible. GridLayout can reposition or resize objects
after adding or removing components. Whenever the area is resized, the compo-
nents within it are resized. Figure 1-12 shows an example before and after resizing.
Section 7.4 contains all the details about GridLayout.

Big Narrow

Figure 1–12: A GridLayout before and after resizing

1.3.3 BorderLayout
BorderLayout is one of the more unusual layouts provided. It is the default layout
for Window, along with its children, Frame and Dialog. BorderLayout provides five
areas to hold components. These areas are named after the four different borders
of the screen, North, South, East, and West, with any remaining space going into
the Center area. When you add a component to the layout, you must specify which
area to place it in. The order in which components are added to the screen is not
important, although you can have only one component in each area. Figure 1-13
shows a BorderLayout that has one button in each area, before and after resizing.
Section 7.3 covers the details of the BorderLayout.

1.3.4 CardLayout
The CardLayout is a bit on the strange side. A CardLayout usually manages several
components, displaying one of them at a time and hiding the rest. All the compo-
nents are given the same size. Usually, the CardLayout manages a group of Panels
(or some other container), and each Panel contains several components of its
own. With a little work, you can use the CardLayout to create tabbed dialog boxes
or property sheets, which are not currently part of AWT. CardLayout lets you assign
names to the components it is managing and lets you jump to a component by
name. You can also cycle through components in order. Figure 1-11, Figure 1-12,
and Figure 1-13 show multiple cards controlled by a single CardLayout. Selecting
the Choice button displays a different card. Section 7.5 discusses the details of
CardLayout.

10 July 2002 22:16

Big Narrow

Figure 1–13: A BorderLayout

1.3.5 GridBagLayout
GridBagLayout is the most sophisticated and complex of the layouts provided in
the development kit. With the GridBagLayout, you can organize components in
multiple rows and columns, stretch specific rows or columns when space is avail-
able, and anchor objects in different corners. You provide all the details of each
component through instances of the GridBagConstraints class. Figure 1-14 shows
an example of a GridBagLayout. GridBagLayout and GridBagConstraints are dis-
cussed in Section 7.6 and Section 7.7.

Figure 1–14: A GridBagLayout

1.4 Containers
A Container is a type of component that provides a rectangular area within which
other components can be organized by a LayoutManager. Because Container is a
subclass of Component, a Container can go inside another Container, which can go
inside another Container, and so on, like Russian nesting dolls. Subclassing Con-

tainer allows you to encapsulate code for the components within it. This allows
you to create reusable higher-level objects easily. Figure 1-15 shows the compo-
nents in a layout built from several nested containers.

1.4 CONTAINERS 13

10 July 2002 22:16

14 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

Text Area

North

East

South

Button

Label

Button

Button

Button Button Button

BorderLayout Panel

FlowLayout Panel

GridLayout Panel

Figure 1–15: Components within containers

1.4.1 Panels
A Panel is the basic building block of an applet. It provides a container with no
special features. The default layout for a Panel is FlowLayout. The details of Panel
are discussed in Section 6.2. Figure 1-16 shows an applet that contains panels
within panels within panels.

Figure 1–16: A multilevel panel

1.4.2 Windows
A Window provides a top-level window on the screen, with no borders or menu bar.
It provides a way to implement pop-up messages, among other things. The default
layout for a Window is BorderLayout. Section 6.4 explores the Window class in
greater detail. Figure 1-17 shows a pop-up message using a Window in Microsoft
Windows and Motif.

10 July 2002 22:16

Windows Motif

Figure 1–17: Pop-up windows

1.4.3 Frames
A Frame is a Window with all the window manager’s adornments (window title, bor-
ders, window minimize/maximize/close functionality) added. It may also include
a menu bar. Since Frame subclasses Window, its default layout is BorderLayout.
Frame provides the basic building block for screen-oriented applications. Frame
allows you to change the mouse cursor, set an icon image, and have menus. All the
details of Frame are discussed in Section 6.5. Figure 1-18 shows an example Frame.

Figure 1–18: A frame

1.4 CONTAINERS 15

10 July 2002 22:16

16 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

1.4.4 Dialog and FileDialog
A Dialog is a Window that accepts input from the user. BorderLayout is the default
layout of Dialog because it subclasses Window. A Dialog is a pop-up used for user
interaction; it can be modal to prevent the user from doing anything with the
application before responding. A FileDialog provides a prebuilt Dialog box that
interacts with the filesystem. It implements the Open/Save dialog provided by the
native windowing system. You will primarily use FileDialog with applications since
there is no guarantee that an applet can interact with the local filesystem.
(Netscape Navigator will throw an exception if you try to use it.) The details of
Dialog are revealed in Section 6.6, while FileDialog is discussed in Section 6.7.
Figure 1-19 shows sample Dialog and FileDialog boxes.

Motif FileDialog

Windows FileDialog

Dialog

Figure 1–19: Examples of Dialog and FileDialog boxes

10 July 2002 22:16

1.4.5 ScrollPane
Java 1.1 introduces the ScrollPane container. In version 1.0, if you want to have a
scrolling area (for example, to display an image that won’t fit onto the screen),
you create a panel using BorderLayout that contains scrollbars on the right and
bottom, and display part of the image in the rest of the screen. When the user
scrolls, you capture the event, figure out what part of the image to display, and
update the screen accordingly. Although this works, its performance is poor, and
it’s inconvenient. With version 1.1 of Java, you can tell the ScrollPane what needs
to scroll; it creates the scrollbars and handles all the events automatically. Section
11.4 covers the ScrollPane; Figure 1-20 shows a ScrollPane. Chapter 11, Scrolling,
covers the Adjustable inter face that Scrollbar implements and ScrollPane uti-
lizes.

Figure 1–20: A ScrollPane

1.5 And the Rest
Several of the remaining classes within java.awt are important to mention here
but did not fit well into a general category. The following sections are a grab bag
that summarize the remaining classes.

1.5.1 Drawing and Graphics
Java provides numerous primitives for drawing lines, squares, circles, polygons,
and images. Figure 1-21 shows a simple drawing. The drawing components of AWT
are discussed in Chapter 2, Simple Graphics.

The Font, FontMetrics, Color, and SystemColor classes provide the ability to alter
the displayed output. With the Font class, you adjust how displayed text will
appear. With FontMetrics, you can find out how large the output will be, for the

1.5 AND THE REST 17

10 July 2002 22:16

18 CHAPTER 1: ABSTRACT WINDOW TOOLKIT OVERVIEW

specific system the user is using. You can use the Color class to set the color of text
and graphics. SystemColor is new to Java 1.1; it lets you take advantage of desktop
color schemes. These classes are discussed in Chapter 3, Fonts and Colors.

Figure 1–21: A simple drawing

AWT also includes a number of classes that support more complex graphics
manipulations: displaying images, generating images in memory, and transforming
images. These classes make up the package java.awt.image, which is covered in
Chapter 12.

1.5.2 Events
Like most windows programming environments, AWT is event driven. When an
event occurs (for example, the user presses a key or moves the mouse), the envi-
ronment generates an event and passes it along to a handler to process the event.
If nobody wants to handle the event, the system ignores it. Unlike some windowing
environments, you do not have to provide a main loop to catch and process all the
events, or an infinite busy-wait loop. AWT does all the event management and pass-
ing for you.

Probably the most significant difference between versions 1.0.2 and 1.1 of AWT is
the way events work. In older versions of Java, an event is distributed to every com-
ponent that might conceivably be interested in it, until some component declares
that it has handled the event. This event model can still be used in 1.1, but there is
also a new event model in which objects listen for particular events. This new
model is arguably a little more work for the programmer but promises to be much
more efficient, because events are distributed only to objects that want to hear
about them. It is also how JavaBeans works.

10 July 2002 22:16

In this book, examples that are using the older (1.0.2) components use the old
event model, unless otherwise indicated. Examples using new components use the
new event model. Don’t let this mislead you; all components in Java 1.1 support
the new event model. The details of Event for both version 1.0.2 and 1.1 can be
found in Chapter 4, Events.

1.5.3 Applets
Although it is not a part of the java.awt package, the Core Java API provides a
framework for applet development. This includes support for getting parameters
from HTML files, changing the web page a browser is displaying, and playing
audio files. Chapter 14, And Then There Were Applets, describes all the details of the
java.applet package. Because audio support is part of java.applet, portable
audio playing is limited to applets. Chapter 14 also shows a nonportable way to
play audio in applications. Additional audio capabilities are coming to the Java
Core API in the announced extensions.

1.5.4 Clipboards
In Java 1.1, programs can access the system clipboard. This process makes it easier
to transfer (cut, copy, and paste) data between various other sources and your Java
programs and introduces developers to the concepts involved with JavaBeans.
Chapter 16, Data Transfer, describes the java.awt.datatransfer package.

1.5.5 Printing
Java 1.1 adds the ability to print. Adding printing to an existing program is fairly
simple: you don’t have to do much beside adding a Print menu button. Chapter
17, Printing, describes these capabilities.

1.6 Summary
The java.awt package provides a great deal of functionality and flexibility. The
package goes well beyond the basics presented in this chapter. Do not be intimi-
dated by the vast libraries available to you in Java. With the help of this book, you
should get an excellent grasp of the java.awt, java.awt.image, java.awt.data-
transfer, java.awt.event, and java.applet packages, along with some pieces of
the proprietary sun.awt and sun.audio packages.

Do not feel the need to read this book cover to cover. Pick the section that inter-
ests you most, where you feel you do not fully understand something, or where you
have an immediate question to be answered and dive right in.

1.6 SUMMAR Y 19

10 July 2002 22:16

2

Simple Graphics

In this chapter:
• Graphics
• Point
• Dimension
• Shape
• Rectangle
• Polygon
• Image
• MediaTracker

This chapter digs into the meat of the AWT classes. After completing this chapter,
you will be able to draw strings, images, and shapes via the Graphics class in your
Java programs. We discuss geometry-related classes—Polygon, Rectangle, Point,
and Dimension, and the Shape inter face—you will see these throughout the
remaining AWT objects. You will also learn several ways to do smooth animation by
using double buffering and the MediaTracker.

After reading this chapter, you should be able to do simple animation and image
manipulation with AWT. For most applications, this should be sufficient. If you
want to look at AWT’s more advanced graphics capabilities, be sure to take a look
at Chapter 12, Image Processing.

2.1 Graphics
The Graphics class is an abstract class that provides the means to access different
graphics devices. It is the class that lets you draw on the screen, display images, and
so forth. Graphics is an abstract class because working with graphics requires
detailed knowledge of the platform on which the program runs. The actual work is
done by concrete classes that are closely tied to a particular platform. Your Java Vir-
tual Machine vendor provides the necessary concrete classes for your environment.
You never need to worry about the platform-specific classes; once you have a
Graphics object, you can call all the methods of the Graphics class, confident that
the platform-specific classes will work correctly wherever your program runs.

You rarely need to create a Graphics object yourself; its constructor is protected
and is only called by the subclasses that extend Graphics. How then do you get a

20

10 July 2002 22:17

Graphics object to work with? The sole parameter of the Component.paint() and
Component.update() methods is the current graphics context. Therefore, a Graph-
ics object is always available when you override a component’s paint() and
update() methods. You can ask for the graphics context of a Component by calling
Component.getGraphics(). However, many components do not have a drawable
graphics context. Canvas and Container objects return a valid Graphics object;
whether or not any other component has a drawable graphics context depends on
the run-time environment. (The latest versions of Netscape Navigator provide a
drawable graphics context for any component, but you shouldn’t get used to writ-
ing platform-specific code.) This restriction isn’t as harsh as it sounds. For most
components, a drawable graphics context doesn’t make much sense; for example,
why would you want to draw on a List? If you want to draw on a component, you
probably can’t. The notable exception is Button, and that may be fixed in future
versions of AWT.

2.1.1 Graphics Methods
Constructors

protected Graphics ()
Because Graphics is an abstract class, it doesn’t have a visible constructor. The
way to get a Graphics object is to ask for one by calling getGraphics() or to
use the one given to you by the Component.paint() or Component.update()
method.

The abstract methods of the Graphics class are implemented by some windowing
system–specific class. You rarely need to know which subclass of Graphics you are
using, but the classes you actually get (if you are using the JDK) are
sun.awt.win32.Win32Graphics (JDK1.0), sun.awt.window.WGraphics (JDK1.1),
sun.awt.motif.X11Graphics, or sun.awt.macos.MacGraphics.

Pseudo -constructors

In addition to using the graphics contexts given to you by getGraphics() or in
Component.paint(), you can get a Graphics object by creating a copy of another
Graphics object. Creating new graphics contexts has resource implications. Cer-
tain platforms have a limited number of graphics contexts that can be active. For
instance, on Windows 95 you cannot have more than four in use at one time.
Therefore, it’s a good idea to call dispose() as soon as you are done with a Graph-
ics object. Do not rely on the garbage collector to clean up for you.

public abstract Graphics create ()
This method creates a second reference to the graphics context. It is useful for
clipping (reducing the drawable area).

2.1 GRAPHICS 21

10 July 2002 22:17

22 CHAPTER 2: SIMPLE GRAPHICS

public Graphics create (int x, int y, int width, int height)
This method creates a second reference to a subset of the drawing area of the
graphics context. The new Graphics object covers the rectangle from (x, y)
through (x+width-1, y+height-1) in the original object. The coordinate space
of the new Graphics context is translated so that the upper left corner is (0, 0)
and the lower right corner is (width, height). Shifting the coordinate system
of the new object makes it easier to work within a portion of the drawing area
without using offsets.

Drawing strings

These methods let you draw text strings on the screen. The coordinates refer to
the left end of the text’s baseline.

public abstract void drawString (String text, int x, int y)
The drawString() method draws text on the screen in the current font and
color, starting at position (x, y). The starting coordinates specify the left end
of the String’s baseline.

public void drawChars (char text[], int offset, int length, int x, int y)
The drawChars() method creates a String from the char array text starting at
text[offset] and continuing for length characters. The newly created
String is then drawn on the screen in the current font and color, starting at
position (x, y). The starting coordinates specify the left end of the String’s
baseline.

public void drawBytes (byte text[], int offset, int length, int x, int y)
The drawBytes() method creates a String from the byte array text starting
at text[offset] and continuing for length characters. This String is then
drawn on the screen in the current font and color, starting at position (x, y).
The starting coordinates specify the left end of the String’s baseline.

public abstract Font getFont ()
The getFont() method returns the current Font of the graphics context. See
Chapter 3, Fonts and Colors, for more on what you can do with fonts. You can-
not get meaningful results with getFont() until the applet or application is
displayed on the screen (generally, not in init() of an applet or main() of an
application).

public abstract void setFont (Font font)
The setFont() method changes the current Font to font. If font is not avail-
able on the current platform, the system chooses a default. To change the cur-
rent font to 12 point bold TimesRoman:

setFont (new Font ("TimesRoman", Font.BOLD, 12));

10 July 2002 22:17

public FontMetrics getFontMetrics ()
The getFontMetrics() method returns the current FontMetrics object of the
graphics context. You use FontMetrics to reveal sizing properties of the cur-
rent Font—for example, how wide the “Hello World” string will be in pixels
when displayed on the screen.

public abstract FontMetrics getFontMetrics (Font font)
This version of getFontMetrics() returns the FontMetrics for the Font font
instead of the current font. You might use this method to see how much space
a new font requires to draw text.

For more information about Font and FontMetrics, see Chapter 3.

Painting

public abstract Color getColor ()
The getColor() method returns the current foreground Color of the Graph-

ics object. All future drawing operations will use this color. Chapter 3
describes the Color class.

public abstract void setColor (Color color)
The setColor() method changes the current drawing color to color. As you
will see in the next chapter, the Color class defines some common colors for
you. If you can’t use one of the predefined colors, you can create a color from
its RGB values. To change the current color to red, use any of the following:

setColor (Color.red);
setColor (new Color (255, 0, 0));
setColor (new Color (0xff0000));

public abstract void clearRect (int x, int y, int width, int height)
The clearRect() method sets the rectangular drawing area from (x, y) to
(x+width-1, y+height-1) to the current background color. Keep in mind that
the second pair of parameters is not the opposite corner of the rectangle, but
the width and height of the area to clear.

public abstract void clipRect (int x, int y, int width, int height)
The clipRect() method reduces the drawing area to the intersection of the
current drawing area and the rectangular area from (x, y) to (x+width-1,
y+height-1). Any future drawing operations outside this clipped area will
have no effect. Once you clip a drawing area, you cannot increase its size with
clipRect(); the drawing area can only get smaller. (However, if the
clipRect() call is in paint(), the size of the drawing area will be reset to its
original size on subsequent calls to paint().) If you want the ability to draw to
the entire area, you must create a second Graphics object that contains a copy
of the drawing area before calling clipRect() or use setClip(). The following
code is a simple applet that demonstrates clipping; Figure 2-1 shows the result.

2.1 GRAPHICS 23

10 July 2002 22:17

24 CHAPTER 2: SIMPLE GRAPHICS

import java.awt.*;
public class clipping extends java.applet.Applet {

public void paint (Graphics g) {
g.setColor (Color.red);
Graphics clippedGraphics = g.create();
clippedGraphics.drawRect (0,0,100,100);
clippedGraphics.clipRect (25, 25, 50, 50);
clippedGraphics.drawLine (0,0,100,100);
clippedGraphics.dispose();
clippedGraphics=null;
g.drawLine (0,100,100,0);

}
}

clipping area

Figure 2–1: Clipping restricts the drawing area

The paint() method for this applet starts by setting the foreground color to
red. It then creates a copy of the Graphics context for clipping, saving the
original object so it can draw on the entire screen later. The applet then draws
a rectangle, sets the clipping area to a smaller region, and draws a diagonal
line across the rectangle from upper left to lower right. Because clipping is in
effect, only part of the line is displayed. The applet then discards the clipped
Graphics object and draws an unclipped line from lower left to upper right
using the original object g.

public abstract void setClip(int x, int y, int width, int height) �

This setClip() method allows you to change the current clipping area based
on the parameters provided. setClip() is similar to clipRect(), except that it
is not limited to shrinking the clipping area. The current drawing area
becomes the rectangular area from (x, y) to (x+width-1, y+height-1); this
area may be larger than the previous drawing area.

10 July 2002 22:17

public abstract void setClip(Shape clip) �

This setClip() method allows you to change the current clipping area based
on the clip parameter, which may be any object that implements the Shape

inter face. Unfortunately, practice is not as good as theory, and in practice,
clip must be a Rectangle; if you pass setClip() a Polygon, it throws an
IllegalArgumentException.* (The Shape inter face is discussed later in this
chapter.)

public abstract Rectangle getClipBounds () �

public abstract Rectangle getClipRect () ✩

The getClipBounds() methods returns a Rectangle that describes the clip-
ping area of a Graphics object. The Rectangle gives you the (x, y) coordinates
of the top left corner of the clipping area along with its width and height.
(Rectangle objects are discussed later in this chapter.)

getClipRect() is the Java 1.0 name for this method.

public abstract Shape getClip () �

The getClip() method returns a Shape that describes the clipping area of a
Graphics object. That is, it returns the same thing as getClipBounds() but as a
Shape, instead of as a Rectangle. By calling Shape.getBounds(), you can get
the (x, y) coordinates of the top left corner of the clipping area along with its
width and height. In the near future, it is hard to imagine the actual object
that getClip() returns being anything other than a Rectangle.

public abstract void copyArea (int x, int y, int width, int height, int delta_x, int delta_y)
The copyArea() method copies the rectangular area from (x, y) to (x+width,
y+height) to the area with an upper left corner of (x+delta_x, y+delta_y).
The delta_x and delta_y parameters are not the coordinates of the second
point but an offset from the first coordinate pair (x, y). The area copied may
fall outside of the clipping region. This method is often used to tile an area of
the graphics context. copyArea() does not save the contents of the area
copied.

Painting mode

There are two painting or drawing modes for the Graphics class: paint (the
default) and XOR mode. In paint mode, anything you draw replaces whatever is
already on the screen. If you draw a red square, you get a red square, no matter
what was underneath; this is what most programmers have learned to expect.

The behavior of XOR mode is rather strange, at least to people accustomed to
modern programming environments. XOR mode is short for eXclusive-OR mode.

* It should be simple for Sun to fix this bug; one would expect clipping to a Polygon to be the same as
clipping to the Polygon’s bounding rectangle.

2.1 GRAPHICS 25

10 July 2002 22:17

26 CHAPTER 2: SIMPLE GRAPHICS

The idea behind XOR mode is that drawing the same object twice returns the
screen to its original state. This technique was commonly used for simple anima-
tions prior to the development of more sophisticated methods and cheaper hard-
ware.

The side effect of XOR mode is that painting operations don’t necessarily get the
color you request. Instead of replacing the original pixel with the new value, XOR
mode merges the original color, the painting color, and an XOR color (usually the
background color) to form a new color. The new color is chosen so that if you
repaint the pixel with the same color, you get the original pixel back. For example,
if you paint a red square in XOR mode, you get a square of some other color on
the screen. Painting the same red square again returns the screen to its original
state.

public abstract void setXORMode (Color xorColor)
The setXORMode() method changes the drawing mode to XOR mode. In XOR
mode, the system uses the xorColor color to determine an alternate color for
anything drawn such that drawing the same item twice restores the screen to
its original condition. The xorColor is usually the current background color
but can be any color. For each pixel, the new color is determined by an exclu-
sive-or of the old pixel color, the painting color, and the xorColor.

For example, if the old pixel is red, the XOR color is blue, and the drawing
color is green, the end result would be white. To see why, it is necessar y to look
at the RGB values of the three colors. Red is (255, 0, 0). Blue is (0, 0, 255).
Green is (0, 255, 0). The exclusive-or of these three values is (255, 255, 255),
which is white. Drawing another green pixel with a blue XOR color yields red,
the pixel’s original color, since (255, 255, 255) ˆ (0, 0, 255) ˆ (0, 255, 0) yields
(255, 0, 0).* The following code generates the display shown in Figure 2-2.

import java.awt.*;
public class xor extends java.applet.Applet {

public void init () {
setBackground (Color.red);

}
public void paint (Graphics g) {

g.setColor (Color.green);
g.setXORMode (Color.blue);
g.fillRect (10, 10, 100, 100);
g.fillRect (10, 60, 100, 100);

}
}

Although it’s hard to visualize what color XOR mode will pick, there is one impor-
tant special case. Let’s say that there are only two colors: a background color (the

* ˆ is the Java XOR operator.

10 July 2002 22:17

first fillRect()

second fillRect()

Figure 2–2: Drawing in XOR mode

XOR color) and a foreground color (the painting color). Each pixel must be in
one color or the other. Painting “flips” each pixel to the other color. Foreground
pixels become background, and vice versa.

public abstract void setPaintMode ()
The setPaintMode() method puts the system into paint mode. When in paint
mode, any drawing operation replaces whatever is underneath it. Call set-
PaintMode() to return to normal painting when finished with XOR mode.

Drawing shapes

Most of the drawing methods require you to specify a bounding rectangle for the
object you want to draw: the location of the object’s upper left corner, plus its
width and height. The two exceptions are lines and polygons. For lines, you supply
two endpoints; for polygons, you provide a set of points.

Versions 1.0.2 and 1.1 of AWT always draw solid lines that are one pixel wide; there
is no support for line width or fill patterns. A future version should support lines
with variable widths and patterns.

public abstract void drawLine (int x1, int y1, int x2, int y2)
The drawLine() method draws a line on the graphics context in the current
color from (x1, y1) to (x2, y2). If (x1, y1) and (x2, y2) are the same point, you
will draw a point. There is no method specific to drawing a point. The follow-
ing code generates the display shown in Figure 2-3.

2.1 GRAPHICS 27

10 July 2002 22:17

28 CHAPTER 2: SIMPLE GRAPHICS

g.drawLine (5, 5, 50, 75); // line
g.drawLine (5, 75, 5, 75); // point
g.drawLine (50, 5, 50, 5); // point

points

Figure 2–3: Drawing lines and points with drawLine()

public void drawRect (int x, int y, int width, int height)
The drawRect() method draws a rectangle on the drawing area in the current
color from (x, y) to (x+width, y+height). If width or height is negative, noth-
ing is drawn.

public abstract void fillRect (int x, int y, int width, int height)
The fillRect() method draws a filled rectangle on the drawing area in the
current color from (x, y) to (x+width-1, y+height-1). Notice that the filled
rectangle is one pixel smaller to the right and bottom than requested. If
width or height is negative, nothing is drawn.

public abstract void drawRoundRect (int x, int y, int width, int height, int arcWidth,
int arcHeight)

The drawRoundRect() method draws a rectangle on the drawing area in the
current color from (x, y) to (x+width, y+height). However, instead of perpen-
dicular corners, the corners are rounded with a horizontal diameter of
arcWidth and a vertical diameter of arcHeight. If width or height is a nega-
tive number, nothing is drawn. If width, height, arcWidth, and arcHeight are
all equal, you get a circle.

To help you visualize the arcWidth and arcHeight of a rounded rectangle, Fig-
ure 2-4 shows one corner of a rectangle drawn with an arcWidth of 20 and a
arcHeight of 40.

public abstract void fillRoundRect (int x, int y, int width, int height, int arcWidth,
int arcHeight)

The fillRoundRect() method draws a filled rectangle on the drawing area in
the current color from (x, y) to (x+width-1, y+height-1). However, instead of
having perpendicular corners, the corners are rounded with a horizontal

10 July 2002 22:17

20 pixels high

10 pixels wide

Figure 2–4: Drawing rounded corners

diameter of arcWidth and a vertical diameter of arcHeight for the four cor-
ners. Notice that the filled rectangle is one pixel smaller to the right and bot-
tom than requested. If width or height is a negative number, nothing is filled.
If width, height, arcWidth, and arcHeight are all equal, you get a filled circle.

Figure 2-4 shows how AWT generates rounded corners. Figure 2-5 shows the
collection of rectangles created by the following code. The rectangles in Fig-
ure 2-5 are filled and unfilled, with rounded and square corners.

g.drawRect (25, 10, 50, 75);
g.fillRect (25, 110, 50, 75);
g.drawRoundRect (100, 10, 50, 75, 60, 50);
g.fillRoundRect (100, 110, 50, 75, 60, 50);

public void draw3DRect (int x, int y, int width, int height, boolean raised)
The draw3DRect() method draws a rectangle in the current color from (x, y)
to (x+width, y+height); a shadow effect makes the rectangle appear to float
slightly above or below the screen. The raised parameter has an effect only if
the current color is not black. If raised is true, the rectangle looks like a but-
ton waiting to be pushed. If raised is false, the rectangle looks like a
depressed button. If width or height is negative, the shadow appears from
another direction.

public void fill3DRect (int x, int y, int width, int height, boolean raised)
The fill3DRect() method draws a filled rectangle in the current color from
(x, y) to (x+width, y+height); a shadow effect makes the rectangle appear to
float slightly above or below the screen. The raised parameter has an effect

2.1 GRAPHICS 29

10 July 2002 22:17

30 CHAPTER 2: SIMPLE GRAPHICS

Figure 2–5: Varieties of rectangles

only if the current color is not black. If raised is true, the rectangle looks like
a button waiting to be pushed. If raised is false, the rectangle looks like a
depressed button. To enhance the shadow effect, the depressed area is given a
slightly deeper shade of the drawing color. If width or height is negative, the
shadow appears from another direction, and the rectangle isn’t filled. (Differ-
ent platforms could deal with this differently. Try to ensure the parameters
have positive values.)

Figure 2-6 shows the collection of three-dimensional rectangles created by the
following code. The rectangles in the figure are raised and depressed, filled
and unfilled.

g.setColor (Color.gray);
g.draw3DRect (25, 10, 50, 75, true);
g.draw3DRect (25, 110, 50, 75, false);
g.fill3DRect (100, 10, 50, 75, true);
g.fill3DRect (100, 110, 50, 75, false);

public abstract void drawOval (int x, int y, int width, int height)
The drawOval() method draws an oval in the current color within an invisible
bounding rectangle from (x, y) to (x+width, y+height). You cannot specify
the oval’s center point and radii. If width and height are equal, you get a cir-
cle. If width or height is negative, nothing is drawn.

public abstract void fillOval (int x, int y, int width, int height)
The fillOval() method draws a filled oval in the current color within an
invisible bounding rectangle from (x, y) to (x+width-1, y+height-1). You can-
not specify the oval’s center point and radii. Notice that the filled oval is one
pixel smaller to the right and bottom than requested. If width or height is
negative, nothing is drawn.

10 July 2002 22:17

Figure 2–6: Filled and unfilled 3D rectangles

Figure 2-7 shows the collection of ovals, filled and unfilled, that were gener-
ated by the following code:

g.drawOval (25, 10, 50, 75);
g.fillOval (25, 110, 50, 75);
g.drawOval (100, 10, 50, 50);
g.fillOval (100, 110, 50, 50);

Figure 2–7: Filled and unfilled ovals

public abstract void drawArc (int x, int y, int width, int height, int startAngle, int arcAngle)
The drawArc() method draws an arc in the current color within an invisible
bounding rectangle from (x, y) to (x+width, y+height). The arc starts at
startAngle degrees and goes to startAngle + arcAngle degrees. An angle of 0
degrees is at the 3 o’clock position; angles increase counter-clockwise. If

2.1 GRAPHICS 31

10 July 2002 22:17

32 CHAPTER 2: SIMPLE GRAPHICS

arcAngle is negative, drawing is in a clockwise direction. If width and height

are equal and arcAngle is 360 degrees, drawArc() draws a circle. If width or
height is negative, nothing is drawn.

public abstract void fillArc (int x, int y, int width, int height, int startAngle, int arcAngle)
The fillArc() method draws a filled arc in the current color within an invisi-
ble bounding rectangle from (x, y) to (x+width-1, y+height-1). The arc starts
at startAngle degrees and goes to startAngle + arcAngle degrees. An angle
of 0 degrees is at the 3 o’clock position; angles increase counter-clockwise. If
arcAngle is negative, drawing is in a clockwise direction. The arc fills like a pie
(to the origin), not from arc endpoint to arc endpoint. This makes creating
pie charts easier. If width and height are equal and arcAngle is 360 degrees,
fillArc() draws a filled circle. If width or height is negative, nothing is
drawn.

Figure 2-8 shows a collection of filled and unfilled arcs that were generated by
the following code:

g.drawArc (25, 10, 50, 75, 0, 360);
g.fillArc (25, 110, 50, 75, 0, 360);
g.drawArc (100, 10, 50, 75, 45, 215);
g.fillArc (100, 110, 50, 75, 45, 215);

Figure 2–8: Filled and unfilled arcs

public void drawPolygon (Polygon p)
The drawPolygon() method draws a path for the points in polygon p in the
current color. Section 2.6 discusses the Polygon class in detail.

The behavior of drawPolygon() changes slightly between Java 1.0.2 and 1.1.
With version 1.0.2, if the first and last points of a Polygon are not the same, a
call to drawPolygon() results in an open polygon, since the endpoints are not
connected for you. Starting with version 1.1, if the first and last points are not
the same, the endpoints are connected for you.

10 July 2002 22:17

public abstract void drawPolygon (int xPoints[], int yPoints[], int numPoints)
The drawPolygon() method draws a path of numPoints nodes by plucking one
element at a time out of xPoints and yPoints to make each point. The path is
drawn in the current color. If either xPoints or yPoints does not have num-

Points elements, drawPolygon() throws a run-time exception. In 1.0.2, this
exception is an IllegalArgumentException; in 1.1, it is an ArrayIndexOutOf-

BoundsException. This change shouldn’t break older programs, since you are
not required to catch run-time exceptions.

public abstract void drawPolyline (int xPoints[], int yPoints[], int numPoints) �

The drawPolyline() method functions like the 1.0 version of drawPolygon().
It plays connect the dots with the points in the xPoints and yPoints arrays
and does not connect the endpoints. If either xPoints or yPoints does not
have numPoints elements, drawPolygon() throws the run-time exception,
ArrayIndexOutOfBoundsException.

Filling polygons is a complex topic. It is not as easy as filling rectangles or ovals
because a polygon may not be closed and its edges may cross. AWT uses an even-
odd rule to fill polygons. This algorithm works by counting the number of times
each scan line crosses an edge of the polygon. If the total number of crossings to
the left of the current point is odd, the point is colored. If it is even, the point is
left alone. Figure 2-9 demonstrates this algorithm for a single scan line that inter-
sects the polygon at x values of 25, 75, 125, 175, 225, and 275.

x=25 x=275x=225x=175x=125x=75

Figure 2–9: Polygon fill algorithm

The scan line starts at the left edge of the screen; at this point there haven’t been

2.1 GRAPHICS 33

10 July 2002 22:17

34 CHAPTER 2: SIMPLE GRAPHICS

any crossings, so the pixels are left untouched. The scan line reaches the first
crossing when x equals 25. Here, the total number of crossings to the left is one, so
the scan line is inside the polygon, and the pixels are colored. At 75, the scan line
crosses again; the total number of crossings is two, so coloring stops.

public void fillPolygon (Polygon p)
The fillPolygon() method draws a filled polygon for the points in Polygon p

in the current color. If the polygon is not closed, fillPolygon() adds a seg-
ment connecting the endpoints. Section 2.6 discusses the Polygon class in
detail.

public abstract void fillPolygon (int xPoints[], int yPoints[], int nPoints)
The fillPolygon() method draws a polygon of numPoints nodes by plucking
one element at a time out of xPoints and yPoints to make each point. The
polygon is drawn in the current color. If either xPoints or yPoints does not
have numPoints elements, fillPolygon() throws the run-time exception Ille-

galArgumentException. If the polygon is not closed, fillPolygon() adds a
segment connecting the endpoints.*

Figure 2-10 shows several polygons created by the following code, containing dif-
ferent versions of drawPolygon() and fillPolygon():

int[] xPoints[] = {{50, 25, 25, 75, 75},
{50, 25, 25, 75, 75},
{100, 100, 150, 100, 150, 150, 125, 100, 150},
{100, 100, 150, 100, 150, 150, 125, 100, 150}};

int[] yPoints[] = {{10, 35, 85, 85, 35, 10},
{110, 135, 185, 185, 135},
{85, 35, 35, 85, 85, 35, 10, 35, 85},
{185, 135, 135, 185, 185, 135, 110, 135, 185}};

int nPoints[] = {5, 5, 9, 9};
g.drawPolygon (xPoints[0], yPoints[0], nPoints[0]);
g.fillPolygon (xPoints[1], yPoints[1], nPoints[1]);
g.drawPolygon (new Polygon(xPoints[2], yPoints[2], nPoints[2]));
g.fillPolygon (new Polygon(xPoints[3], yPoints[3], nPoints[3]));

Drawing images

An Image is a displayable object maintained in memory. To get an image on the
screen, you must draw it onto a graphics context, using the drawImage() method
of the Graphics class. For example, within a paint() method, you would call
g.drawImage(image, ... , this) to display some image on the screen. In other
situations, you might use the createImage() method to generate an offscreen
Graphics object, then use drawImage() to draw an image onto this object, for dis-
play later.

* In Java 1.1, this method throws ArrayIndexOutOfBoundsException, not IllegalArgumentException.

10 July 2002 22:17

Java 1.0 Java 1.1

Figure 2–10: Filled and unfilled polygons

This begs the question: where do images come from? We will have more to say
about the Image class later in this chapter. For now, it’s enough to say that you can
call getImage() to load an image from disk or across the Net. There are versions of
getImage() in the Applet and Toolkit classes; the latter is for use in applications.
You can also call createImage(), a method of the Component class, to generate an
image in memory.

What about the last argument to drawImage()? What is this for? The last argu-
ment of drawImage() is always an image observer — that is, an object that imple-
ments the ImageObserver inter face. This interface is discussed in detail in Chapter
12. For the time being, it’s enough to say that the call to drawImage() starts a new
thread that loads the requested image. An image observer monitors the process of
loading an image; the thread that is loading the image notifies the image observer
whenever new data has arrived. The Component class implements the ImageOb-

server inter face; when you’re writing a paint() method, you’re almost certainly
overriding some component’s paint() method; therefore, it’s safe to use this as
the image observer in a call to drawImage(). More simply, we could say that any
component can serve as an image observer for images that are drawn on it.

public abstract boolean drawImage (Image image, int x, int y, ImageObser ver obser ver)
The drawImage() method draws image onto the screen with its upper left cor-
ner at (x, y), using observer as its ImageObserver. Returns true if the object is
fully drawn, false other wise.

public abstract boolean drawImage (Image image, int x, int y, int width, int height,
ImageObser ver obser ver)

The drawImage() method draws image onto the screen with its upper left cor-
ner at (x, y), using observer as its ImageObserver. The system scales image to
fit into a width height area. The scaling may take time. This method returns
true if the object is fully drawn, false other wise.

2.1 GRAPHICS 35

10 July 2002 22:17

36 CHAPTER 2: SIMPLE GRAPHICS

With Java 1.1, you don’t need to use drawImage() for scaling; you can prescale
the image with the Image.getScaledInstance() method, then use the previ-
ous version of drawImage().

public abstract boolean drawImage (Image image, int x, int y, Color backgroundColor,
ImageObser ver obser ver)

The drawImage() method draws image onto the screen with its upper left cor-
ner at (x, y), using observer as its ImageObserver. backgroundColor is the
color of the background seen through the transparent parts of the image. If
no part of the image is transparent, you will not see backgroundColor.
Returns true if the object is fully drawn, false other wise.

public abstract boolean drawImage (Image image, int x, int y, int width, int height,
Color backgroundColor, ImageObser ver obser ver)

The drawImage() method draws image onto the screen with its upper left cor-
ner at (x, y), using observer as its ImageObserver. backgroundColor is the
color of the background seen through the transparent parts of the image. The
system scales image to fit into a width x height area. The scaling may take
time. This method returns true if the image is fully drawn, false other wise.

With Java 1.1, you can prescale the image with the AreaAveragingScaleFilter
or ReplicateScaleFilter described in Chapter 12, then use the previous ver-
sion of drawImage() to display it.

The following code generated the images in Figure 2-11. The images on the left
come from a standard JPEG file. The images on the right come from a file in
GIF89a format, in which the white pixel is “transparent.” Therefore, the gray back-
ground shows through this pair of images.

import java.awt.*;
import java.applet.*;
public class drawingImages extends Applet {

Image i, j;
public void init () {

i = getImage (getDocumentBase(), "rosey.jpg");
j = getImage (getDocumentBase(), "rosey.gif");

}
public void paint (Graphics g) {

g.drawImage (i, 10, 10, this);
g.drawImage (i, 10, 85, 150, 200, this);
g.drawImage (j, 270, 10, Color.lightGray, this);
g.drawImage (j, 270, 85, 150, 200, Color.lightGray, this);

}
}

public abstract boolean drawImage(Image img, int dx1, int dy1, int dx2, int dy2, int sx1,
int sy1, int sx2, int sy2, ImageObserver observer) �

The drawImage() method draws a portion of image onto the screen. It takes
the part of the image with corners at (sx1, sy1) and (sx2, sy2); it places this

10 July 2002 22:17

Figure 2–11: Scaled and unscaled images

rectangular
snippet on the screen with one corner at (dx1, dy1) and another at (dx2, dy2),
using observer as its ImageObserver. (Think of d for destination location and
s for source image.) This method returns true if the object is fully drawn,
false other wise.

drawImage() flips the image if source and destination endpoints are not the
same corners, crops the image if the destination is smaller than the original
size, and scales the image if the destination is larger than the original size. It
does not do rotations, only flips (i.e., it can produce a mirror image or an
image rotated 180 degrees but not an image rotated 90 or 270 degrees).

public abstract boolean drawImage(Image img, int dx1, int dy1, int dx2, int dy2, int sx1,
int sy1, int sx2, int sy2, Color backgroundColor, ImageObser ver obser ver) �

The drawImage() method draws a portion of image onto the screen. It takes
the part of the image with corners at (sx1, sy1) and (sx2, sy2); it places this
rectangular snippet on the screen with one corner at (dx1, dy1) and another
at (dx2, dy2), using observer as its ImageObserver. (Think of d for destination
location and s for source image.) backgroundColor is the color of the back-
ground seen through the transparent parts of the image. If no part of the
image is transparent, you will not see backgroundColor. This method returns
true if the object is fully drawn, false other wise.

Like the previous version of drawImage(), this method flips the image if source
and destination endpoints are not the same corners, crops the image if the

2.1 GRAPHICS 37

10 July 2002 22:17

38 CHAPTER 2: SIMPLE GRAPHICS

destination is smaller than the original size, and scales the image if the destina-
tion is larger than the original size. It does not do rotations, only flips (i.e., it
can produce a mirror image or an image rotated 180 degrees but not an
image rotated 90 or 270 degrees).

The following code demonstrates the new drawImage() methods in Java 1.1. They
allow you to scale, flip, and crop images without the use of image filters. The
results are shown in Figure 2-12.

// Java 1.1 only
import java.awt.*;
import java.applet.*;
public class drawingImages11 extends Applet {

Image i, j;
public void init () {

i = getImage (getDocumentBase(), "rosey.gif");
}
public void paint (Graphics g) {

g.drawImage (i, 10, 10, this);
g.drawImage (i, 10, 85,

i.getWidth(this)+10, i.getHeight(this)+85,
i.getWidth(this), i.getHeight(this), 0, 0, this);

g.drawImage (i, 270, 10,
i.getWidth(this)+270, i.getHeight(this)*2+10, 0, 0,
i.getWidth(this), i.getHeight(this), Color.gray, this);

g.drawImage (i, 10, 170,
i.getWidth(this)*2+10, i.getHeight(this)+170, 0,
i.getHeight(this)/2, i.getWidth(this)/2, 0, this);

}
}

Miscellaneous methods

public abstract void translate (int x, int y)
The translate() method sets how the system translates the coordinate space
for you. The point at the (x, y) coordinates becomes the origin of this graph-
ics context. Any future drawing will be relative to this location. Multiple trans-
lations are cumulative. The following code leaves the coordinate system trans-
lated by (100, 50).

translate (100, 0);
translate (0, 50);

Note that each call to paint() provides an entirely new Graphics context with
its origin in the upper left corner. Therefore, don’t expect translations to per-
sist from one call to paint() to the next.

10 July 2002 22:17

Figure 2–12: Flipped, mirrored, and cropped images

public abstract void dispose ()
The dispose() method frees any system resources used by the Graphics con-
text. It’s a good idea to call dispose() whenever you are finished with a Graph-
ics object, rather than waiting for the garbage collector to call it automatically
(through finalize()). Disposing of the Graphics object yourself will help
your programs on systems with limited resources. However, you should not dis-
pose the Graphics parameter to Component.paint() or Component.update().

public void finalize ()
The garbage collector calls finalize() when it determines that the Graphics

object is no longer needed. finalize() calls dispose(), which frees any
resources that the Graphics object has used.

public String toString ()
The toString() method of Graphics returns a string showing the current font
and color. However, Graphics is an abstract class, and classes that extend
Graphics usually override toString(). For example, on a Windows 95
machine, sun.awt.win32.Win32Graphics is the concrete class that extends
Graphics. The class’s toString() method displays the current origin of the
Graphics object, relative to the original coordinate system:

sun.awt.win32.Win32Graphics[0,0]

2.1 GRAPHICS 39

10 July 2002 22:17

40 CHAPTER 2: SIMPLE GRAPHICS

2.2 Point
The Point class encapsulates x and y coordinates within a single object. It is proba-
bly one of the most underused classes within Java. Although there are numerous
places within AWT where you would expect to see a Point, its appearances are sur-
prisingly rare. Java 1.1 is starting to use Point more heavily. The Point class is most
often used when a method needs to return a pair of coordinates; it lets the method
return both x and y as a single object. Unfortunately, Point usually is not used
when a method requires x and y coordinates as arguments; for example, you
would expect the Graphics class to have a version of translate() that takes a
point as an argument, but there isn’t one.

The Point class does not represent a point on the screen. It is not a visual object;
there is no drawPoint() method.

2.2.1 Point Methods
Variables

The two public variables of Point represent a pair of coordinates. They are accessi-
ble directly or use the getLocation() method. There is no predefined origin for
the coordinate space.

public int x
The coordinate that represents the horizontal position.

public int y
The coordinate that represents the vertical position.

Constructors

public Point ()
The first constructor creates an instance of Point with an initial x value of 0
and an initial y value of 0.

public Point (int x, int y)
The next constructor creates an instance of Point with an initial x value of x
and an initial y value of y.

public Point (Point p)
The last constructor creates an instance of Point from another point, the x
value of p.x and an initial y value of p.y.

10 July 2002 22:17

Locations

public Point getLocation () �

The getLocation() method retrieves the current location of this point as a
new Point.

public void setLocation (int x, int y) �

public void move (int x, int y) ✩

The setLocation() method changes the point’s location to (x, y).

move() is the Java 1.0 name for this method.

public void setLocation (Point p) �

This setLocation() method changes the point’s location to (p.x, p.y).

public void translate (int x, int y)
The translate() method moves the point’s location by adding the parameters
(x, y) to the corresponding fields of the Point. If the original Point p is (3, 4)
and you call p.translate(4, -5), the new value of p is (7, -1).

Miscellaneous methods

public int hashCode ()
The hashCode() method returns a hash code for the point. The system calls
this method when a Point is used as the key for a hash table.

public boolean equals (Object object)
The equals() method overrides the Object.equals() method to define equal-
ity for points. Two Point objects are equal if their x and y values are equal.

public String toString ()
The toString() method of Point displays the current values of the x and y
variables. For example:

java.awt.Point[x=100,y=200]

2.3 Dimension
The Dimension class is similar to the Point class, except it encapsulates a width and
height in a single object. Like Point, Dimension is somewhat underused; it is used
primarily by methods that need to return a width and a height as a single object;
for example, getSize() returns a Dimension object.

2.3 DIMENSION 41

10 July 2002 22:17

42 CHAPTER 2: SIMPLE GRAPHICS

2.3.1 Dimension Methods
Variables

A Dimension instance has two variables, one for width and one for height. They are
accessible directly or through use of the getSize() method.

public int width
The width variable represents the size of an object along the x axis (left to
right). Width should not be negative; however, there is nothing within the
class to prevent this from happening.

public int height
The height variable represents the size of an object along the y axis (top to
bottom). Height should not be negative; however, there is nothing within the
class to prevent this from happening.

Constructors

public Dimension ()
This constructor creates a Dimension instance with a width and height of 0.

public Dimension (Dimension dim)
This constructor creates a copy of dim. The initial width is dim.width. The ini-
tial height is dim.height.

public Dimension (int width, int height)
This constructor creates a Dimension with an initial width of width and an ini-
tial height of height.

Sizing

public Dimension getSize () �

The getSize() method retrieves the current size as a new Dimension, even
though the instance variables are public.

public void setSize (int width, int height) �

The setSize() method changes the dimension’s size to width height.

public void setSize (Dimension d) �

The setSize() method changes the dimension’s size to d.width d.height.

Miscellaneous methods

public boolean equals (Object object)
The equals() method overrides the Object.equals() method to define equal-
ity for dimensions. Two Dimension objects are equal if their width and height
values are equal.

10 July 2002 22:17

public String toString ()
The toString() method of Dimension returns a string showing the current
width and height settings. For example:

java.awt.Dimension[width=0,height=0]

2.4 Shape
The new Shape inter face defines a single method; it requires a geometric object to
be able to report its bounding box. Currently, the Rectangle and Polygon classes
implement Shape; one would expect other geometric classes to implement Shape
in the future. Although Component has the single method defined by the Shape

inter face, it does not implement the interface.

2.4.1 Shape Method
public abstract Rectangle getBounds() �

The getBounds() method returns the shape’s bounding Rectangle. Once you
have the bounding area, you can use methods like Graphics.copyArea() to
copy the shape.

2.5 Rectangle
The Rectangle class encapsulates x and y coordinates and width and height (Point
and Dimension information) within a single object. It is often used by methods that
return a rectangular boundary as a single object: for example, Polygon.get-
Bounds(), Component.getBounds(), and Graphics.getClipBounds(). Like Point,
the Rectangle class is not a visual object and does not represent a rectangle on the
screen; ironically, drawRect() and fillRect() don’t take Rectangle as an argu-
ment.

2.5.1 Rectangle Methods
Variables

The four public variables available for Rectangle have the same names as the pub-
lic instance variables of Point and Dimension. They are all accessible directly or
through use of the getBounds() method.

public int x
The x coordinate of the upper left corner.

2.5 RECTANGLE 43

10 July 2002 22:17

44 CHAPTER 2: SIMPLE GRAPHICS

public int y
The y coordinate of the upper left corner.

public int width
The width variable represents the size of the Rectangle along the horizontal
axis (left to right). Width should not be negative; however, there is nothing
within the class to prevent this from happening.

public int height
The height variable represents the size of the Rectangle along the vertical axis
(top to bottom). Height should not be negative; however, there is nothing
within the class to prevent this from happening.

Constructors

The following seven constructors create Rectangle objects. When you create a
Rectangle, you provide the location of the top left corner, along with the Rectan-
gle’s width and height. A Rectangle located at (0,0) with a width and height of
100 has its bottom right corner at (99, 99). The Point (100, 100) lies outside the
Rectangle, since that would require a width and height of 101.

public Rectangle ()
This Rectangle constructor creates a Rectangle object in which x, y, width,
and height are all 0.

public Rectangle (int width, int height)
This Rectangle constructor creates a Rectangle with (x, y) coordinates of
(0,0) and the specified width and height. Notice that there is no Rectan-

gle(int x, int y) constructor because that would have the same method sig-
nature as this one, and the compiler would have no means to differentiate
them.

public Rectangle (int x, int y, int width, int height)
The Rectangle constructor creates a Rectangle object with an initial x coordi-
nate of x, y coordinate of y, width of width, and height of height. Height and
width should be positive, but the constructor does not check for this.

public Rectangle (Rectangle r)
This Rectangle constructor creates a Rectangle matching the original. The (x,
y) coordinates are (r.x, r.y), with a width of r.width and a height of
r.height.

10 July 2002 22:17

public Rectangle (Point p, Dimension d)
This Rectangle constructor creates a Rectangle with (x, y) coordinates of
(p.x, p.y), a width of d.width, and a height of d.height.

public Rectangle (Point p)
This Rectangle constructor creates a Rectangle with (x, y) coordinates of
(p.x, p.y). The width and height are both zero.

public Rectangle (Dimension d)
The last Rectangle constructor creates a Rectangle with (x, y) coordinates of
(0, 0). The initial Rectangle width is d.width and height is d.height.

Shaping and sizing

public Rectangle getBounds() �

The getBounds() method returns a copy of the original Rectangle.

public void setBounds (int x, int y, int width, int height) �

public void reshape (int x, int y, int width, int height) ✩

The setBounds() method changes the origin of the Rectangle to (x, y) and
changes the dimensions to width by height.

reshape() is the Java 1.0 name for this method.

public void setBounds (Rectangle r) �

The setBounds() method changes the origin of the Rectangle to (r.x, r.y)
and changes the dimensions to r.width by r.height.

public Point getLocation() �

The getLocation()retrieves the current origin of this rectangle as a Point.

public void setLocation (int x, int y) �

public void move (int x, int y) ✩

The setLocation() method changes the origin of the Rectangle to (x, y).

move() is the Java 1.0 name for this method.

public void setLocation (Point p) �

The setLocation() method changes the Rectangle’s origin to (p.x, p.y).

public void translate (int x, int y)
The translate() method moves the Rectangle’s origin by the amount (x, y).
If the original Rectangle’s location (r) is (3, 4) and you call r.translate (4,
5), then r’s location becomes (7, 9). x and y may be negative. translate() has
no effect on the Rectangle’s width and height.

2.5 RECTANGLE 45

10 July 2002 22:17

46 CHAPTER 2: SIMPLE GRAPHICS

public Dimension getSize () �

The getSize() method retrieves the current size of the rectangle as a Dimen-
sion.

public void setSize() (int width, int height) �

public void resize (int width, int height) ✩

The setSize() method changes the Rectangle’s dimensions to width x
height.

resize() is the Java 1.0 name for this method.

public void setSize() (Dimension d) �

The setSize() method changes the Rectangle’s dimensions to d.width x
d.height.

public void grow (int horizontal, int vertical)
The grow() method increases the Rectangle’s dimensions by adding the
amount horizontal on the left and the right and adding the amount verti-
cal on the top and bottom. Therefore, all four of the rectangle’s variables
change. If the original location is (x, y), the new location will be (x-horizon-
tal, y-vertical) (moving left and up if both values are positive); if the original
size is (width, height), the new size will be (width+2*horizontal,
height+2*vertical). Either horizontal or vertical can be negative to decrease
the size of the Rectangle. The following code demonstrates the changes:

import java.awt.Rectangle;
public class rect {

public static void main (String[] args) {
Rectangle r = new Rectangle (100, 100, 200, 200);
System.out.println (r);
r.grow (50, 75);
System.out.println (r);
r.grow (-25, -50);
System.out.println (r);

}
}

This program produces the following output:

java.awt.Rectangle[x=100,y=100,width=200,height=200]
java.awt.Rectangle[x=50,y=25,width=300,height=350]
java.awt.Rectangle[x=75,y=75,width=250,height=250]

public void add (int newX, int newY)
The add() method incorporates the point (newX, newY) into the Rectangle. If
this point is already in the Rectangle, there is no change. Otherwise, the size
of the Rectangle increases to include (newX, newY) within itself.

10 July 2002 22:17

public void add (Point p)
This add() method incorporates the point (p.x, p.y) into the Rectangle. If
this point is already in the Rectangle, there is no change. Otherwise, the size
of the Rectangle increases to include (p.x, p.y) within itself.

public void add (Rectangle r)
This add() method incorporates another Rectangle r into this Rectangle.
This transforms the current rectangle into the union of the two Rectangles.
This method might be useful in a drawing program that lets you select multi-
ple objects on the screen and create a rectangular area from them.

We will soon encounter a method called union() that is almost identical.
add() and union() differ in that add() modifies the current Rectangle, while
union() returns a new Rectangle. The resulting rectangles are identical.

Intersections

public boolean contains (int x, int y) �

public boolean inside (int x, int y) ✩

The contains() method determines if the point (x, y) is within this Rectan-
gle. If so, true is returned. If not, false is returned.

inside() is the Java 1.0 name for this method.

public boolean contains (Point p) �

The contains() method determines if the point (p.x, p.y) is within this Rect-
angle. If so, true is returned. If not, false is returned.

public boolean intersects (Rectangle r)
The intersects() method checks whether Rectangle r crosses this Rectangle
at any point. If it does, true is returned. If not, false is returned.

public Rectangle intersection (Rectangle r)
The intersection() method returns a new Rectangle consisting of all points
that are in both the current Rectangle and Rectangle r. For example, if r =

new Rectangle (50, 50, 100, 100) and r1 = new Rectangle (100, 100,

75, 75), then r.intersection (r1) is the Rectangle (100, 100, 50, 50), as
shown in Figure 2-13.

public Rectangle union (Rectangle r)
The union() method combines the current Rectangle and Rectangle r to
form a new Rectangle. For example, if r = new Rectangle (50, 50, 100,

100) and r1 = new Rectangle (100, 100, 75, 75), then r.union (r1) is the
Rectangle (50, 50, 125, 125). The original rectangle is unchanged. Figure
2-14 demonstrates the effect of union(). Because fillRect() fills to width-1

2.5 RECTANGLE 47

10 July 2002 22:17

48 CHAPTER 2: SIMPLE GRAPHICS

and height-1, the rectangle drawn appears slightly smaller than you would
expect. However, that’s an artifact of how rectangles are drawn; the returned
rectangle contains all the points within both.

Figure 2–13: Rectangle intersection

Figure 2–14: Rectangle union

Miscellaneous methods

public boolean isEmpty ()
The isEmpty() method checks whether there are any points within the Rect-

angle. If the width and height of the Rectangle are both 0 (or less), the Rect-
angle is empty, and this method returns true. If either width or height is
greater than zero, isEmpty() returns false. This method could be used to
check the results of a call to any method that returns a Rectangle object.

10 July 2002 22:17

public int hashCode ()
The hashCode() method returns a hash code for the rectangle. The system
calls this method when a Rectangle is used as the key for a hash table.

public boolean equals (Object object)
The equals() method overrides the Object’s equals() method to define what
equality means for Rectangle objects. Two Rectangle objects are equal if their
x, y, width, and height values are equal.

public String toString ()
The toString() method of Rectangle displays the current values of the x, y,
width, and height variables. For example:

java.awt.Rectangle[x=100,y=200,width=300,height=400]

2.6 Polygon
A Polygon is a collection of points used to create a series of line segments. Its pri-
mar y purpose is to draw arbitrary shapes like triangles or pentagons. If the points
are sufficiently close, you can create a curve. To display the Polygon, call draw-
Polygon() or fillPolygon().

2.6.1 Polygon Methods
Variables

The collection of points maintained by Polygon are stored in three variables:

public int npoints
The npoints variable stores the number of points.

public int xpoints[]
The xpoints array holds the x component of each point.

public int ypoints[]
The ypoints array holds the y component of each point.

You might expect the Polygon class to use an array of points, rather than separate
arrays of integers. More important, you might expect the instance variables to be
private or protected, which would prevent them from being modified directly.
Since the three instance variables are public, there is no guarantee that the array
sizes are in sync with each other or with npoints. To avoid trouble, always use add-
Points() to modify your polygons, and avoid modifying the instance variables
directly.

2.6 POL YGON 49

10 July 2002 22:17

50 CHAPTER 2: SIMPLE GRAPHICS

Constructors

public Polygon ()
This constructor creates an empty Polygon.

public Polygon (int xPoints[], int yPoints[], int numPoints)
This constructor creates a Polygon that consists of numPoints points. Those
points are formed from the first numPoints elements of the xPoints and
yPoints arrays. If the xPoints or yPoints arrays are larger than numPoints, the
additional entries are ignored. If the xPoints or yPoints arrays do not contain
at least numPoints elements, the constructor throws the run-time exception
ArrayIndexOutOfBoundsException.

Miscellaneous methods

public void addPoint (int x, int y)
The addPoint() method adds the point (x, y) to the Polygon as its last point.
If you alter the xpoints, ypoints, and npoints instance variables directly, add-
Point() could add the new point at a place other than the end, or it could
throw the run-time exception ArrayIndexOutOfBoundsException with a mes-
sage showing the position at which it tried to add the point. Again, for safety,
don’t modify a Polygon’s instance variables yourself; always use addPoint().

public Rectangle getBounds () �

public Rectangle getBoundingBox () ✩

The getBounds() method returns the Polygon’s bounding Rectangle (i.e., the
smallest rectangle that contains all the points within the polygon). Once you
have the bounding box, it’s easy to use methods like copyArea() to copy the
Polygon.

getBoundingBox() is the Java 1.0 name for this method.

public boolean contains (int x, int y) �

public boolean inside (int x, int y) ✩

The contains() method checks to see if the (x, y) point is within an area that
would be filled if the Polygon was drawn with Graphics.fillPolygon(). A
point may be within the bounding rectangle of the polygon, but contains()
can still return false if not within a closed part of the polygon.

inside() is the Java 1.0 name for this method.

public boolean contains (Point p) �

The contains() method checks to see if the point p is within an area that
would be filled if the Polygon were drawn with Graphics.fillPolygon().

10 July 2002 22:17

public void translate (int x, int y) �

The translate() method moves all the Polygon’s points by the amount (x, y).
This allows you to alter the location of the Polygon by shifting the points.

2.7 Image
An Image is a displayable object maintained in memory. AWT has built-in support
for reading files in GIF and JPEG format, including GIF89a animation. Netscape
Navigator, Internet Explorer, HotJava, and Sun’s JDK also understand the XBM
image format. Images are loaded from the filesystem or network by the getIm-

age() method of either Component or Toolkit, drawn onto the screen with draw-

Image() from Graphics, and manipulated by several objects within the
java.awt.image package. Figure 2-15 shows an Image.

Figure 2–15: An Image

Image is an abstract class implemented by many different platform-specific classes.
The system that runs your program will provide an appropriate implementation;
you do not need to know anything about the platform-specific classes, because the
Image class completely defines the API for working with images. If you’re curious,
the platform-specific packages used by the JDK are:

• sun.awt.win32.Win32Image on Java 1.0 Windows NT/95 platforms

• sun.awt.windows.WImage on Java 1.1 Windows NT/95 platforms

• sun.awt.motif.X11Image on UNIX/Motif platforms

• sun.awt.macos.MacImage on the Macintosh

This section covers only the Image object itself. AWT also includes a package
named java.awt.image that includes more advanced image processing utilities.
The classes in java.awt.image are covered in Chapter 12.

2.7 IMAGE 51

10 July 2002 22:17

52 CHAPTER 2: SIMPLE GRAPHICS

2.7.1 Image Methods
Constants

public static final Object UndefinedProperty
In Java 1.0, the sole constant of Image is UndefinedProperty. It is used as a
return value from the getProperty() method to indicate that the requested
property is unavailable.

Java 1.1 introduces the getScaledInstance() method. The final parameter to the
method is a set of hints to tell the method how best to scale the image. The follow-
ing constants provide possible values for this parameter.

public static final int SCALE_DEFAULT �

The SCALE_DEFAULT hint should be used alone to tell getScaledInstance() to
use the default scaling algorithm.

public static final int SCALE_FAST �

The SCALE_FAST hint tells getScaledInstance() that speed takes priority over
smoothness.

public static final int SCALE_SMOOTH �

The SCALE_SMOOTH hint tells getScaledInstance() that smoothness takes pri-
ority over speed.

public static final int SCALE_REPLICATE �

The SCALE_REPLICATE hint tells getScaledInstance() to use ReplicateScale-
Filter or a reasonable alternative provided by the toolkit. ReplicateScale-
Filter is discussed in Chapter 12.

public static final int SCALE_AREA_AVERAGING �

The SCALE_AREA_AVERAGING hint tells getScaledInstance() to use AreaAver-

agingScaleFilter or a reasonable alternative provided by the toolkit. AreaAv-
eragingScaleFilter is discussed in Chapter 12.

Constructors

There are no constructors for Image. You get an Image object to work with by using
the getImage() method of Applet (in an applet), Toolkit (in an application), or
the createImage() method of Component or Toolkit. getImage() uses a separate
thread to fetch the image. The thread starts when you call drawImage(), pre-
pareImage(), or any other method that requires image information. getImage()
returns immediately. You can also use the MediaTracker class to force an image to
load before it is needed. MediaTracker is discussed in the next section.

10 July 2002 22:17

Characteristics

public abstract int getWidth (ImageObserver observer)
The getWidth() method returns the width of the image object. The width may
not be available if the image has not started loading; in this case, getWidth()
returns –1. An image’s size is available long before loading is complete, so it is
often useful to call getWidth() while the image is loading.

public abstract int getHeight (ImageObserver observer)
The getHeight() method returns the height of the image object. The height
may not be available if the image has not started loading; in this case, the
getHeight() method returns –1. An image’s size is available long before load-
ing is complete, so it is often useful to call getHeight() while the image is
loading.

Miscellaneous methods

public Image getScaledInstance (int width, int height, int hints) �

The getScaledInstance() method enables you to generate scaled versions of
images before they are needed. Prior to Java 1.1, it was necessary to tell the
drawImage() method to do the scaling. However, this meant that scaling didn’t
take place until you actually tried to draw the image. Since scaling takes time,
drawing the image required more time; the net result was degraded appear-
ance. With Java 1.1, you can generate scaled copies of images before drawing
them; then you can use a version of drawImage() that does not do scaling, and
therefore is much quicker.

The width parameter of getScaledInstance() is the new width of the image.
The height parameter is the new height of the image. If either is –1, the scal-
ing retains the aspect ratio of the original image. For instance, if the original
image size was 241 by 72 pixels, and width and height were 100 and –1, the
new image size would be 100 by 29 pixels. If both width and height are –1, the
getScaledInstance() method retains the image’s original size. The hints

parameter is one of the Image class constants.

Image i = getImage (getDocumentBase(), "rosey.jpg");
Image j = i.getScaledInstance (100, -1, Image.SCALE_FAST);

public abstract ImageProducer getSource ()
The getSource() method returns the image’s producer, which is an object of
type ImageProducer. This object represents the image’s source. Once you
have the ImageProducer, you can use it to do additional image processing; for
example, you could create a modified version of the original image by using a
FilteredImageSource. Image producers and image filters are covered in
Chapter 12.

2.7 IMAGE 53

10 July 2002 22:17

54 CHAPTER 2: SIMPLE GRAPHICS

public abstract Graphics getGraphics ()
The getGraphics() method returns the image’s graphics context. The
method getGraphics() works only for Image objects created in memory with
Component.createImage (int, int). If the image came from a URL or a file
(i.e., from getImage()), getGraphics() throws the run-time exception Class-

CastException.

public abstract Object getProperty (String name, ImageObserver observer)
The getProperty() method interacts with the image’s property list. An object
representing the requested property name will be returned for observer.
observer represents the Component on which the image is rendered. If the
property name exists but is not available yet, getProperty() returns null. If the
property name does not exist, the getProperty() method returns the
Image.UndefinedProperty object.

Each image type has its own property list. A property named comment stores a
comment String from the image’s creator. The CropImageFilter adds a prop-
erty named croprect. If you ask getProperty() for an image’s croprect prop-
erty, you get a Rectangle that shows how the original image was cropped.

public abstract void flush()
The flush() method resets an image to its initial state. Assume you acquire an
image over the network with getImage(). The first time you display the image,
it will be loaded over the network. If you redisplay the image, AWT normally
reuses the original image. However, if you call flush() before redisplaying the
image, AWT fetches the image again from its source. (Images created with
createImage() aren’t affected.) The flush() method is useful if you expect
images to change while your program is running. The following program
demonstrates flush(). It reloads and displays the file flush.gif ever y time you
click the mouse. If you change the file flush.gif and click on the mouse, you
will see the new file.

import java.awt.*;
public class flushMe extends Frame {

Image im;
flushMe () {

super ("Flushing");
im = Toolkit.getDefaultToolkit().getImage ("flush.gif");
resize (175, 225);

}
public void paint (Graphics g) {

g.drawImage (im, 0, 0, 175, 225, this);
}
public boolean mouseDown (Event e, int x, int y) {

im.flush();
repaint();
return true;

}

10 July 2002 22:17

public static void main (String [] args) {
Frame f = new flushMe ();
f.show();

}
}

2.7.2 Simple Animation
Creating simple animation sequences in Java is easy. Load a series of images, then
display the images one at a time. Example 2-1 is an application that displays a sim-
ple animation sequence. Example 2-2 is an applet that uses a thread to run the
application. These programs are far from ideal. If you try them, you’ll probably
notice some flickering or missing images. We discuss how to fix these problems
shortly.

Example 2–1: Animation Application

import java.awt.*;
public class Animate extends Frame {

static Image im[];
static int numImages = 12;
static int counter=0;
Animate () {

super ("Animate");
}
public static void main (String[] args) {

Frame f = new Animate();
f.resize (225, 225);
f.show();
im = new Image[numImages];
for (int i=0;i<numImages;i++) {

im[i] = Toolkit.getDefaultToolkit().getImage ("clock"+i+".jpg");
}

}
public synchronized void paint (Graphics g) {

g.translate (insets().left, insets().top);
g.drawImage (im[counter], 0, 0, this);
counter++;
if (counter == numImages)

counter = 0;
repaint (200);

}
}

This application displays images with the name clockn.jpg, where n is a number
between 0 and 11. It fetches the images using the getImage() method of the
Toolkit class — hence, the call to Toolkit.getDefaultToolkit(), which gets a
Toolkit object to work with. The paint() method displays the images in sequence,
using drawImage(). paint() ends with a call to repaint(200), which schedules
another call to paint() in 200 milliseconds.

2.7 IMAGE 55

10 July 2002 22:17

56 CHAPTER 2: SIMPLE GRAPHICS

The AnimateApplet, whose code is shown in Example 2-2, does more or less the
same thing. It is able to use the Applet.getImage() method. A more significant
difference is that the applet creates a new thread to control the animation. This
thread calls sleep(200), followed by repaint(), to display a new image every 200
milliseconds.

Example 2–2: Multithreaded Animation Applet

import java.awt.*;
import java.applet.*;
public class AnimateApplet extends Applet implements Runnable {

static Image im[];
static int numImages = 12;
static int counter=0;
Thread animator;
public void init () {

im = new Image[numImages];
for (int i=0;i<numImages;i++)

im[i] = getImage (getDocumentBase(), "clock"+i+".jpg");
}
public void start() {

if (animator == null) {
animator = new Thread (this);
animator.start ();

}
}
public void stop() {

if ((animator != null) && (animator.isAlive())) {
animator.stop();
animator = null;

}
}
public void run () {

while (animator != null) {
try {

animator.sleep(200);
repaint ();
counter++;
if (counter==numImages)

counter=0;
} catch (Exception e) {

e.printStackTrace ();
}

}
}
public void paint (Graphics g) {

g.drawImage (im[counter], 0, 0, this);
}

}

One quick fix will help the flicker problem in both of these examples. The

10 July 2002 22:17

update() method (which is inherited from the Component class) normally clears
the drawing area and calls paint(). In our examples, clearing the drawing area is
unnecessar y and, worse, results in endless flickering; on slow machines, you’ll see
update() restore the background color between each image. It’s a simple matter
to override update() so that it doesn’t clear the drawing area first. Add the follow-
ing method to both of the previous examples:

public void update (Graphics g) {
paint (g);

}

Overriding update() helps, but the real solution to our problem is double buffer-
ing, which we’ll turn to next.

2.7.3 Double Buffering
Double buffering means drawing to an offscreen graphics context and then dis-
playing this graphics context to the screen in a single operation. So far, we have
done all our drawing directly on the screen—that is, to the graphics context pro-
vided by the paint() method. As your programs grow more complex, paint() gets
bigger and bigger, and it takes more time and resources to update the entire draw-
ing area. On a slow machine, the user will see the individual drawing operations
take place, which will make your program look slow and clunky. By using the dou-
ble buffering technique, you can take your time drawing to another graphics con-
text that isn’t displayed. When you are ready, you tell the system to display the
completely new image at once. Doing so eliminates the possibility of seeing partial
screen updates and flickering.

The first thing you need to do is create an image as your drawing canvas. To get an
image object, call the createImage() method. createImage() is a method of the
Component class, which we will discuss in Chapter 5, Components. Since Applet

extends Component, you can call createImage() within an applet. When creating
an application and extending Frame, createImage() returns null until the Frame’s
peer exists. To make sure that the peer exists, call addNotify() in the constructor,
or make sure you call show() before calling createImage(). Here’s the call to the
createImage() method that we’ll use to get an Image object:

Image im = createImage (300, 300); // width and height

Once you have an Image object, you have an area you can draw on. But how do you
draw on it? There are no drawing methods associated with Image; they’re all in the
Graphics class. So we need to get a Graphics context from the Image. To do so, call
the getGraphics() method of the Image class, and use that Graphics context for
your drawing:

2.7 IMAGE 57

10 July 2002 22:17

58 CHAPTER 2: SIMPLE GRAPHICS

Graphics buf = im.getGraphics();

Now you can do all your drawings with buf. To display the drawing, the paint()

method only needs to call drawImage(im, . . .). Note the hidden connection
between the Graphics object, buf, and the Image you are creating, im. You draw
onto buf; then you use drawImage() to render the image on the on-screen Graph-

ics context within paint().

Another feature of buffering is that you do not have redraw the entire image with
each call to paint(). The buffered image you’re working on remains in memory,
and you can add to it at will. If you are drawing directly to the screen, you would
have to recreate the entire drawing each time paint() is called; remember,
paint() always hands you a completely new Graphics object. Figure 2-16 shows
how double buffering works.

Off-Screen Buffer

Display

Image im = createImage (width, height);

Graphics buf = im.getGraphics();

buf.drawStuff(...);

g.drawImage (im, 0, 0, this);

Figure 2–16: Double buffering

Example 2-3 puts it all together for you. It plays a game, with one move drawn to
the screen each cycle. We still do the drawing within paint(), but we draw into an
offscreen buffer; that buffer is copied onto the screen by g.drawImage(im, 0, 0,
this). If we were doing a lot of drawing, it would be a good idea to move the draw-
ing operations into a different thread, but that would be overkill for this simple
applet.

Example 2–3: Double Buffering—Who Won?

import java.awt.*;
import java.applet.*;
public class buffering extends Applet {

Image im;
Graphics buf;
int pass=0;
public void init () {

// Create buffer
im = createImage (size().width, size().height);
// Get its graphics context
buf = im.getGraphics();
// Draw Board Once

10 July 2002 22:17

Example 2–3: Double Buffering—Who Won? (continued)

buf.setColor (Color.red);
buf.drawLine (0, 50, 150, 50);
buf.drawLine (0, 100, 150, 100);
buf.drawLine (50, 0, 50, 150);
buf.drawLine (100, 0, 100, 150);
buf.setColor (Color.black);

}
public void paint (Graphics g) {

// Draw image - changes are written onto buf
g.drawImage (im, 0, 0, this);
// Make a move
switch (pass) {

case 0:
buf.drawLine (50, 50, 100, 100);
buf.drawLine (50, 100, 100, 50);
break;

case 1:
buf.drawOval (0, 0, 50, 50);
break;

case 2:
buf.drawLine (100, 0, 150, 50);
buf.drawLine (150, 0, 100, 50);
break;

case 3:
buf.drawOval (0, 100, 50, 50);
break;

case 4:
buf.drawLine (0, 50, 50, 100);
buf.drawLine (0, 100, 50, 50);
break;

case 5:
buf.drawOval (100, 50, 50, 50);
break;

case 6:
buf.drawLine (50, 0, 100, 50);
buf.drawLine (50, 50, 100, 0);
break;

case 7:
buf.drawOval (50, 100, 50, 50);
break;

case 8:
buf.drawLine (100, 100, 150, 150);
buf.drawLine (150, 100, 100, 150);
break;

}
pass++;
if (pass <= 9)

repaint (500);
}

}

2.7 IMAGE 59

10 July 2002 22:17

60 CHAPTER 2: SIMPLE GRAPHICS

2.8 MediaTracker
The MediaTracker class assists in the loading of multimedia objects across the net-
work. Tracking is necessary because Java loads images in separate threads. Calls to
getImage() return immediately; image loading starts only when you call the
method drawImage(). MediaTracker lets you force images to start loading before
you try to display them; it also gives you information about the loading process, so
you can wait until an image is fully loaded before displaying it.

Currently, MediaTracker can monitor the loading of images, but not audio,
movies, or anything else. Future versions are rumored to be able to monitor other
media types.

2.8.1 MediaTracker Methods
Constants

The MediaTracker class defines four constants that are used as return values from
the class’s methods. These values serve as status indicators.

public static final int LOADING
The LOADING variable indicates that the particular image being checked is still
loading.

public static final int ABORTED
The ABORTED variable indicates that the loading process for the image being
checked aborted. For example, a timeout could have happened during the
download. If something ABORTED during loading, it is possible to flush() the
image to force a retry.

public static final int ERRORED
The ERRORED variable indicates that an error occurred during the loading pro-
cess for the image being checked. For instance, the image file might not be
available from the server (invalid URL) or the file format could be invalid. If
an image has ERRORED, retr ying it will fail.

public static final int COMPLETE
The COMPLETE flag means that the image being checked successfully loaded.

If COMPLETE, ABORTED, or ERRORED is set, the image has stopped loading. If you are
checking multiple images, you can OR several of these values together to form a
composite. For example, if you are loading several images and want to find out
about any malfunctions, call statusAll() and check for a return value of ABORTED
| ERRORED.

10 July 2002 22:17

Constructors

public MediaTracker (Component component)
The MediaTracker constructor creates a new MediaTracker object to track
images to be rendered onto component.

Adding images

The addImage() methods add objects for the MediaTracker to track. When placing
an object under a MediaTracker’s control, you must provide an identifier for
grouping purposes. When multiple images are grouped together, you can perform
operations on the entire group with a single request. For example, you might want
to wait until all the images in an animation sequence are loaded before starting
the animation; in this case, assigning the same ID to all the images makes good
sense. However, when multiple images are grouped together, you cannot check on
the status of a single image. The moral is: if you care about the status of individual
images, put each into a group by itself.

Folklore has it that the identifier also serves as a loading priority, with a lower ID
meaning a higher priority. This is not completely true. Current implementations
start loading lower IDs first, but at most, this is implementation-specific functional-
ity for the JDK. Furthermore, although an object with a lower identifier might be
told to start loading first, the MediaTracker does nothing to ensure that it finishes
first.

public synchronized void addImage (Image image, int id, int width, int height)
The addImage() method tells the MediaTracker instance that it needs to track
the loading of image. The id is used as a grouping. Someone will eventually
render the image at a scaled size of width height. If width and height are
both –1, the image will be rendered unscaled. If you forget to notify the Medi-
aTracker that the image will be scaled and ask the MediaTracker to waitForID

(id), it is possible that the image may not be fully ready when you try to draw
it.

public void addImage (Image image, int id)
The addImage() method tells the MediaTracker instance that it needs to track
the loading of image. The id is used as a grouping. The image will be ren-
dered at its actual size, without scaling.

Removing images

Images that have finished loading are still watched by the MediaTracker. The
removeImage() methods, added in Java 1.1, allow you to remove objects from the
MediaTracker. Once you no longer care about an image (usually after waiting for

2.8 MEDIATRACKER 61

10 July 2002 22:17

62 CHAPTER 2: SIMPLE GRAPHICS

it to load), you can remove it from the tracker. Getting rid of loaded images results
in better performance because the tracker has fewer objects to check. In Java 1.0,
you can’t remove an image from MediaTracker.

public void removeImage (Image image) �

The removeImage() method tells the MediaTracker to remove all instances of
image from its tracking list.

public void removeImage (Image image, int id) �

The removeImage() method tells the MediaTracker to remove all instances of
image from group id of its tracking list.

public void removeImage (Image image, int id, int width, int height) �

This removeImage() method tells the MediaTracker to remove all instances of
image from group id and scale width height of its tracking list.

Waiting

A handful of methods let you wait for a particular image, image group, all images,
or a particular time period. They enable you to be sure that an image has finished
tr ying to load prior to continuing. The fact that an image has finished loading
does not imply it has successfully loaded. It is possible that an error condition
arose, which caused loading to stop. You should check the status of the image (or
group) for actual success.

public void waitForID (int id) throws InterruptedException
The waitForID() method blocks the current thread from running until the
images added with id finish loading. If the wait is interrupted, waitForID()
throws an InterruptedException.

public synchronized boolean waitForID (int id, long ms) throws InterruptedException
The waitForID() method blocks the current thread from running until the
images added with id finish loading or until ms milliseconds have passed. If all
the images have loaded, waitForID() returns true; if the timer has expired, it
returns false, and one or more images in the id set have not finished loading.
If ms is 0, it waits until all images added with id have loaded, with no timeout.
If the wait is interrupted, waitForID() throws an InterruptedException.

public void waitForAll () throws InterruptedException
The waitForAll() method blocks the current thread from running until all
images controlled by this MediaTracker finish loading. If the wait is inter-
rupted, waitForAll() throws an InterruptedException.

10 July 2002 22:17

public synchronized boolean waitForAll (long ms) throws InterruptedException
The waitForAll() method blocks the current thread from running until all
images controlled by this MediaTracker finish loading or until ms milliseconds
have passed. If all the images have loaded, waitForAll() returns true; if the
timer has expired, it returns false, and one or more images have not finished
loading. If ms is 0, it waits until all images have loaded, with no timeout. When
you interrupt the waiting, waitForAll() throws an InterruptedException.

Checking status

Several methods are available to check on the status of images loading. None of
these methods block, so you can continue working while images are loading.

public boolean checkID (int id)
The checkID() method determines if all the images added with the id tag
have finished loading. The method returns true if all images have completed
loading (successfully or unsuccessfully). Since this can return true on error,
you should also use isErrorID() to check for errors. If loading has not com-
pleted, checkID() returns false. This method does not force images to start
loading.

public synchronized boolean checkID (int id, boolean load)
The checkID() method determines if all the images added with the id tag
have finished loading. If the load flag is true, any images in the id group that
have not started loading yet will start. The method returns true if all images
have completed loading (successfully or unsuccessfully). Since this can return
true on error, you should also use isErrorID() to check for errors. If loading
has not completed, checkID() returns false.

public boolean checkAll ()
The checkAll() method determines if all images associated with the Media-

Tracker have finished loading. The method returns true if all images have
completed loading (successfully or unsuccessfully). Since this can return true

on error, you should also use isErrorAny() to check for errors. If loading has
not completed, checkAll() returns false. This method does not force images
to start loading.

public synchronized boolean checkAll (boolean load)
The checkAll() method determines if all images associated with the Media-

Tracker have finished loading. If the load flag is true, any image that has not
started loading yet will start. The method returns true if all images have com-
pleted loading (successfully or unsuccessfully). Since this can return true on
error, you should also use isErrorAny() to check for errors. If loading has not
completed, checkAll() returns false.

2.8 MEDIATRACKER 63

10 July 2002 22:17

64 CHAPTER 2: SIMPLE GRAPHICS

public int statusID (int id, boolean load)
The statusID() method checks on the load status of the images in the id

group. If there are multiple images in the group, the results are ORed
together. If the load flag is true, any image in the id group that has not
started loading yet will start. The return value is some combination of the class
constants LOADING, ABORTED, ERRORED, and COMPLETE.

public int statusAll (boolean load)
The statusAll() method determines the load status of all the images associ-
ated with the MediaTracker. If this MediaTracker is watching multiple images,
the results are ORed together. If the load flag is true, any image that has not
started loading yet will start. The return value is some combination of the class
constants LOADING, ABORTED, ERRORED, and COMPLETE.

public synchronized boolean isErrorID (int id)
The isErrorId() method checks whether any media in the id group encoun-
tered an error while loading. If any image resulted in an error, isErrorId()
returns true; if there were no errors, it returns false.

public synchronized boolean isErrorAny ()
The isErrorAny() method checks to see if any image associated with the
MediaTracker encountered an error. If there was an error, the method returns
true; if none, false.

public synchronized Object[] getErrorsID (int id)
The getErrorsID() method returns an array of the objects that encountered
errors in the group ID during loading. If loading caused no errors, the
method returns null. The return type is an Object array instead of an Image

array because MediaTracker will eventually support additional media types.

public synchronized Object[] getErrorsAny ()
The getErrorsAny() method returns an array of all the objects that encoun-
tered an error during loading. If there were no errors, the method returns
null. The return type is an Object array instead of an Image array because
MediaTracker will eventually support additional media types.

2.8.2 Using a MediaTracker
The init() method improves the AnimateApplet from Example 2-2 to ensure that
images load before the animation sequence starts. Waiting for images to load is
particularly important if there is a slow link between the computer on which the
applet is running and the server for the image files. Note that in a few cases, like
interlaced GIF files, you might be willing to display an image before it has com-
pletely loaded. However, judicious use of MediaTracker will give you much more
control over your program’s behavior.

10 July 2002 22:17

The new init() method creates a MediaTracker, puts all the images in the anima-
tion sequence under the tracker’s control, and then calls waitForAll() to wait
until the images are loaded. Once the images are loaded, it calls isErrorsAny() to
make sure that the images loaded successfully.

public void init () {
MediaTracker mt = new MediaTracker (this);
im = new Image[numImages];
for (int i=0;i<numImages;i++) {

im[i] = getImage (getDocumentBase(), "clock"+i+".jpg");
mt.addImage (im[i], i);

}
try {

mt.waitForAll();
if (mt.isErrorAny())

System.out.println ("Error loading images");
} catch (Exception e) {

e.printStackTrace ();
}

}

2.8 MEDIATRACKER 65

10 July 2002 22:17

3

Fonts and Colors

In this chapter:
• Fonts
• FontMetrics
• Color
• SystemColor
• Displaying Colors
• Using Desktop Colors

This chapter introduces the java.awt classes that are used to work with different
fonts and colors. First, we discuss the Font class, which determines the font used to
display text strings, whether they are drawn directly on the screen (with draw-

String()) or displayed within a component like a text field. The FontMetrics class
gives you detailed information about a font, which you can use to position text
strings intelligently. Next, the Color class is used to represent colors and can be
used to specify the background color of any object, as well as the foreground color
used to display a text string or a shape. Finally, the SystemColor class (which is new
to Java 1.1) provides access to the desktop color scheme.

3.1 Fonts
An instance of the Font class represents a specific font to the system. Within AWT,
a font is specified by its name, style, and point size. Each platform that supports
Java provides a basic set of fonts; to find the fonts supported on any platform, call
Toolkit.getDefaultToolkit().getFontList(). This method returns a String

array of the fonts available. Under Java 1.0, on any platform, the available fonts
were: TimesRoman, Helvetica, Courier, Dialog, DialogInput, and ZapfDingbats.
For copyright reasons, the list is substantially different in Java 1.1: the available
font names are TimesRoman ✩, Serif, Helvetica ✩, SansSerif, Courier ✩,
Monospaced, Dialog, and DialogInput. The actual fonts available aren’t changing;
the deprecated font names are being replaced by non-copyrighted equivalents.
Thus, TimesRoman is now Serif, Helvetica is now SansSerif, and Courier is
Monospaced. The ZapfDingbats font name has been dropped completely because
the characters in this font have official Unicode mappings in the range \u2700 to
\u27ff.

66

10 July 2002 22:17

NOTE If you desire non-Latin font support with Java 1.1, use the Unicode
mappings for the characters. The actual font used is specified in a set
of font.properties files in the lib subdirector y under java.home. These
localized font files allow you to remap the “Serif”, “SansSerif”, and
“Monospaced” names to different fonts.

The font’s style is passed with the help of the class variables Font.PLAIN,
Font.BOLD, and Font.ITALIC. The combination Font.BOLD | Font.ITALIC specifies
bold italics.

A font’s size is represented as an integer. This integer is commonly thought of as a
point size; although that’s not strictly correct, this book follows common usage and
talks about font sizes in points.

It is possible to add additional font names to the system by setting properties. For
example, putting the line below in the properties file or a resource file (resource
files are new to Java 1.1) defines the name “AvantGarde” as an alias for the font
SansSerif:

awt.font.avantgarde=SansSerif

With this line in the properties file, a Java program can use “AvantGarde” as a font
name; when this font is selected, AWT uses the font SansSerif for display. The
property name must be all lowercase. Note that we haven’t actually added a new
font to the system; we’ve only created a new name for an old font. See the discus-
sion of getFont() and decode() for more on font properties.

3.1.1 The Font Class
Constants

There are four styles for displaying fonts in Java: plain, bold, italic, and bold italic.
Three class constants are used to represent font styles:

public static final int BOLD
The BOLD constant represents a boldface font.

public static final int ITALIC
The ITALIC constant represents an italic font.

public static final int PLAIN
The PLAIN constant represents a plain or normal font.

The combination BOLD | ITALIC represents a bold italic font. PLAIN combined with
either BOLD or ITALIC represents bold or italic, respectively.

3.1 FONTS 67

10 July 2002 22:17

68 CHAPTER 3: FONTS AND COLORS

There is no style for underlined text. If you want underlining, you have to do it
manually, with the help of FontMetrics.

NOTE If you are using Microsoft’s SDK, the com.ms.awt.FontX class
includes direct support for underlined, strike through (line through
middle), and outline fonts.

Variables

Three protected variables access the font setting. They are initially set through the
Font constructor. To read these variables, use the Font class’s “get” methods.

protected String name
The name of the font.

protected int size
The size of the font.

protected int style
The style of the font. The style is some logical combination of the constants
listed previously.

Constructors

public Font (String name, int style, int size)
There is a single constructor for Font. It requires a name, style, and size.
name represents the name of the font to create, case insensitive.

setFont (new Font ("TimesRoman", Font.BOLD | Font.ITALIC, 20));

Characteristics

public String getName ()
The getName() method returns the font’s logical name. This is the name
passed to the constructor for the specific instance of the Font. Remember that
system properties can be used to alias font names, so the name used in the
constructor isn’t necessarily the actual name of a font on the system.

public String getFamily ()
The getFamily() method returns the actual name of the font that is being
used to display characters. If the font has been aliased to another font, the
getFamily() method returns the name of the platform-specific font, not the
alias. For example, if the constructor was new Font ("AvantGarde",
Font.PLAIN, 10) and the awt.font.avantgarde=Helvetica property is set,

10 July 2002 22:17

then getName() returns AvantGarde, and getFamily() returns Helvetica. If
nobody set the property, both methods return AvantGarde, and the system
uses the default font (since AvantGarde is a nonstandard font).

public int getStyle ()
The getStyle() method returns the current style of the font as an integer.
Compare this value with the constants Font.BOLD, Font.PLAIN, and
Font.ITALIC to see which style is meant. It is easier to use the isPlain(),
isBold(), and isItalic() methods to find out the current style. getStyle() is
more useful if you want to copy the style of some font when creating another.

public int getSize ()
The getSize() method retrieves the point size of the font, as set by the size
parameter in the constructor. The actual displayed size may be different.

public FontPeer getPeer () �

The getPeer() method retrieves the platform-specific peer object. The object
FontPeer is a platform-specific subclass of sun.awt.PlatformFont. For ex-
ample, on a Windows 95 platform, this would be an instance of sun.awt.win-
dows.WFontPeer.

Styles

public boolean isPlain ()
The isPlain() method returns true if the current font is neither bold nor
italic. Otherwise, it returns false.

public boolean isBold ()
The isBold() method returns true if the current font is either bold or bold
and italic. Otherwise, it returns false.

public boolean isItalic ()
The isItalic() method returns true if the current font is either italic or bold
and italic. Otherwise, it returns false.

Font properties

Earlier, you saw how to use system properties to add aliases for fonts. In addition to
adding aliases, you can use system properties to specify which fonts your program
will use when it runs. This allows your users to customize their environments to
their liking; your program reads the font settings at run-time, rather than using
hard-coded settings. The format of the settings in a properties file is:

propname=fontname-style-size

where propname is the name of the property being set, fontname is any valid font

3.1 FONTS 69

10 July 2002 22:17

70 CHAPTER 3: FONTS AND COLORS

name (including aliases), style is plain, bold, italic, or bolditalic, and size

represents the desired size for the font. style and size default to plain and 12
points. Order is important; the font’s style must always precede its size.

For example, let’s say you have three areas on your screen: one for menus, one for
labels, and one for input. In the system properties, you allow users to set three
properties: myPackage.myClass.menuFont, myPackage.myClass.labelFont, and
myPackage.myClass.inputFont. One user sets two:

myPackage.myClass.menuFont=TimesRoman-italic-24
myPackage.myClass.inputFont=Helvetica

The user has specified a Times font for menus and Helvetica for other input. The
property names are up to the developer. The program uses getFont() to read the
properties and set the fonts accordingly.

NOTE The location of the system properties file depends on the run-time
environment and version you are using. Normally, the file goes into a
subdirector y of the installation directory, or for environments where
users have home directories, in a subdirectory for the user. Sun’s
HotJava, JDK, and appletviewer tools use the properties file in the
.hotjava director y.

Most browsers do not permit modifying properties, so there is no
file.

Java 1.1 adds the idea of “resource files,” which are syntactically simi-
lar to properties files. Resource files are then placed on the server or
within a directory found in the CLASSPATH. Updating the properties
file is no longer recommended.

public static Font getFont (String name)
The getFont() method gets the font specified by the system property name. If
name is not a valid system property, null is returned. This method is imple-
mented by a call to the next version of getFont(), with the defaultFont

parameter set to null.

Assuming the properties defined in the previous example, if you call the
getFont() method with name set to myPackage.myClass.menuFont, the return
value is a 24-point, italic, TimesRoman Font object. If called with name set to
myPackage.myClass.inputFont, getFont() returns a 12-point, plain Helvetica
Font object. If called with myPackage.myClass.labelFont as name, getFont()
returns null because this user did not set the property myPack-

age.myClass.labelFont.

10 July 2002 22:17

public static Font getFont (String name, Font defaultFont)
The getFont() method gets the font specified by the system property name. If
name is not a valid system property, this version of getFont() returns the Font

specified by defaultFont. This version allows you to provide defaults in the
event the user does not wish to provide his own font settings.

public static Font decode (String name) �

The decode() method provides an explicit means to decipher font property
settings, regardless of where the setting comes from. (The getFont() method
can decipher settings, but only if they’re in the system properties file.) In par-
ticular, you can use decode() to look up font settings in a resource file. The
format of name is the same as that used by getFont(). If the contents of name
are invalid, a 12-point plain font is returned. To per form the equivalent of
getFont("myPackage.myClass.menuFont") without using system properties,
see the following example. For a more extensive example using resource files,
see Appendix A.

// Java 1.1 only
InputStream is = instance.getClass().getResourceAsStream("propfile");
Properties p = new Properties();
try {

p.load (is);
Font f = Font.decode(p.getProperty("myPackage.myClass.menuFont"));

} catch (IOException e) {
System.out.println ("error loading props...");

}

Miscellaneous methods

public int hashCode ()
The hashCode() method returns a hash code for the font. This hash code is
used whenever a Font object is used as the key in a Hashtable.

public boolean equals (Object o)
The equals() method overrides the equals() method of Object to define
equality for Font objects. Two Font objects are equal if their size, style, and
name are equal. The following example demonstrates why this is necessary.

Font a = new Font ("TimesRoman", Font.PLAIN, 10);
Font b = new Font ("TimesRoman", Font.PLAIN, 10);
// displays false since the objects are different objects
System.out.println (a == b);
// displays true since the objects have equivalent settings
System.out.println (a.equals (b));

3.1 FONTS 71

10 July 2002 22:17

72 CHAPTER 3: FONTS AND COLORS

public String toString ()
The toString() method of Font returns a string showing the current family,
name, style, and size settings. For example:

java.awt.Font[family=TimesRoman,name=TimesRoman,style=bolditalic,size=20]

3.2 FontMetrics
The abstract FontMetrics class provides the tools for calculating the actual width
and height of text when displayed on the screen. You can use the results to posi-
tion objects around text or to provide special effects like shadows and underlining.

Like the Graphics class, FontMetrics is abstract. The run-time Java platform pro-
vides a concrete implementation of FontMetrics. You don’t have to worry about
the actual class; it is guaranteed to implement all the methods of FontMetrics.
In case you’re curious, on a Windows 95 platform, either the class
sun.awt.win32.Win32FontMetrics (JDK1.0) or the class sun.awt.windows.WFont-
Metrics (JDK1.1) extends FontMetrics. On a UNIX/Motif platform, the class is
sun.awt.motif.X11FontMetrics. With the Macintosh, the class is
sun.awt.macos.MacFontMetrics. If you’re not using the JDK, the class names may
be different, but the principle still applies: you don’t have to worry about the con-
crete class.

3.2.1 The FontMetrics Class
Variables

protected Font font
The font whose metrics are contained in this FontMetrics object; use the
getFont() method to get the value.

Constructors

protected FontMetrics (Font font)
There is no visible constructor for FontMetrics. Since the class is abstract, you
cannot create a FontMetrics object. The way to get the FontMetrics for a font
is to ask for it. Through the current graphics context, call the method
getGraphics().getFontMetrics() to retrieve the FontMetrics for the current
font. If a graphics context isn’t available, you can get a FontMetrics object
from the default Toolkit by calling the method Toolkit.getDefault-

Toolkit().getFontMetrics (aFontObject).

10 July 2002 22:17

Font height

Four variables describe the height of a font: leading (pronounced like the metal),
ascent, descent, and height. Leading is the amount of space required between
lines of the same font. Ascent is the space above the baseline required by the tallest
character in the font. Descent is the space required below the baseline by the low-
est descender (the “tail” of a character like “y”). Height is the total of the three:
ascent, baseline, and descent. Figure 3-1 shows these values graphically.

ascent

descent
baseline

height

leading

leading

height

Figure 3–1: Font height metrics

If that were the entire story, it would be simple. Unfortunately, it isn’t. Some spe-
cial characters (for example, capitals with umlauts or accents) are taller than the
“tallest” character in the font; so Java defines a value called maxAscent to account
for these. Similarly, some characters descend below the “greatest” descent, so Java
defines a maxDescent to handle these cases.

NOTE It seems that on Windows and Macintosh platforms there is no differ-
ence between the return values of getMaxAscent() and getAscent(),
or between getMaxDescent() and getDescent(). On UNIX platforms,
they sometimes differ. For developing truly portable applications, the
max methods should be used where necessary.

3.2 FONTMETRICS 73

10 July 2002 22:17

74 CHAPTER 3: FONTS AND COLORS

public int getLeading ()
The getLeading()method retrieves the leading required for the FontMetrics

of the font. The units for this measurement are pixels.

public int getAscent ()
The getAscent()method retrieves the space above the baseline required for
the tallest character in the font. The units for this measurement are pixels. You
cannot get the ascent value for a specific character.

public int getMaxAscent ()
getMaxAscent() retrieves the height above the baseline for the character that’s
really the tallest character in the font, taking into account accents, umlauts,
tildes, and other special marks. The units for this measurement are pixels. If
you are using only ordinary ASCII characters below 128 (i.e., the English lan-
guage character set), getMaxAscent() is not necessary.

If you’re using getMaxAscent(), avoid getHeight(); getHeight() is based on
getAscent() and doesn’t account for extra space.

For some fonts and platforms, getAscent() may include the space for the dia-
critical marks.

public int getDescent ()
The getDescent() method retrieves the space below the baseline required for
the deepest character for the font. The units for this measurement are pixels.
You cannot get the descent value for a specific character.

public int getMaxDescent ()
public int getMaxDecent ()

Some fonts may have special characters that extend farther below the baseline
than the value returned by getDescent(). getMaxDescent() returns the real
maximum descent for the font, in pixels. In most cases, you can still use the
getDescent() method; visually, it is okay for an occasional character to extend
into the space between lines. However, if it is absolutely, positively necessary
that the descent space does not overlap with the next line’s ascent require-
ments, use getMaxDescent() and avoid getDescent() and getHeight().

An early beta release of the AWT API included the method getMaxDecent().
It is left for compatibility with early beta code. Avoid using it; it is identical to
getMaxDescent() in every way except spelling. Unfortunately, it is not flagged
as deprecated.

10 July 2002 22:17

public int getHeight ()
The getHeight() method returns the sum of getDescent(), getAscent(), and
getLeading(). In most cases, this will be the distance between successive base-
lines when you are displaying multiple lines of text. The height of a font in
pixels is not necessarily the size of a font in points.

Don’t use getHeight() if you are displaying characters with accents, umlauts,
and other marks that increase the character’s height. In this case, compute the
height yourself using the getMaxAscent() method. Likewise, you shouldn’t
use the method getHeight() if you are using getMaxDescent() instead of get-
Descent().

Character width

In the horizontal dimension, positioning characters is relatively simple: you don’t
have to worry about ascenders and descenders, you only have to worry about how
far ahead to draw the next character after you have drawn the current one. The
“how far” is called the advance width of a character. For most cases, the advance
width is the actual width plus the intercharacter space. However, it’s not a good
idea to think in these terms; in many cases, the intercharacter space is actually neg-
ative (i.e., the bounding boxes for two adjacent characters overlap). For example,
consider an italic font. The top right corner of one character probably extends
beyond the character’s advance width, overlapping the next character’s bounding
box. (To see this, look back at Figure 3-1; in particular, look at the ll in O’Reilly.) If
you think purely in terms of the advance width (the amount to move horizontally
after drawing a character), you won’t run into trouble. Obviously, the advance
width depends on the character, unless you’re using a fixed width font.

public int charWidth (char character)
This version of the charWidth() method returns the advance width of the
given character in pixels.

public int charWidth (int character)
The charWidth() method returns the advance width of the given character in
pixels. Note that the argument has type int rather than char. This version is
useful when overriding the Component.keyDown() method, which gets the inte-
ger value of the character pressed as a parameter. With the KeyEvent class,
you should use the previous version with its getKeyChar() method.

3.2 FONTMETRICS 75

10 July 2002 22:17

76 CHAPTER 3: FONTS AND COLORS

public int stringWidth (String string)
The stringWidth() method calculates the advance width of the entire string
in pixels. Among other things, you can use the results to underline or center
text within an area of the screen. Example 3-1 and Figure 3-2 show an example
that centers several text strings (taken from the command-line arguments) in
a Frame.

Example 3–1: Centering Text in a Frame

import java.awt.*;
public class Center extends Frame {

static String text[];
private Dimension dim;
static public void main (String args[]) {

if (args.length == 0) {
System.err.println ("Usage: java Center <some text>");
return;

}
text = args;
Center f = new Center();
f.show();

}
public void addNotify() {

super.addNotify();
int maxWidth = 0;
FontMetrics fm = getToolkit().getFontMetrics(getFont());
for (int i=0;i<text.length;i++) {

maxWidth = Math.max (maxWidth, fm.stringWidth(text[i]));
}
Insets inset = insets();
dim = new Dimension (maxWidth + inset.left + inset.right,

text.length*fm.getHeight() + inset.top + inset.bottom);
resize (dim);

}
public void paint (Graphics g) {

g.translate(insets().left, insets().top);
FontMetrics fm = g.getFontMetrics();
for (int i=0;i<text.length;i++) {

int x,y;
x = (size().width - fm.stringWidth(text[i]))/2;
y = (i+1)*fm.getHeight()-1;
g.drawString (text[i], x, y);

}

}
}

This application extends the Frame class. It stores its command-line arguments in
the String array text[]. The addNotify() method sizes the frame appropriately.
It computes the size needed to display the arguments and resizes the Frame accord-
ingly. To compute the width, it takes the longest stringWidth() and adds the left
and right insets. To compute the height, it takes the current font’s height,

10 July 2002 22:17

Figure 3–2: Centering text in a frame

multiplies it by the number of lines to display, and adds insets. Then it is up to the
paint() method to use stringWidth() and getHeight() to figure out where to put
each string.

public int charsWidth (char data[], int offset, int length)
The charsWidth() method allows you to calculate the advance width of the
char array data, without first converting data to a String and calling the
stringWidth() method. The offset specifies the element of data to start
with; length specifies the number of elements to use. The first element of the
array has an offset of zero. If offset or length is invalid, charsWidth()
throws the run-time exception ArrayIndexOutOfBoundsException.

public int bytesWidth (byte data[], int offset, int length)
The bytesWidth() method allows you to calculate the advance width of the
byte array data, without first converting data to a String and calling the
stringWidth()method. The offset specifies the element of data to start with;
length specifies the number of elements to use. The first element of the array
has an offset of zero. If offset or length is invalid, bytesWidth() throws the
run-time exception ArrayIndexOutOfBoundsException.

public int[] getWidths ()
The getWidths() method returns an integer array of the advance widths of the
first 255 characters in the FontMetrics font. getWidths() is very useful if you
are continually looking up the widths of ASCII characters. Obtaining the
widths as an array and looking up individual character widths yourself results
in less method invocation overhead than making many calls to charWidth().

public int getMaxAdvance ()
The getMaxAdvance() method returns the advance pixel width of the widest
character in the font. This allows you to reserve enough space for characters
before you know what they are. If you know you are going to display only
ASCII characters, you are better off calculating the maximum value returned
from getWidths(). When unable to determine the width in advance, the
method getMaxAdvance() returns –1.

3.2 FONTMETRICS 77

10 July 2002 22:17

78 CHAPTER 3: FONTS AND COLORS

Miscellaneous methods

public Font getFont ()
The getFont() method returns the specific font for this FontMetrics instance.

public String toString ()
The toString() method of FontMetrics returns a string displaying the cur-
rent font, ascent, descent, and height. For example:

sun.awt.win32.Win32FontMetrics[font=java.awt.Font[family=TimesRoman,
name=TimesRoman,style=bolditalic,size=20]ascent=17, descent=6, height=24]

Because this is an abstract class, the concrete implementation could return
something different.

3.2.2 Font Display Example
Example 3-2 displays all the available fonts in the different styles at 12 points. The
code uses the FontMetrics methods to ensure that there is enough space for each
line. Figure 3-3 shows the results, using the Java 1.0 font names, on several plat-
forms.

Example 3–2: Font Display

import java.awt.*;
public class Display extends Frame {

static String[] fonts;
private Dimension dim;
Display () {

super ("Font Display");
fonts = Toolkit.getDefaultToolkit().getFontList();

}
public void addNotify() {

Font f;
super.addNotify();
int height = 0;
int maxWidth = 0;
final int vMargin = 5, hMargin = 5;
for (int i=0;i<fonts.length;i++) {

f = new Font (fonts[i], Font.PLAIN, 12);
height += getHeight (f);
f = new Font (fonts[i], Font.BOLD, 12);
height += getHeight (f);
f = new Font (fonts[i], Font.ITALIC, 12);
height += getHeight (f);
f = new Font (fonts[i], Font.BOLD | Font.ITALIC, 12);
height += getHeight (f);
maxWidth = Math.max (maxWidth, getWidth (f, fonts[i] + " BOLDITALIC"));

}
Insets inset = insets();
dim = new Dimension (maxWidth + inset.left + inset.right + hMargin,

height + inset.top + inset.bottom + vMargin);

10 July 2002 22:17

Example 3–2: Font Display (continued)

resize (dim);
}
static public void main (String args[]) {

Display f = new Display();
f.show();

}
private int getHeight (Font f) {

FontMetrics fm = Toolkit.getDefaultToolkit().getFontMetrics(f);
return fm.getHeight();

}
private int getWidth (Font f, String s) {

FontMetrics fm = Toolkit.getDefaultToolkit().getFontMetrics(f);
return fm.stringWidth(s);

}
public void paint (Graphics g) {

int x = 0;
int y = 0;
g.translate(insets().left, insets().top);
for (int i=0;i<fonts.length;i++) {

Font plain = new Font (fonts[i], Font.PLAIN, 12);
Font bold = new Font (fonts[i], Font.BOLD, 12);
Font italic = new Font (fonts[i], Font.ITALIC, 12);
Font bolditalic = new Font (fonts[i], Font.BOLD | Font.ITALIC, 12);
g.setFont (plain);
y += getHeight (plain);
g.drawString (fonts[i] + " PLAIN", x, y);
g.setFont (bold);
y += getHeight (bold);
g.drawString (fonts[i] + " BOLD", x, y);
g.setFont (italic);
y += getHeight (italic);
g.drawString (fonts[i] + " ITALIC", x, y);
g.setFont (bolditalic);
y += getHeight (bolditalic);
g.drawString (fonts[i] + " BOLDITALIC", x, y);

}
resize (dim);

}
}

3.3 Color
Not so long ago, color was a luxury; these days, color is a requirement. A program
that uses only black and white seems hopelessly old fashioned. AWT’s Color class
lets you define and work with Color objects. When we discuss the Component class
(see Chapter 5, Components), you will see how to use these color objects, and our
discussion of the SystemColor subclass (new to Java 1.1; discussed later in this
chapter) shows you how to control the colors that are painted on the screen.

3.3 COLOR 79

10 July 2002 22:17

80 CHAPTER 3: FONTS AND COLORS

Navigator IE

Figure 3–3: Fonts available with the Netscape Navigator 3.0 and Internet Explorer 3.0

A few words of warning: while colors give you the opportunity to make visually
pleasing applications, they also let you do things that are incredibly ugly. Resist the
urge to go overboard with your use of color; it’s easy to make something hideous
when you are trying to use every color in the palette. Also, realize that colors are
fundamentally platform dependent, and in a very messy way. Java lets you use the
same Color objects on any platform, but it can’t guarantee that every display will
treat the color the same way; the result depends on everything from your software
to the age of your monitor. What looks pink on one monitor may be red on
another. Furthermore, when running in an environment with a limited palette,
AWT picks the available color that is closest to what you requested. If you really
care about appearance, there is no substitute for testing.

3.3.1 Color Methods
Constants

The Color class has predefined constants (all of type public static final Color)
for frequently used colors. These constants, their RGB values, and their HSB val-
ues (hue, saturation, brightness) are given in Table 3-1.

10 July 2002 22:17

Table 3–1: Comparison of RGB and HSB Colors

Color Red Green Blue Hue Saturation Brightness

black 0 0 0 0 0 0

blue 0 0 255 .666667 1 1

cyan 0 255 255 .5 1 1

darkGray 64 64 64 0 0 .25098

gray 128 128 128 0 0 .501961

green 0 255 0 .333333 1 1

lightGray 192 192 192 0 0 .752941

magenta 255 0 255 .833333 1 1

orange 255 200 0 .130719 1 1

pink 255 175 175 0 .313726 1

red 255 0 0 0 1 1

white 255 255 255 0 0 1

yellow 255 255 0 .166667 1 1

These constants are used like any other class variable: for example, Color.red is a
constant Color object representing the color red. Many other color constants are
defined in the SystemColor class.

Constructors

When you’re not using a predefined constant, you create Color objects by specify-
ing the color’s red, green, and blue components. Depending on which constructor
you use, you can specify the components as integers between 0 and 255 (most
intense) or as floating point intensities between 0.0 and 1.0 (most intense). The
result is a 24-bit quantity that represents a color. The remaining 8 bits are used to
represent transparency: that is, if the color is painted on top of something, does
whatever was underneath show through? The Color class doesn’t let you work with
the transparency bits; all Color objects are opaque. However, you can use trans-
parency when working with images; this topic is covered in Chapter 12, Image Pro-
cessing.

public Color (int red, int green, int blue)
This constructor is the most commonly used. You provide the specific red,
green, and blue values for the color. Valid values for red, green, and blue are
between 0 and 255. The constructor examines only the low-order byte of the
integer and ignores anything outside the range, including the sign bit.

3.3 COLOR 81

10 July 2002 22:17

82 CHAPTER 3: FONTS AND COLORS

public Color (int rgb)
This constructor allows you to combine all three variables in one parameter,
rgb. Bits 16–23 represent the red component, and bits 8–15 represent the
green component. Bits 0–7 represent the blue component. Bits 24–31 are
ignored. Going from three bytes to one integer is fairly easy:

(((red & 0xFF) << 16) | ((green & 0xFF) << 8) | ((blue & 0xFF) << 0))

public Color (float red, float green, float blue)
This final constructor allows you to provide floating point values between 0.0
and 1.0 for each of red, green, and blue. Values outside of this range yield
unpredictable results.

Settings

public int getRed ()
The getRed() method retrieves the current setting for the red component of
the color.

public int getGreen ()
The getGreen() method retrieves the current setting for the green compo-
nent of the color.

public int getBlue ()
The getBlue() method retrieves the current setting for the blue component
of the color.

public int getRGB ()
The getRGB() method retrieves the current settings for red, green, and blue in
one combined value. Bits 16–23 represent the red component. Bits 8–15 repre-
sent the green component. Bits 0–7 represent the blue component. Bits 24–31
are the transparency bits; they are always 0xff (opaque) when using the
default RGB ColorModel.

public Color brighter ()
The brighter() method creates a new Color that is somewhat brighter than
the current color. This method is useful if you want to highlight something on
the screen.

NOTE Black does not get any brighter.

public Color darker ()
The darker() method returns a new Color that is somewhat darker than the
current color. This method is useful if you are trying to de-emphasize an
object on the screen. If you are creating your own Component, you can use a

10 July 2002 22:17

darker() Color to mark it inactive.

Color properties

Color properties are very similar to Font properties. You can use system properties
(or resource files) to allow users to select colors for your programs. The settings
have the form 0xRRGGBB, where RR is the red component of the color, GG represents
the green component, and BB represents the blue component. 0x indicates that
the number is in hexadecimal. If you (or your user) are comfortable using decimal
values for colors (0x112233 is 1122867 in decimal), you can, but then it is harder
to see the values of the different components.

NOTE The location of the system properties file depends on the run-time
environment and version you are using. Ordinarily, the file will go
into a subdirectory of the installation directory or, for environment’s
where users have home directories, in a subdirectory for the user.
Sun’s HotJava, JDK, and appletviewer tools use the properties file in the
.hotjava director y.

Most browsers do not permit modifying properties, so there is no
file.

Java 1.1 adds the idea of “resource files,” which are syntactically simi-
lar to properties files. Resource files are then placed on the server or
within a directory found in the CLASSPATH. Updating the properties
file is no longer recommended.

For example, consider a screen that uses four colors: one each for the foreground,
the background, inactive components, and highlighted text. In the system proper-
ties file, you allow users to select colors by setting the following properties:

myPackage.myClass.foreground

myPackage.myClass.background

myPackage.myClass.inactive

myPackage.myClass.highlight

One particular user set two:

myPackage.myClass.foreground=0xff00ff #magenta
myPackage.myClass.background=0xe0e0e0 #light gray

These lines tell the program to use magenta as the foreground color and light gray
for the background. The program will use its default colors for inactive compo-
nents and highlighted text.

3.3 COLOR 83

10 July 2002 22:17

84 CHAPTER 3: FONTS AND COLORS

public static Color getColor (String name)
The getColor() method gets the color specified by the system property name.
If name is not a valid system property, getColor() returns null. If the property
value does not convert to an integer, getColor() returns null.

For the properties listed above, if you call getColor() with name set to the
property myPackage.myClass.foreground, it returns a magenta Color object.
If called with name set to myPackage.myClass.inactive, getColor() returns
null.

public static Color getColor (String name, Color defaultColor)
The getColor() method gets the color specified by the system property name.
This version of the getColor() method returns defaultColor if name is not a
valid system property or the property’s value does not convert to an integer.

For the previous example, if getColor() is called with name set to myPack-

age.myClass.inactive, the
getColor() method returns the value of defaultColor. This allows you to pro-
vide defaults for properties the user doesn’t wish to set explicitly.

public static Color getColor (String name, int defaultColor)
This getColor() method gets the color specified by the system property name.
This version of the getColor() method returns defaultColor if name is not a
valid system property or the property’s value does not convert to an integer.
The default color is specified as an integer in which bits 16–23 represent the
red component, 8–15 represent the green component, and 0–7 represent the
blue component. Bits 24–31 are ignored. If the property value does not con-
vert to an integer, defaultColor is returned.

public static Color decode (String name) �

The decode() method provides an explicit means to decipher color property
settings, regardless of where the setting comes from. (The getColor() method
can decipher settings but only if they’re in the system properties file.) In par-
ticular, you can use decode() to look up color settings in a resource file. The
format of name is the same as that used by getColor(). If the contents of name
do not translate to a 24-bit integer, the NumberFormatException run-time
exception is thrown. To per form the equivalent of getColor("myPack-

age.myClass.foreground"), without using system properties, see the following
example. For a more extensive example using resource files, see Appendix A.

// Java 1.1 only
InputStream is = instance.getClass().getResourceAsStream("propfile");
Properties p = new Properties();
try {

p.load (is);
Color c = Color.decode(p.getProperty("myPackage.myClass.foreground"));

} catch (IOException e) {

10 July 2002 22:17

System.out.println ("error loading props...");
}

Hue, saturation, and brightness

So far, the methods we have seen work with a color’s red, green, and blue compo-
nents. There are many other ways to represent colors. This group of methods
allows you to work in terms of the HSB (hue, saturation, brightness) model. Hue
represents the base color to work with: working through the colors of the rainbow,
red is represented by numbers immediately above 0; magenta is represented by
numbers below 1; white is 0; and black is 1. Saturation represents the color’s
purity, ranging from completely unsaturated (either white or black depending
upon brightness) to totally saturated (just the base color present). Brightness is
the desired level of luminance, ranging from black (0) to the maximum amount
determined by the saturation level.

public static float[] RGBtoHSB (int red, int green, int blue, float[] hsbvalues)
The RGBtoHSB() method allows you to convert a specific red, green, blue value
to the hue, saturation, and brightness equivalent. RGBtoHSB() returns the
results in two different ways: the parameter hsbvalues and the method’s
return value. The values of these are the same. If you do not want to pass an
hsbvalues array parameter, pass null. In both the parameter and the return
value, the three components are placed in the array as follows:

hsbvalues[0] contains hue
hsbvalues[1] contains saturation
hsbvalues[2] contains brightness

public static Color getHSBColor (float hue, float saturation, float brightness)
The getHSBColor() method creates a Color object by using hue, saturation,
and brightness instead of red, green, and blue values.

public static int HSBtoRGB (float hue, float saturation, float brightness)
The HSBtoRGB() method converts a specific hue, saturation, and brightness

to a Color and returns the red, green, and blue values as an integer. As with
the constructor, bits 16–23 represent the red component, 8–15 represent the
green component, and 0–7 represent the blue component. Bits 24–31 are
ignored.

3.3 COLOR 85

10 July 2002 22:17

86 CHAPTER 3: FONTS AND COLORS

Miscellaneous methods

public int hashCode ()
The hashCode() method returns a hash code for the color. The hash code is
used whenever a color is used as a key in a Hashtable.

public boolean equals (Object o)
The equals() method overrides the equals() method of the Object to define
equality for Color objects. Two Color objects are equivalent if their red, green,
and blue values are equal.

public String toString ()
The toString() method of Color returns a string showing the color’s red,
green, and blue settings. For example System.out.println (Color.orange)

would result in the following:

java.awt.Color[r=255,g=200,b=0]

3.4 SystemColor
In Java 1.1, AWT provides access to desktop color schemes, or themes. To give you
an idea of how these themes work, with the Windows Standard scheme for the
Windows 95 desktop, buttons have a gray background with black text. If you use
the control panel to change to a High Contrast Black scheme, the button’s back-
ground becomes black and the text white. Prior to 1.1, Java didn’t know anything
about desktop colors: all color values were hard coded. If you asked for a particu-
lar shade of gray, you got that shade, and that was it; applets and applications had
no knowledge of the desktop color scheme in effect, and therefore, wouldn’t
change in response to changes in the color scheme.

Starting with Java 1.1, you can write programs that react to changes in the color
scheme: for example, a button’s color will change automatically when you use the
control panel to change the color scheme. To do so, you use a large number of
constants that are defined in the SystemColor class. Although these constants are
public static final, they actually have a very strange behavior. Your program is
not allowed to modify them (like any other constant). However, their initial values
are loaded at run-time, and their values may change, corresponding to changes in
the color scheme. This has one important consequence for programmers: you
should not use equals()to compare a SystemColor with a “regular” Color; use the
getRGB() methods of the colors you are comparing to ensure that you compare
the current color value.* Section 3.6 contains a usage example.

* The omission of an equals() method that can properly compare a SystemColor with a Color is unfor-
tunate.

10 July 2002 22:17

Because SystemColor is a subclass of Color, you can use a SystemColor anywhere
you can use a Color object. You will never create your own SystemColor objects;
there is no public constructor. The only objects in this class are the twenty or so
SystemColor constants.

3.4.1 SystemColor Methods
Constants

There are two sets of constants within SystemColor. The first set provides names
for indices into the internal system color lookup table; you will probably never
need to use these. All of them have corresponding constants in the second set,
except SystemColor.NUM_COLORS, which tells you how many SystemColor constants
are in the second set.

public final static int ACTIVE_CAPTION �

public final static int ACTIVE_CAPTION_BORDER �

public final static int ACTIVE_CAPTION_TEXT �

public final static int CONTROL �

public final static int CONTROL_DK_SHADOW �

public final static int CONTROL_HIGHLIGHT �

public final static int CONTROL_LT_HIGHLIGHT �

public final static int CONTROL_SHADOW �

public final static int CONTROL_TEXT �

public final static int DESKTOP �

public final static int INACTIVE_CAPTION �

public final static int INACTIVE_CAPTION_BORDER �

public final static int INACTIVE_CAPTION_TEXT �

public final static int INFO �

public final static int INFO_TEXT �

public final static int MENU �

public final static int MENU_TEXT �

public final static int NUM_COLORS �

public final static int SCROLLBAR �

public final static int TEXT �

public final static int TEXT_HIGHLIGHT �

public final static int TEXT_HIGHLIGHT_TEXT �

public final static int TEXT_INACTIVE_TEXT �

public final static int TEXT_TEXT �

public final static int WINDOW �

3.4 SYSTEMCOLOR 87

10 July 2002 22:17

88 CHAPTER 3: FONTS AND COLORS

public final static int WINDOW_BORDER �

public final static int WINDOW_TEXT �

The second set of constants is the set of SystemColors you use when creating Com-

ponent objects, to ensure they appear similar to other objects in the user’s desktop
environment. By using these symbolic constants, you can create new objects that
are well integrated into the user’s desktop environment, making it easier for the
user to work with your program.

public final static SystemColor activeCaption �

The activeCaption color represents the background color for the active win-
dow’s title area. This is automatically set for you when you use Frame.

public final static SystemColor activeCaptionBorder �

The activeCaptionBorder color represents the border color for the active
window.

public final static SystemColor activeCaptionText �

The activeCaptionText color represents the text color to use for the active
window’s title.

public final static SystemColor control �

The control color represents the background color for the different compo-
nents. If you are creating your own Component by subclassing Canvas, this
should be the background color of the new object.

public final static SystemColor controlDkShadow �

The controlDkShadow color represents a dark shadow color to be used with
control and controlShadow to simulate a three-dimensional appearance.
Ordinarily, when not depressed, the controlDkShadow should be used for the
object’s bottom and right edges. When depressed, controlDkShadow should be
used for the top and left edges.

public final static SystemColor controlHighlight �

The controlHighlight color represents an emphasis color for use in an area
or an item of a custom component.

public final static SystemColor controlLtHighlight �

The controlLtHighlight color represents a lighter emphasis color for use in
an area or an item of a custom component.

public final static SystemColor controlShadow �

The controlShadow color represents a light shadow color to be used with con-

trol and controlDkShadow to simulate a three-dimensional appearance. Ordi-
narily, when not depressed, the controlShadow should be used for the top and
left edges. When depressed, controlShadow should be used for the bottom
and right edges.

10 July 2002 22:17

public final static SystemColor controlText �

The controlText color represents the text color of a component. Before draw-
ing any text in your own components, you should change the color to con-

trolText with a statement like this:

g.setColor(SystemColor.controlText);

public final static SystemColor desktop �

The desktop color represents the background color of the desktop workspace.

public final static SystemColor inactiveCaption �

The inactiveCaption color represents the background color for an inactive
window’s title area.

public final static SystemColor inactiveCaptionBorder �

The inactiveCaptionBorder color represents the border color for an inactive
window.

public final static SystemColor inactiveCaptionText �

The inactiveCaptionText color represents the text color to use for each inac-
tive window’s title.

public final static SystemColor info �

The info color represents the background color for mouse-over help text.
When a mouse dwells over an object, any pop-up help text should be displayed
in an area of this color. In the Microsoft Windows world, these are also called
“tool tips.”

public final static SystemColor infoText �

The infoText color represents the text color for mouse-over help text.

public final static SystemColor menu �

The menu color represents the background color of deselected MenuItem-like
objects. When the menu is selected, the textHighlight color is normally the
background color.

public final static SystemColor menuText �

The menuText color represents the color of the text on deselected MenuItem-
like objects. When a menu is selected, the textHighlightText color is nor-
mally the text color. If the menu happens to be inactive, textInactiveText
would be used.

public final static SystemColor scrollbar �

The scrollbar color represents the background color for scrollbars. This
color is used by default with Scrollbar, ScrollPane, TextArea, and List

objects.

3.4 SYSTEMCOLOR 89

10 July 2002 22:17

90 CHAPTER 3: FONTS AND COLORS

public final static SystemColor textHighlight �

The textHighlight color represents the background color of highlighted text;
for example, it is used for the selected area of a TextField or a selected Menu-

Item.

public final static SystemColor textHighlightText �

The textHighlightText color represents the text color of highlighted text.

public final static SystemColor textInactiveText �

The textInactiveText color represents the text color of an inactive com-
ponent.

public final static SystemColor textText �

The textText color represents the color of text in TextComponent objects.

public final static SystemColor window �

The window color represents the background color of the window’s display
area. For an applet, this would be the display area specified by the WIDTH and
HEIGHT values of the <APPLET> tag (setBackground(SystemColor.window)),
although you would probably use it more for the background of a Frame.

public final static SystemColor windowBorder �

The windowBorder color represents the color of the borders around a window.
With AWT, instances of Window do not have borders, but instances of Frame
and Dialog do.

public final static SystemColor windowText �

The windowText color represents the color of the text drawn within the
window.

NOTE Ever y platform does not fully support every system color. However,
on platforms that do not provide natural values for some constants,
Java selects reasonable alternate colors.

If you are going to be working only with Java’s prefabricated components (Button,
List, etc.), you don’t have to worry about system colors; the component’s default
colors will be set appropriately. You are most likely to use system colors if you are
creating your own components. In this case, you will use system colors to make
your component emulate the behavior of other components; for example, you will
use controlText as the color for drawing text, activeCaption as the background
for the caption of an active window, and so on.

10 July 2002 22:17

Constructors

There are no public constructors for SystemColor. If you need to create a new
color, use the Color class described previously.

Miscellaneous methods

public int getRGB ()
The getRGB() method retrieves the current settings for red, green, and blue in
one combined value, like Color. However, since the color value is dynamic,
getRGB() needs to look up the value in an internal table. Therefore, System-
Color overrides Color.getRGB().

public String toString ()
The toString() method of SystemColor returns a string showing the system
color’s index into its internal table. For example, the following string is
returned by SystemColor.text.toString():

java.awt.SystemColor[i=12]

3.5 Displaying Colors
Example 3-3 displays the predefined colors on the screen in a series of filled rect-
angles. When you press a mouse button, they appear brighter. When you press a
key, they appear darker. (Event handling is fully explained in Chapter 4, Events.)
Figure 3-4 shows the results, although it doesn’t look very impressive in black and
white.

Example 3–3: Color Display

import java.awt.*;
public class ColorDisplay extends Frame {

int width, height;
static Color colors[] =

{Color.black, Color.blue, Color.cyan, Color.darkGray,
Color.gray, Color.green, Color.lightGray, Color.magenta,
Color.orange, Color.pink, Color.red, Color.white,
Color.yellow};

ColorDisplay () {
super ("ColorDisplay");
setBackground (Color.white);

}
static public void main (String args[]) {

ColorDisplay f = new ColorDisplay();
f.resize (300,300);
f.show();

}
public void paint (Graphics g) {

g.translate (insets().left, insets().top);
if (width == 0) {

3.5 DISPLAYING COLORS 91

10 July 2002 22:17

92 CHAPTER 3: FONTS AND COLORS

Example 3–3: Color Display (continued)

Insets inset = insets();
width = (size().width - inset.right - inset.left) / 3;
height = (size().height - inset.top - inset.bottom) / 5;

}
for (int i = 0; i < 3; i++) {

for (int j = 0; j < 5; j++) {
if ((i == 2) && (j >= 3)) break;
g.setColor (colors[i*5+j]);
g.fillRect (i*width, j*height, width, height);

}
}

}
public boolean keyDown (Event e, int c) {

for (int i=0;i<colors.length;i++)
colors[i] = colors[i].darker();

repaint();
return true;

}
public boolean mouseDown (Event e, int x, int y) {

for (int i=0;i<colors.length;i++)
colors[i] = colors[i].brighter();

repaint();
return true;

}
}

Figure 3–4: A color display

10 July 2002 22:17

3.6 Using Desktop Colors
Example 3-4 demonstrates how to use the desktop color constants introduced in
Java 1.1. If you run this example under an earlier release, an uncatchable class veri-
fier error will occur.

NOTE Notice that the border lines are drawn from 0 to width-1 or
height-1. This is to draw lines of length width and height, respec-
tively.

Example 3–4: Desktop Color Usage

// Java 1.1 only
import java.awt.*;
public class TextBox3D extends Canvas {

String text;
public TextBox3D (String s, int width, int height) {

super();
text=s;
setSize(width, height);

}
public synchronized void paint (Graphics g) {

FontMetrics fm = g.getFontMetrics();
Dimension size=getSize();
int x = (size.width - fm.stringWidth(text))/2;
int y = (size.height - fm.getHeight())/2;
g.setColor (SystemColor.control);
g.fillRect (0, 0, size.width, size.height);
g.setColor (SystemColor.controlShadow);
g.drawLine (0, 0, 0, size.height-1);
g.drawLine (0, 0, size.width-1, 0);
g.setColor (SystemColor.controlDkShadow);
g.drawLine (0, size.height-1, size.width-1, size.height-1);
g.drawLine (size.width-1, 0, size.width-1, size.height-1);
g.setColor (SystemColor.controlText);
g.drawString (text, x, y);

}
}

3.6 USING DESKTOP COLORS 93

10 July 2002 22:17

4

Events

In this chapter:
• Java 1.0 Event Model
• The Event Class
• The Java 1.1 Event

Model

This chapter covers Java’s event-driven programming model. Unlike procedural
programs, windows-based programs require an event-driven model in which the
underlying environment tells your program when something happens. For exam-
ple, when the user clicks on the mouse, the environment generates an event that it
sends to the program. The program must then figure out what the mouse click
means and act accordingly.

This chapter covers two different event models, or ways of handling events. In Java
1.0.2 and earlier, events were passed to all components that could possibly have an
interest in them. Events themselves were encapsulated in a single Event class. Java
1.1 implements a “delegation” model, in which events are distributed only to
objects that have been registered to receive the event. While this is somewhat more
complex, it is much more efficient and also more flexible, because it allows any
object to receive the events generated by a component. In turn, this means that
you can separate the user interface itself from the event-handling code.

In the Java 1.1 event model, all event functionality is contained in a new package,
java.awt.event. Within this package, subclasses of the abstract class AWTEvent rep-
resent different kinds of events. The package also includes a number of Event-
Listener inter faces that are implemented by classes that want to receive different
kinds of events; they define the methods that are called when events of the appro-
priate type occur. A number of adapter classes are also included; they correspond
to the EventListener inter faces and provide null implementations of the methods
in the corresponding listener. The adapter classes aren’t essential but provide a
convenient shortcut for developers; rather than declaring that your class imple-
ments a particular EventListener inter face, you can declare that your class
extends the appropriate adapter.

94

10 July 2002 22:18

The old and new event models are incompatible. Although Java 1.1 supports both,
you should not use both models in the same program.

4.1 Java 1.0 Event Model
The event model used in versions 1.0 through 1.0.2 of Java is fairly simple. Upon
receiving a user-initiated event, like a mouse click, the system generates an
instance of the Event class and passes it along to the program. The program identi-
fies the event’s target (i.e., the component in which the event occurred) and asks
that component to handle the event. If the target can’t handle this event, an
attempt is made to find a component that can, and the process repeats. That is all
there is to it. Most of the work takes place behind the scenes; you don’t have to
worr y about identifying potential targets or delivering events, except in a few spe-
cial circumstances. Most Java programs only need to provide methods that deal
with the specific events they care about.

4.1.1 Identifying the Target
All events occur within a Java Component. The program decides which component
gets the event by starting at the outermost level and working in. In Figure 4-1,
assume that the user clicks at the location (156, 70) within the enclosing Frame’s
coordinate space. This action results in a call to the Frame’s deliverEvent()

method, which determines which component within the frame should receive the
event and calls that component’s deliverEvent() method. In this case, the process
continues until it reaches the Button labeled Blood, which occupies the rectangu-
lar space from (135, 60) to (181, 80). Blood doesn’t contain any internal compo-
nents, so it must be the component for which the event is intended. Therefore, an
action event is delivered to Blood, with its coordinates translated to fit within the
button’s coordinate space—that is, the button receives an action event with the
coordinates (21, 10). If the user clicked at the location (47, 96) within the Frame’s
coordinate space, the Frame itself would be the target of the event because there is
no other component at this location.

To reach Blood, the event follows the component/container hierarchy shown in
Figure 4-2.

4.1.2 Dealing With Events
Once deliverEvent() identifies a target, it calls that target’s handleEvent()

method (in this case, the handleEvent() method of Blood) to deliver the event for
processing. If Blood has not overridden handleEvent(), its default implementa-
tion would call Blood’s action() method. If Blood has not overridden action(),
its default implementation (which is inherited from Component) is executed and

4.1 JAV A 1.0 EVENT MODEL 95

10 July 2002 22:18

96 CHAPTER 4: EVENTS

Figure 4–1: deliverEvent

DeliverEvent

Panel 1

Panel 2

Fe

of an

Panel 3

Fi Fo Fum I Smell The Blood

Level 3

Level 1

Level 2

Englishman

deliverEvent

deliverEvent

deliverEvent

Figure 4–2: deliverEvent screen model

does nothing. For your program to respond to the event, you would have to pro-
vide your own implementation of action() or handleEvent().

handleEvent() plays a particularly important role in the overall scheme. It is really
a dispatcher, which looks at the type of event and calls an appropriate method to
do the actual work: action() for action events, mouseUp() for mouse up events,
and so on. Table 4-1 shows the event-handler methods you would have to override
when using the default handleEvent() implementation. If you create your own
handleEvent(), either to handle an event without a default handler or to process
events differently, it is best to leave these naming conventions in place. Whenever

10 July 2002 22:18

you override an event-handler method, it is a good idea to call the overridden
method to ensure that you don’t lose any functionality. All of the event handler
methods return a boolean, which determines whether there is any further event
processing; this is described in the next section, “Passing the Buck.”

Table 4–1: Event Types and Event Handlers

Event Type Event Handler

MOUSE_ENTER mouseEnter()

MOUSE_EXIT mouseExit()

MOUSE_MOVE mouseMove()

MOUSE_DRAG mouseDrag()

MOUSE_DOWN mouseDown()

MOUSE_UP mouseUp()

KEY_PRESS keyDown()

KEY_ACTION keyDown()

KEY_RELEASE keyUp()

KEY_ACTION_RELEASE keyUp()

GOT_FOCUS gotFocus()

LOST_FOCUS lostFocus()

ACTION_EVENT action()

4.1.3 Passing the Buck
In actuality, deliverEvent() does not call handleEvent() directly. It calls the
postEvent() method of the target component. In turn, postEvent() manages the
calls to handleEvent(). postEvent() provides this additional level of indirection to
monitor the return value of handleEvent(). If the event handler returns true, the
handler has dealt with the event completely. All processing has been completed,
and the system can move on to the next event. If the event handler returns false,
the handler has not completely processed the event, and postEvent() will contact
the component’s Container to finish processing the event. Using the screen in Fig-
ure 4-1 as the basis, Example 4-1 traces the calls through deliverEvent(),
postEvent(), and handleEvent(). The action starts when the user clicks on the
Blood button at coordinates (156, 70). In short, Java dives into the depths of the
screen’s component hierarchy to find the target of the event (by way of the
method deliverEvent()). Once it locates the target, it tries to find something to
deal with the event by working its way back out (by way of postEvent(), han-
dleEvent(), and the convenience methods). As you can see, there’s a lot of

4.1 JAV A 1.0 EVENT MODEL 97

10 July 2002 22:18

98 CHAPTER 4: EVENTS

overhead, even in this relatively simple example. When we discuss the Java 1.1
event model, you will see that it has much less overhead, primarily because it
doesn’t need to go looking for a component to process each event.

Example 4–1: The deliverEvent, postEvent, and handleEvent Methods

DeliverEvent.deliverEvent (Event e) called
DeliverEvent.locate (e.x, e.y)
Finds Panel1
Translate Event Coordinates for Panel1
Panel1.deliverEvent (Event e)

Panel1.locate (e.x, e.y)
Finds Panel3
Translate Event Coordinates for Panel3
Panel3.deliverEvent (Event e)

Panel3.locate (e.x, e.y)
Finds Blood
Translate Event Coordinates for Blood
Blood.deliverEvent (Event e)

Blood.postEvent (Event e)
Blood.handleEvent (Event e)

Blood.mouseDown (Event e, e.x, e.y)
returns false

return false
Get parent Container Panel3
Translate Event Coordinates for Panel3
Panel3.postEvent (Event e)

Panel3.handleEvent (Event e)
Component.mouseDown (Event e, e.x, e.y)

returns false
return false

Get parent Container Panel1
Translate Event Coordinates for Panel1
Panel1.postEvent (Event e)

Panel1.handleEvent (Event e)
Component.action (Event e, e.x, e.y)

return false
return false

Get parent Container DeliverEvent
Translate Event Coordinates for DeliverEvent
DeliverEvent.postEvent (Event e)

DeliverEvent.handleEvent
DeliverEvent.action (Event e, e.x, e.y)

return true
return true

return true
return true

return true
return true

return true
return true

return true
return true

10 July 2002 22:18

4.1.4 Overriding handleEvent()
In many programs, you only need to override convenience methods like action()
and mouseUp(); you usually don’t need to override handleEvent(), which is the
high level event handler that calls the convenience methods. However, conve-
nience methods don’t exist for all event types. To act upon an event that doesn’t
have a convenience method (for example, LIST_SELECT), you need to override
handleEvent() itself. Unfortunately, this presents a problem. Unlike the conve-
nience methods, for which the default versions don’t take any action, han-

dleEvent() does quite a lot: as we’ve seen, it’s the dispatcher that calls the
convenience methods. Therefore, when you override handleEvent(), either you
should reimplement all the features of the method you are overriding (a very bad
idea), or you must make sure that the original handleEvent()is still executed to
ensure that the remaining events get handled properly. The simplest way for you
to do this is for your new handleEvent() method to act on any events that it is
interested in and return true if it has handled those events completely. If the
incoming event is not an event that your handleEvent() is interested in, you
should call super.handleEvent() and return its return value. The following code
shows how you might override handleEvent() to deal with a LIST_SELECT event:

public boolean handleEvent (Event e) {
if (e.id == Event.LIST_SELECT) { // take care of LIST_SELECT

System.out.println ("Selected item: " + e.arg);
return true; // LIST_SELECT handled completely; no further action

} else { // make sure we call the overridden method to ensure
// that other events are handled correctly

return super.handleEvent (e);
}

}

4.1.5 Basic Event Handlers
The convenience event handlers like mouseDown(), keyUp(), and lostFocus() are
all implemented by the Component class. The default versions of these methods do
nothing and return false. Because these methods do nothing by default, when
overriding them you do not have to ensure that the overridden method gets
called. This simplifies the programming task, since your method only needs to
return false if it has not completely processed the event. However, if you start to
subclass nonstandard components (for example, if someone has created a fancy
AudioButton, and you’re subclassing that, rather than the standard Button), you
probably should explicitly call the overridden method. For example, if you are
overriding mouseDown(), you should include a call to super.mouseDown(), just as
we called super.handleEvent() in the previous example. This call is “good

4.1 JAV A 1.0 EVENT MODEL 99

10 July 2002 22:18

100 CHAPTER 4: EVENTS

housekeeping”; most of the time, your program will work without it. However, your
program will break as soon as someone changes the behavior of the AudioButton

and adds some feature to its mouseDown() method. Calling the super class’s event
handler helps you write “bulletproof” code.

The code below overrides the mouseDown() method. I’m assuming that we’re
extending a standard component, rather than extending some custom compo-
nent, and can therefore dispense with the call to super.mouseDown().

public boolean mouseDown (Event e, int x, int y) {
System.out.println (“Coordinates: “ + x + “-“ + y);
if ((x > 100) || (y < 100))

return false; // we’re not interested in this event; pass it on
else // we’re interested;

... // this is where event-specific processing goes
return true; // no further event processing

}

Here’s a debugging hint: when overriding an event handler, make sure that the
parameter types are correct—remember that each convenience method has differ-
ent parameters. If your overriding method has parameters that don’t match the
original method, the program will still compile correctly. However, it won’t work.
Because the parameters don’t match, your new method simply overloads the origi-
nal, rather than overriding it. As a result, your method will never be called.

4.2 The Event Class
An instance of the Event class is a platform-independent representation that
encapsulates the specifics of an event that happens within the Java 1.0 model. It
contains everything you need to know about an event: who, what, when, where,
and why the event happened. Note that the Event class is not used in the Java 1.1
event model; instead, Java 1.1 has an AWTEvent class, with subclasses for different
event types.

When an event occurs, you decide whether or not to process the event. If you
decide against reacting, the event passes through your program quickly without
anything happening. If you decide to handle the event, you must deal with it
quickly so the system can process the next event. If handling the event requires a
lot of work, you should move the event-handling code into its own thread. That
way, the system can process the next event while you go off and process the first. If
you do not multithread your event processing, the system becomes slow and unre-
sponsive and could lose events. A slow and unresponsive program frustrates users
and may convince them to find another solution for their problems.

10 July 2002 22:18

4.2.1 Variables
Event contains ten instance variables that offer all the specific information for a
particular event.

Instance variables

public Object arg
The arg field contains some data regarding the event, to be interpreted by the
recipient. For example, if the user presses Return within a TextField, an
Event with an id of ACTION_EVENT is generated with the TextField as the
target and the string within it as the arg. See a description of each specific
event to find out what its arg means.

public int clickCount
The clickCount field allows you to check for double clicking of the mouse.
This field is relevant only for MOUSE_DOWN events. There is no way to specify the
time delta used to determine how quick a double-click needs to be, nor is
there a maximum value for clickCount. If a user quickly clicks the mouse
four times, clickCount is four. Only the passage of a system-specific time delta
will reset the value so that the next MOUSE_DOWN is the first click. The incre-
menting of clickCount does not care which mouse button is pressed.

public Event evt
The evt field does not appear to be used anywhere but is available if you wish
to pass around a linked list of events. Then your program can handle this
event and tell the system to deal with the next one (as demonstrated in the fol-
lowing code), or you can process the entire chain yourself.

public boolean mouseDown (Event e, int x, int y) {
System.out.println ("Coordinates: " + x + "-" + y);
if (e.evt != null)

postEvent (e.evt);
return true;

}

public int id
The id field of Event contains the identifier of the event. The system-gener-
ated events are the following Event constants:

WINDOW_DESTROY MOUSE_ENTER

WINDOW_EXPOSE MOUSE_EXIT

WINDOW_ICONIFY MOUSE_DRAG

WINDOW_DEICONIFY SCROLL_LINE_UP

4.2 THE EVENT CLASS 101

10 July 2002 22:18

102 CHAPTER 4: EVENTS

KEY_PRESS SCROLL_LINE_DOWN

KEY_RELEASE SCROLL_PAGE_UP

KEY_ACTION SCROLL_PAGE_DOWN

KEY_ACTION_RELEASE SCROLL_ABSOLUTE

MOUSE_DOWN LIST_SELECT

MOUSE_UP LIST_DESELECT

MOUSE_MOVE ACTION_EVENT

As a user, you can create your own event types and store your own unique
event ID here. In Java 1.0, there is no formal way to prevent conflicts between
your events and system events, but using a negative IO is a good ad-hoc
method. It is up to you to check all the user events generated in your program
in order to avoid conflicts among user events.

public int key
For keyboard-related events, the key field contains the integer representation
of the keyboard element that caused the event. Constants are available for the
keypad keys. To examine key as a character, just cast it to a char. For nonkey-
board-related events, the value is zero.

pubic int modifiers
The modifiers field shows the state of the modifier keys when the event hap-
pened. A flag is set for each modifier key pressed by the user when the event
happened. Modifier keys are Shift, Control, Alt, and Meta. Since the middle
and right mouse key are indicated in a Java event by a modifier key, one rea-
son to use the modifiers field is to determine which mouse button triggered
an event. See Section 4.2.4 for an example.

public Object target
The target field contains a reference to the object that is the cause of the
event. For example, if the user selects a button, the button is the target of the
event. If the user moves the mouse into a Frame, the Frame is the target. The
target indicates where the event happened, not the component that is deal-
ing with it.

public long when
The when field contains the time of the event in milliseconds. The following
code converts this long value to a Date to examine its contents:

Date d = new Date (e.when);

public int x
public int y

The x and y fields show the coordinates where the event happened. The coor-
dinates are always relative to the top left corner of the target of the event and
get translated based on the top left corner of the container as the event gets

10 July 2002 22:18

passed through the containing components. (See the previous Section 4.1.1
for an example of this translation.) It is possible for either or both of these to
be outside the coordinate space of the applet (e.g., if user quickly moves the
mouse outside the applet).

4.2.2 Constants
Numerous constants are provided with the Event class. Several designate which
event happened (the why). Others are available to help in determining the func-
tion key a user pressed (the what). And yet more are available to make your life
easier.

When the system generates an event, it calls a handler method for it. To deal with
the event, you have to override the appropriate method. The different event type
sections describe which methods you override.

Key constants

These constants are set when a user presses a key. Most of them correspond to
function and keypad keys; since such keys are generally used to invoke an action
from the program or the system, Java calls them action keys and causes them to gen-
erate a different Event type (KEY_ACTION) from regular alphanumeric keys
(KEY_PRESS).

Table 4-2 shows the constants used to represent keys and the event type that uses
each constant. The values, which are all declared public static final int,
appear in the key variable of the event instance. A few keys represent ASCII char-
acters that have string equivalents such as \n. Black stars (�) mark the constants
that are new in Java 1.1; they can be used with the 1.0 event model, provided that
you are running Java 1.1. Java 1.1 events use a different set of key constants
defined in the KeyEvent class.

Table 4–2: Constants for Keys in Java 1.0

Constant Event Type Constant Event Type

HOME KEY_ACTION F9 KEY_ACTION

END KEY_ACTION F10 KEY_ACTION

PGUP KEY_ACTION F11 KEY_ACTION

PGDN KEY_ACTION F12 KEY_ACTION

UP KEY_ACTION PRINT_SCREEN� KEY_ACTION

DOWN KEY_ACTION SCROLL_LOCK� KEY_ACTION

LEFT KEY_ACTION CAPS_LOCK� KEY_ACTION

RIGHT KEY_ACTION NUM_LOCK� KEY_ACTION

F1 KEY_ACTION PAUSE� KEY_ACTION

4.2 THE EVENT CLASS 103

10 July 2002 22:18

104 CHAPTER 4: EVENTS

Table 4–2: Constants for Keys in Java 1.0 (continued)

Constant Event Type Constant Event Type

F2 KEY_ACTION INSERT� KEY_ACTION

F3 KEY_ACTION ENTER (\n)� KEY_PRESS

F4 KEY_ACTION BACK_SPACE (\b)� KEY_PRESS

F5 KEY_ACTION TAB (\t)� KEY_PRESS

F6 KEY_ACTION ESCAPE� KEY_PRESS

F7 KEY_ACTION DELETE� KEY_PRESS

F8 KEY_ACTION

Modifiers

Modifiers are keys like Shift, Control, Alt, or Meta. When a user presses any key or
mouse button that generates an Event, the modifiers field of the Event instance is
set. You can check whether any modifier key was pressed by ANDing its constant
with the modifiers field. If multiple modifier keys were down at the time the event
occurred, the constants for the different modifiers are ORed together in the field.

public static final int ALT_MASK

public static final int CTRL_MASK

public static final int META_MASK

public static final int SHIFT_MASK

When reporting a mouse event, the system automatically sets the modifiers field.
Since Java is advertised as supporting the single-button mouse model, all buttons
generate the same mouse events, and the system uses the modifiers field to differ-
entiate between mouse buttons. That way, a user with a one- or two-button mouse
can simulate a three-button mouse by clicking on his mouse while holding down a
modifier key. Table 4-3 lists the mouse modifier keys; an applet in Section 4.2.4
demonstrates how to differentiate between mouse buttons.

Table 4–3: Mouse Button Modifier Keys

Mouse Button Modifier Key

Left mouse button None

Middle mouse button ALT_MASK

Right mouse button META_MASK

10 July 2002 22:18

For example, if you have a three-button mouse, and click the right button, Java
generates some kind of mouse event with the META_MASK set in the modifiers field.
If you have a one-button mouse, you can generate the same event by clicking the
mouse while depressing the Meta key.

NOTE If you have a multibutton mouse and do an Alt+right mouse or
Meta+left mouse, the results are platform specific. You should get a
mouse event with two masks set.

Key events

The component peers deliver separate key events when a user presses and releases
nearly any key. KEY_ACTION and KEY_ACTION_RELEASE are for the function and
arrow keys, while KEY_PRESS and KEY_RELEASE are for the remaining control and
alphanumeric keys.

public static final int KEY_ACTION
The peers deliver the KEY_ACTION event when the user presses a function
or keypad key. The default Component.handleEvent() method calls the
keyDown() method for this event. If the user holds down the key, this event is
generated multiple times. If you are using the 1.1 event model, the interface
method KeyListener.keyPressed() handles this event.

public static final int KEY_ACTION_RELEASE
The peers deliver the KEY_ACTION_RELEASE event when the user releases a
function or keypad key. The default handleEvent() method for Component

calls the keyUp() method for this event. If you are using the 1.1 event model,
the KeyListener.keyReleased() inter face method handles this event.

public static final int KEY_PRESS
The peers deliver the KEY_PRESS event when the user presses an ordinary key.
The default Component.handleEvent() method calls the keyDown() method
for this event. Holding down the key causes multiple KEY_PRESS events to be
generated. If you are using the 1.1 event model, the interface method KeyLis-

tener.keyPressed() handles this event.

public static final int KEY_RELEASE
The peers deliver KEY_RELEASE events when the user releases an ordinary key.
The default handleEvent() method for Component calls the keyUp() method
for this event. If you are using the 1.1 event model, the interface method
KeyListener.keyReleased() handles this event.

4.2 THE EVENT CLASS 105

10 July 2002 22:18

106 CHAPTER 4: EVENTS

NOTE If you want to capture arrow and keypad keys under the X Window
System, make sure the key codes are set up properly, using the
xmodmap command.

NOTE Some platforms generate events for the modifier keys by themselves,
whereas other platforms require modifier keys to be pressed with
another key. For example, on a Windows 95 platform, if Ctrl+A is
pressed, you would expect one KEY_PRESS and one KEY_RELEASE.
However, there is a second KEY_RELEASE for the Control key. Under
Motif, you get only a single KEY_RELEASE.

Window events

Window events happen only for components that are children of Window. Several
of these events are available only on certain platforms. Like other event types, the
id variable holds the value of the specific event instance.

public static final int WINDOW_DESTROY
The peers deliver the WINDOW_DESTROY event whenever the system tells a win-
dow to destroy itself. This is usually done when the user selects the window
manager’s Close or Quit window menu option. By default, Frame instances do
not deal with this event, and you must remember to catch it yourself. If you
are using the 1.1 event model, the WindowListener.windowClosing() inter-
face method handles this event.

public static final int WINDOW_EXPOSE
The peers deliver the WINDOW_EXPOSE event whenever all or part of a window
becomes visible. To find out what part of the window has become uncovered,
use the getClipRect() method (or getClipBounds() in Java version 1.1) of
the Graphics parameter to the paint() method. If you are using the 1.1 event
model, the WindowListener.windowOpening() inter face method most closely
corresponds to the handling of this event.

public static final int WINDOW_ICONIFY
The peers deliver the WINDOW_ICONIFY event when the user iconifies the win-
dow. If you are using the 1.1 event model, the interface method WindowLis-

tener.windowIconified() handles this event.

public static final int WINDOW_DEICONIFY
The peers deliver the WINDOW_DEICONIFY event when the user de-iconifies the
window. If you are using the 1.1 event model, the interface method Win-

dowListener.windowDeiconified() handles this event.

10 July 2002 22:18

public static final int WINDOW_MOVED
The WINDOW_MOVED event signifies that the user has moved the window. If you
are using the 1.1 event model, the ComponentListener.componentMoved()

inter face method handles this event.

Mouse events

The component peers deliver mouse events when a user presses or releases a
mouse button. Events are also delivered whenever the mouse moves. In order to
be platform independent, Java pretends that all mice have a single button. If you
press the second or third button, Java generates a regular mouse event but sets the
event’s modifers field with a flag that indicates which button was pressed. If you
press the left button, no modifiers flags are set. Pressing the center button sets the
ALT_MASK flag; pressing the right button sets the META_MASK flag. Therefore, you
can determine which mouse button was pressed by looking at the Event.modi-

fiers attribute. Furthermore, users with a one-button or two-button mouse can
generate the same events by pressing a mouse button while holding down the Alt
or Meta keys.

NOTE Early releases of Java (1.0.2 and earlier) only propagated mouse
events from Canvas and Container objects. With the 1.1 event
model, the events that different components process are better
defined.

public static final int MOUSE_DOWN
The peers deliver the MOUSE_DOWN event when the user presses any mouse but-
ton. This action must occur over a component that passes along the
MOUSE_DOWN event. The default Component.handleEvent() method calls the
mouseDown() method for this event. If you are using the 1.1 event model, the
MouseListener.mousePressed() inter face method handles this event.

public static final int MOUSE_UP
The peers deliver the MOUSE_UP event when the user releases the mouse but-
ton. This action must occur over a component that passes along the MOUSE_UP
event. The default handleEvent() method for Component calls the mouseUp()

method for this event. If you are using the 1.1 event model, the interface
method MouseListener.mouseReleased() handles this event.

public static final int MOUSE_MOVE
The peers deliver the MOUSE_MOVE event whenever the user moves the mouse
over any part of the applet. This can happen many, many times more than you
want to track, so make sure you really want to do something with this event
before trying to capture it. (You can also capture MOUSE_MOVE events and

4.2 THE EVENT CLASS 107

10 July 2002 22:18

108 CHAPTER 4: EVENTS

without losing much, choose to deal with only every third or fourth move-
ment.) The default handleEvent() method calls the mouseMove() method for
the event. If you are using the 1.1 event model, the interface method MouseMo-

tionListener.mouseMoved() handles this event.

public static final int MOUSE_DRAG
The peers deliver the MOUSE_DRAG event whenever the user moves the mouse
over any part of the applet with a mouse button depressed. The default
method handleEvent() calls the mouseDrag() method for the event. If you are
using the 1.1 event model, the interface method MouseMotionLis-

tener.mouseDragged() handles this event.

public static final int MOUSE_ENTER
The peers deliver the MOUSE_ENTER event whenever the cursor enters a compo-
nent. The default handleEvent() method calls the mouseEnter() method for
the event. If you are using the 1.1 event model, the interface method
MouseListener.mouseEntered() handles this event.

public static final int MOUSE_EXIT
The peers deliver the MOUSE_EXIT event whenever the cursor leaves a compo-
nent. The default handleEvent() method calls the mouseExit() method for
the event. If you are using the 1.1 event model, the interface method
MouseListener.mouseExited() handles this event.

Scrolling events

The peers deliver scrolling events for the Scrollbar component. The objects that
have a built-in scrollbar (like List, ScrollPane, and TextArea) do not generate
these events. No default methods are called for any of the scrolling events. They
must be dealt with in the handleEvent() method of the Container or a subclass of
the Scrollbar. You can determine which particular event occurred by checking
the id variable of the event, and find out the new position of the thumb by looking
at the arg variable or calling getValue() on the scrollbar. See also the description
of the AdjustmentListener inter face later in this chapter.

public static final int SCROLL_LINE_UP
The scrollbar peers deliver the SCROLL_LINE_UP event when the user presses
the arrow pointing up for the vertical scrollbar or the arrow pointing left for
the horizontal scrollbar. This decreases the scrollbar setting by one back
toward the minimum value. If you are using the 1.1 event model, the interface
method AdjustmentListener.adjustmentValueChanged() handles this event.

10 July 2002 22:18

public static final int SCROLL_LINE_DOWN
The peers deliver the SCROLL_LINE_DOWN event when the user presses the
arrow pointing down for the vertical scrollbar or the arrow pointing right for
the horizontal scrollbar. This increases the scrollbar setting by one toward the
maximum value. If you are using the 1.1 event model, the interface method
AdjustmentListener.adjustmentValueChanged() handles this event.

public static final int SCROLL_PAGE_UP
The peers deliver the SCROLL_PAGE_UP event when the user presses the mouse
with the cursor in the area between the slider and the decrease arrow. This
decreases the scrollbar setting by the paging increment, which defaults to 10,
back toward the minimum value. If you are using the 1.1 event model, the
inter face method AdjustmentListener.adjustmentValueChanged() handles
this event.

public static final int SCROLL_PAGE_DOWN
The peers deliver the SCROLL_PAGE_DOWN event when the user presses the
mouse with the cursor in the area between the slider and the increase arrow.
This increases the scrollbar setting by the paging increment, which defaults to
10, toward the maximum value. If you are using the 1.1 event model, the inter-
face method AdjustmentListener.adjustmentValueChanged() handles this
event.

public static final int SCROLL_ABSOLUTE
The peers deliver the SCROLL_ABSOLUTE event when the user drags the slider
part of the scrollbar. There is no set time period or distance between multiple
SCROLL_ABSOLUTE events. If you are using the Java version 1.1 event model, the
AdjustmentListener.adjustmentValueChanged() inter face method handles
this event.

public static final int SCROLL_BEGIN �

The SCROLL_BEGIN event is not delivered by peers, but you may wish to use it to
signify when a user drags the slider at the beginning of a series of
SCROLL_ABSOLUTE events. SCROLL_END, described next, would then be used to
signify the end of the series.

public static final int SCROLL_END �

The SCROLL_END event is not delivered by peers, but you may wish to use it to
signify when a user drags the slider at the end of a series of SCROLL_ABSOLUTE
events. SCROLL_BEGIN, described previously, would have been used to signify
the beginning of the series.

4.2 THE EVENT CLASS 109

10 July 2002 22:18

110 CHAPTER 4: EVENTS

List events

Two events specific to the List class are passed along by the peers. They signify
when the user has selected or deselected a specific choice in the List. It is not
ordinarily necessary to capture these events, because the peers deliver the
ACTION_EVENT when the user double-clicks on a specific item in the List and it is
this ACTION_EVENT that triggers something to happen. However, if there is reason
to do something when the user has just single-clicked on a choice, these events
may be useful. An example of how they would prove useful is if you are displaying
a list of filenames with the ability to preview files before loading. Single selection
would preview, double-click would load, and deselect would stop previewing.

No default methods are called for any of the list events. They must be dealt with in
the handleEvent() method of the Container of the List or a subclass of the List.
You can determine which particular event occurred by checking the id variable of
the event.

public static final int LIST_SELECT
The peers deliver the LIST_SELECT event when the user selects an item in a
List. If you are using the 1.1 event model, the interface method ItemLis-

tener.itemStateChanged() handles this event.

public static final int LIST_DESELECT
The peers deliver the LIST_DESELECT event when an item in a List has been
deselected. This is generated only if the List permits multiple selections. If
you are using the 1.1 event model, the ItemListener.itemStateChanged()

inter face method handles this event.

Focus events

The peers deliver focus events when a component gains (GOT_FOCUS) or loses
(LOST_FOCUS) the input focus. No default methods are called for the focus events.
They must be dealt with in the handleEvent() method of the Container of the
component or a subclass of the component. You can determine which particular
event occurred by checking the id variable of the event.

NOTE Early releases of Java (1.0.2 and before) did not propagate focus
events on all platforms. This is fixed in release 1.1 of Java. Still, you
should avoid capturing focus events if you want to write portable 1.0
code.

10 July 2002 22:18

public static final int GOT_FOCUS
The peers deliver the GOT_FOCUS event when a component gets the input
focus. If you are using the 1.1 event model, the FocusListener.focusGained()
inter face method handles this event.

public static final int LOST_FOCUS
The peers deliver the LOST_FOCUS event when a component loses the input
focus. If you are using the 1.1 event model, the FocusListener.focusLost()

inter face method handles this event.

FileDialog events

The FileDialog events are another set of nonportable events. Ordinarily, the
FileDialog events are completely dealt with by the system, and you never see
them. Refer to Chapter 6, Containers for exactly how to work with the FileDialog

object. If you decide to create a generic FileDialog object, you can use these
events to indicate file loading and saving. These constants would be used in the id
variable of the specific event instance:

public static final int LOAD_FILE
public static final int SAVE_FILE

Miscellaneous events

ACTION_EVENT is probably the event you deal with most frequently. It is generated
when the user performs the desired action for a specific component type (e.g.,
when a user selects a button or toggles a checkbox). This constant would be found
in the id variable of the specific event instance.

public static final int ACTION_EVENT
The circumstances that lead to the peers delivering the ACTION_EVENT event
depend upon the component that is the target of the event and the user’s plat-
form. Although the event can be passed along differently on different plat-
forms, users will be accustomed to how the peers work on their specific plat-
forms and will not care that it is different on the other platforms. For example,
a Java 1.0 List component on a Microsoft Windows platform allows the user to
select an item by pressing the first letter of the choice, whereupon the List

tries to find an item that starts with the letter. The X Window System List

component does not provide this capability. It works like a normal X List,
where the user must scroll to locate the item and then select it.

When the ACTION_EVENT is generated, the arg variable of the specific Event

instance is set based upon the component type. In Chapters 5–11, which

4.2 THE EVENT CLASS 111

10 July 2002 22:18

112 CHAPTER 4: EVENTS

describe Java’s GUI components, the description of each component contains
an “Events” subsection that describes the value of the event’s arg field. If you
are using the 1.1 event model, the ActionListener.actionPerformed() and
ItemListener.itemStateChanged() inter face methods handle this event,
depending upon the component type.

4.2.3 Event Methods
Constructors

Ordinarily, the peers deliver all your events for you. However, if you are creating
your own components or want to communicate across threads, it may be necessary
to create your own events. You can also create your own events to notify your com-
ponent’s container of application-specific occurrences. For example, if you were
implementing your own tab sequencing for text fields, you could create a “next
text field” event to tell your container to move to the next text field. Once you cre-
ate the event, you send it through the system using the Component.postEvent()

method.

public Event (Object target, long when, int id, int x, int y, int key, int modifiers, Object arg)
The first version of the constructor is the most complete and is what the other
two call. It initializes all the fields of the Event to the parameters passed and
sets clickCount to 0. See the descriptions of the instance variables Section
4.2.1 for the meanings of the arguments.

public Event (Object target, long when, int id, int x, int y, int key, int modifiers)
The second constructor version calls the first with arg set to null.

public Event (Object target, int id, Object arg)
The final version calls the first constructor with the when, x, y, key, and modi-

fiers parameters set to 0.

Modifier methods

The modifier methods check to see if the different modifier mask values are set.
They report the state of each modifier key at the moment an event occurred. It is
possible for multiple masks to be set if multiple modifiers are pressed when the
event occurs.

There is no altDown() method; to check whether the Alt key is pressed you must
directly compare the event’s modifiers against the Event.ALT_MASK constant. The
metaDown() method is helpful when dealing with mouse events to see if the user
pressed the right mouse button.

10 July 2002 22:18

public boolean shiftDown ()
The shiftDown() method returns true if the Shift key was pressed and false

other wise. There is no way to differentiate left and right shift keys.

public boolean controlDown ()
The controlDown() method returns true if the Control key was pressed and
false other wise.

public boolean metaDown ()
The metaDown() method returns true if the Meta key was pressed and false

other wise.

Miscellaneous methods

public void translate (int x, int y)
The translate() method translates the x and y coordinates of the Event

instance by x and y. The system does this so that the coordinates of the event
are relative to the component receiving the event, rather than the container of
the component. The system takes care of all this for you when passing the
event through the containment hierarchy (not the object hierarchy), so you
do not have to bother with translating them yourself. Figure 4-3 shows how this
method would change the location of an event from a container down to an
internal component.

protected String paramString ()
When you call the toString() method of Event, the paramString() method is
called in turn to build the string to display. In the event you subclass Event to
add additional information, instead of having to provide a whole new
toString() method, you need only add the new information to the string
already generated by paramString(). Assuming the new information is foo,
this would result in the following method declaration:

protected String paramString() {
return super.paramString() + ",foo=" + foo;

}

public String toString ()
The toString() method of Event returns a string with numerous components.
The only variables that will always be in the output will be the event ID and the
x and y coordinates. The others will be present if necessary (i.e., non-null):
key (as the integer corresponding to a keyboard event), shift when shift-

Down() is true; control, when controlDown() is true; meta, when metaDown() is
true; target (if it was a Component); and arg (the value depends on the target
and ID). toString() does not display all pieces of the Event information. An
event when moving a Scrollbar might result in the following:

4.2 THE EVENT CLASS 113

10 July 2002 22:18

114 CHAPTER 4: EVENTS

Object sees mouse click event at position
(118, 77)

Mouse Click

Object sees mouse click event at position (245, 143)

Object sees mouse
click event at position
(30, 19)

Figure 4–3: Translating an event’s location relative to a component

java.awt.Event[id=602,x=374,y=110,target=java.awt.Scrollbar[374,
110,15x50,val=1,vis=true,min=0,max=255,vert],arg=1]

4.2.4 Working With Mouse Buttons in Java 1.0
As stated earlier, the modifiers component of Event can be used to differentiate
the different mouse buttons. If the user has a multibutton mouse, the modifiers

field is set automatically to indicate which button was pressed. If the user does not
own a multibutton mouse, he or she can press the mouse button in combination
with the Alt or Meta keys to simulate a three-button mouse. Example 4-2 is a sam-
ple program called mouseEvent that displays the mouse button selected.

Example 4–2: Differentiating Mouse Buttons in Java 1.0

import java.awt.*;
import java.applet.*;
public class mouseEvent extends Applet {

String theString = "Press a Mouse Key";
public synchronized void setString (String s) {

theString = s;
}
public synchronized String getString () {

return theString;
}
public synchronized void paint (Graphics g) {

g.drawString (theString, 20, 20);
}
public boolean mouseDown (Event e, int x, int y) {

if (e.modifiers == Event.META_MASK) {

10 July 2002 22:18

Example 4–2: Differentiating Mouse Buttons in Java 1.0 (continued)

setString ("Right Button Pressed");
} else if (e.modifiers == Event.ALT_MASK) {

setString ("Middle Button Pressed");
} else {

setString ("Left Button Pressed");
}
repaint ();
return true;

}
public boolean mouseUp (Event e, int x, int y) {

setString ("Press a Mouse Key");
repaint ();
return true;

}
}

Unfortunately, this technique does not always work. With certain components on
some platforms, the peer captures the mouse event and does not pass it along; for
example, on Windows, the display-edit menu of a TextField appears when you
select the right mouse button. Be cautious about relying on multiple mouse but-
tons; better yet, if you want to ensure absolute portability, stick to a single
button.

4.2.5 Comprehensive Event List
Unfortunately, there are many platform-specific differences in the way event han-
dling works. It’s not clear whether these differences are bugs or whether vendors
think they are somehow improving their product by introducing portability prob-
lems. We hope that as Java matures, different platforms will gradually come into
synch. Until that happens, you might want your programs to assume the lowest
common denominator. If you are willing to take the risk, you can program for a
specific browser or platform, but should be aware of the possibility of changes.

Appendix C, Platform-Specific Event Handling, includes a table that shows which
components pass along which events by default in the most popular environments.
This table was developed using an interactive program called compList, which gen-
erates a list of supported events for each component. You can find compList on
this book’s Web site, http://www.ora.com/catalog/javawt. If you want to check the
behavior of some new platform, or a newer version of one of the platforms in
Appendix C, feel free to use compList. It does require a little bit of work on your
part. You have to click, toggle, type, and mouse over every object. Hopefully, as
Java matures, this program will become unnecessary.

4.2 THE EVENT CLASS 115

10 July 2002 22:18

116 CHAPTER 4: EVENTS

4.3 The Java 1.1 Event Model
Now it’s time to discuss the new event model that is implemented by the 1.1
release of the JDK. Although this model can seem much more complex (it does
have many more pieces), it is really much simpler and more efficient. The new
event model does away with the process of searching for components that are
interested in an event—deliverEvent(), postEvent(), handleEvent()—and all
that. The new model requires objects be registered to receive events. Then, only
those objects that are registered are told when the event actually happens.

This new model is called “delegation”; it implements the Observer-Observable
design pattern with events. It is important in many respects. In addition to being
much more efficient, it allows for a much cleaner separation between GUI compo-
nents and event handling. It is important that any object, not just a Component, can
receive events. Therefore, you can separate your event-handling code from your
GUI code. One set of classes can implement the user interface; another set of
classes can respond to the events generated by the interface. This means that if
you have designed a good interface, you can reuse it in different applications by
changing the event processing. The delegation model is essential to JavaBeans,
which allows interaction between Java and other platforms, like OpenDoc or
ActiveX. To allow such interaction, it was essential to separate the source of an
event from the recipient.*

The delegation model has several other important ramifications. First, event han-
dlers no longer need to worry about whether or not they have completely dealt
with an event; they do what they need to, and return. Second, events can be broad-
cast to multiple recipients; any number of classes can be registered to receive an
event. In the old model, broadcasting was possible only in a very limited sense, if at
all. An event handler could declare that it hadn’t completely processed an event,
thus letting its container receive the event when it was done, or an event handler
could generate a new event and deliver it to some other component. In any case,
developers had to plan how to deliver events to other recipients. In Java 1.1, that’s
no longer necessary. An event will be delivered to every object that is registered as
a listener for that event, regardless of what other objects do with the event. Any lis-
tener can mark an event “consumed,” so it will be ignored by the peer or (if they
care) other listeners.

Finally, the 1.1 event model includes the idea of an event queue. Instead of having
to override handleEvent() to see all events, you can peek into the system’s event
queue by using the EventQueue class. The details of this class are discussed at the
end of this chapter.

* For more information about JavaBeans, see http://splash.javasoft.com/beans/.

10 July 2002 22:18

In Java 1.1, each component is an event source that can generate certain types of
events, which are all subclasses of AWTEvent. Objects that are interested in an event
are called listeners. Each event type corresponds to a listener interface that specifies
the methods that are called when the event occurs. To receive an event, an object
must implement the appropriate listener interface and must be registered with the
event’s source, by a call to an “add listener” method of the component that gener-
ates the event. Who calls the “add listener” method can vary; it is probably the best
design for the component to register any listeners for the events that it generates,
but it is also possible for the event handler to register itself, or for some third
object to handle registration (for example, one object could call the constructor
for a component, then call the constructor for an event handler, then register the
event handler as a listener for the component’s events).

This sounds complicated, but it really isn’t that bad. It will help to think in con-
crete terms. A TextField object can generate action events, which in Java 1.1 are
of the class ActionEvent. Let’s say we have an object of class TextActionHandler
that is called myHandler that is interested in receiving action events from a text
field named inputBuffer. This means that our object must implement the
ActionListener inter face, and this in turn, means that it must include an
actionPerformed() method, which is called when an action event occurs. Now, we
have to register our object’s interest in action events generated by inputBuffer; to
do so, we need a call to inputBuffer.addActionListener(myHandler). This call
would probably be made by the object that is creating the TextField but could
also be made by our event handler itself. The code might be as simple as this:

...
public void init(){

...
inputBuffer = new TextField();
myHandler = new TextActionHandler();
inputBuffer.addActionListener(myHandler); // register the handler for the

// buffer’s events
add (inputBuffer); // add the input buffer to the display
...

}

Once our object has been registered, myHandler.actionPerformed() will be called
whenever a user does anything in the text field that generates an action event, like
typing a carriage return. In a way, actionPerformed() is very similar to the
action() method of the old event model—except that it is not tied to the Compo-
nent hierarchy; it is part of an interface that can be implemented by any object
that cares about events.

4.3 THE JAV A 1.1 EVENT MODEL 117

10 July 2002 22:18

118 CHAPTER 4: EVENTS

Of course, there are many other kinds of events. Figure 4-4 shows the event hierar-
chy for Java 1.1. Figure 4-5 shows the different listener interfaces, which are all
subinter faces of EventListener, along with the related adapter classes.

extendsCLASS

ABSTRACT CLASS

ActionEvent

AWTEvent

java.awt.event

KEY

java.awt

AdjustmentEvent

ComponentEvent

ItemEvent

TextEvent

ContainerEvent

FocusEvent

InputEvent

PaintEvent

WindowEvent

KeyEvent

MouseEvent

Figure 4–4: AWTEvent class hierarchy

Some of the listener interfaces are constructed to deal with multiple events. For
instance, the MouseListener inter face declares five methods to handle different
kinds of mouse events: mouse down, mouse up, click (both down and up), mouse
enter, and mouse exit. Strictly speaking, this means that an object interested in
mouse events must implement MouseListener and must therefore implement five
methods to deal with all possible mouse actions. This sounds like a waste of the
programmer’s effort; most of the time, you’re only interested in one or two of
these events. Why should you have to implement all five methods? Fortunately, you
don’t. The java.awt.event package also includes a set of adapter classes, which are
shorthands that make it easier to write event handlers. The adapter class for any
listener interface provides a null implementation of all the methods in that inter-
face. For example, the MouseAdapter class provides stub implementations of the
methods mouseEntered(), mouseExited(), mousePressed(), mouseReleased(), and
mouseClicked(). If you want to write an event-handling class that deals with mouse
clicks only, you can declare that your class extends MouseAdapter. It then inherits
all five of these methods, and your only programming task is to override the single
method you care about: mouseClicked().

A particularly convenient way to use the adapters is to write an anonymous inner
class. For example, the following code deals with the MOUSE_PRESSED event without
creating a separate listener class:

10 July 2002 22:18

implements

extends

INTERFACE

CLASS ABSTRACT CLASS

Object

java.lang

java.util

ComponentListener

ContainerListener

FocusListener

KeyListener

MouseListener

MouseMotionListener

TextListener

ItemListener

WindowListener

java.awt.event

KEY

ActionListener

AdjustmentListener

ComponentAdapter

ContainerAdapter

FocusAdapter

KeyAdapter

MouseAdapter

MouseMotionAdapter

WindowAdapter

EventListener

Figure 4–5: AWT EventListener and Adapter class hierarchies

addMouseListener (new MouseAdapter() {
public void mousePressed (MouseEvent e) {
// do what’s needed to handle the event
System.out.println ("Clicked at: " + e.getPoint());

}
});

This code creates a MouseAdapter, overrides its mousePressed() method, and regis-
ters the resulting unnamed object as a listener for mouse events. Its mouse-

Pressed() method is called when MOUSE_PRESSED events occur. You can also use
the adapter classes to implement something similar to a callback. For example, you
could override mousePressed() to call one of your own methods, which would
then be called whenever a MOUSE_PRESSED event occurs.

There are adapter classes for most of the listener interfaces; the only exceptions
are the listener interfaces that contain only one method (for example, there’s no
ActionAdapter to go with ActionListener). When the listener interface contains

4.3 THE JAV A 1.1 EVENT MODEL 119

10 July 2002 22:18

120 CHAPTER 4: EVENTS

only one method, an adapter class is superfluous. Event handlers may as well
implement the listener interface directly, because they will have to override the
only method in the interface; creating a dummy class with the interface method
stubbed out doesn’t accomplish anything. The different adapter classes are dis-
cussed with their related EventListener inter faces.

With all these adapter classes, listener interfaces, and event classes, it’s easy to get
confused. Here’s a quick summary of the different pieces involved and the roles
they play:

• Components generate AWTEvents when something happens. Different sub-
classes of AWTEvent represent different kinds of events. For example, mouse
events are represented by the MouseEvent class. Each component can generate
certain subclasses of AWTEvent.

• Event handlers are registered to receive events by calls to an “add listener”
method in the component that generates the event. There is a different “add
listener” method for every kind of AWTEvent the component can generate; for
example, to declare your interest in a mouse event, you call the component’s
addMouseListener() method.

• Ever y event type has a corresponding listener interface that defines the meth-
ods that are called when that event occurs. To be able to receive events, an
event handler must therefore implement the appropriate listener interface.
For example, MouseListener defines the methods that are called when mouse
events occur. If you create a class that calls addMouseListener(), that class had
better implement the MouseListener inter face.

• Most event types also have an adapter class. For example, MouseEvents have a
MouseAdapter class. The adapter class implements the corresponding listener
inter face but provides a stub implementation of each method (i.e., the
method just returns without taking any action). Adapter classes are shorthand
for programs that only need a few of the methods in the listener interface. For
example, instead of implementing all five methods of the MouseListener inter-
face, a class can extend the MouseAdapter class and override the one or two
methods that it is interested in.

4.3.1 Using the 1.1 Event Model
Before jumping in and describing all the different pieces in detail, we will look at a
simple applet that uses the Java 1.1 event model. Example 4-3 is equivalent to
Example 4-2, except that it uses the new event model; when you press a mouse but-
ton, it just tells you what button you pressed. Notice how the new class,
mouseEvent11, separates the user interface from the actual work. The class

10 July 2002 22:18

mouseEvent11 implements a very simple user interface. The class UpDownCatcher
handles the events, figures out what to do, and calls some methods in
mouseEvent11 to communicate the results. I added a simple interface that is called
GetSetString to define the communications between the user interface and the
event handler; strictly speaking, this isn’t necessar y, but it’s a good programming
practice.

Example 4–3: Handling Mouse Events in Java 1.1

// Java 1.1 only
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
interface GetSetString {

public void setString (String s);
public String getString ();

}

The UpDownCatcher class is responsible for handling events generated by the user
inter face. It extends MouseAdapter so that it needs to implement only the
MouseListener methods that we care about (such as mousePressed() and
mouseReleased()).

class UpDownCatcher extends MouseAdapter {
GetSetString gss;
public UpDownCatcher (GetSetString s) {

gss = s;
}

The constructor simply saves a reference to the class that is using this handler.

public void mousePressed (MouseEvent e) {
int mods = e.getModifiers();
if ((mods & MouseEvent.BUTTON3_MASK) != 0) {

gss.setString ("Right Button Pressed");
} else if ((mods & MouseEvent.BUTTON2_MASK) != 0) {

gss.setString ("Middle Button Pressed");
} else {

gss.setString ("Left Button Pressed");
}
e.getComponent().repaint();

}

The mousePressed method overrides one of the methods of the MouseAdapter

class. The method mousePressed() is called whenever a user presses any mouse
button. This method figures out which button on a three-button mouse was
pressed and calls the setString() method in the user interface to inform the user
of the result.

4.3 THE JAV A 1.1 EVENT MODEL 121

10 July 2002 22:18

122 CHAPTER 4: EVENTS

public void mouseReleased (MouseEvent e) {
gss.setString ("Press a Mouse Key");
e.getComponent().repaint();

}
}

The mouseReleased method overrides another of the methods of the Mouse-

Adapter class. When the user releases the mouse button, it calls setString() to
restore the user interface to the original message.

public class mouseEvent11 extends Applet implements GetSetString {
private String theString = "Press a Mouse Key";
public synchronized void setString (String s) {

theString = s;
}
public synchronized String getString () {

return theString;
}
public synchronized void paint (Graphics g) {

g.drawString (theString, 20, 20);
}
public void init () {

addMouseListener (new UpDownCatcher(this));
}

}

mouseEvent11 is a very simple applet that implements our user interface. All it
does is draw the desired string on the screen; the event handler tells it what string
to draw. The init() method creates an instance of the event handler, which is
UpDownCatcher, and registers it as interested in mouse events.

Because the user interface and the event processing are in separate classes, it
would be easy to use this user interface for another purpose. You would have to
replace only the UpDownCatcher class with something else—perhaps a more com-
plex class that reported when the mouse entered and exited the area.

4.3.2 AWTEvent and Its Children
Under the 1.1 delegation event model, all system events are instances of AWTEvent
or its subclasses. The model provides two sets of event types. The first set are fairly
raw events, such as those indicating when a component gets focus, a key is pressed,
or the mouse is moved. These events exist in ComponentEvent and its subclasses,
along with some new events previously available only by overriding non-event-
related methods. In addition, higher-level event types (for example, selecting a
button) are encapsulated in other subclasses of AWTEvent that are not children of
ComponentEvent.

10 July 2002 22:18

4.3.2.1 AWTEvent

Variables

protected int id �

The id field of AWTEvent is protected and is accessible through the getID()

method. It serves as the identifier of the event type, such as the ACTION_PER-

FORMED type of ActionEvent or the MOUSE_MOVE type of Event. With the delega-
tion event model, it is usually not necessary to look at the event id unless you
are looking in the event queue; just register the appropriate event listener.

Constants The constants of AWTEvent are used in conjunction with the internal
method Component.eventEnabled(). They are used to help the program
determine what style of event handling (true/false-containment or
listening-delegation) the program uses and which events a component processes.
If you want to process 1.1 events without providing a listener, you need to set the
mask for the type of event you want to receive. Look in Chapter 5, Components, for
more information on the use of these constants:

public final static long ACTION_EVENT_MASK �
public final static long ADJUSTMENT_EVENT_MASK �
public final static long COMPONENT_EVENT_MASK �
public final static long CONTAINER_EVENT_MASK �
public final static long FOCUS_EVENT_MASK �
public final static long ITEM_EVENT_MASK �
public final static long KEY_EVENT_MASK �
public final static long MOUSE_EVENT_MASK �
public final static long MOUSE_MOTION_EVENT_MASK �
public final static long TEXT_EVENT_MASK �
public final static long WINDOW_EVENT_MASK �

In addition to the mask constants, the constant RESERVED_ID_MAX is the largest
event ID reserved for “official” events. You may use ID numbers greater than this
value to create your own events, without risk of conflicting with standard events.

public final static long RESERVED_ID_MAX �

Constructors Since AWTEvent is an abstract class, you cannot call the
constructors directly. They are automatically called when an instance of a child
class is created.

public AWTEvent(Event event) �

The first constructor creates an AWTEvent from the parameters of a 1.0 Event.
The event.target and event.id are passed along to the second constructor.

4.3 THE JAV A 1.1 EVENT MODEL 123

10 July 2002 22:18

124 CHAPTER 4: EVENTS

public AWTEvent(Object source, int id) �

This constructor creates an AWTEvent with the given source; the source is the
object generating the event. The id field serves as the identifier of the event
type. It is protected and is accessible through the getID() method. With the
delegation event model, it is usually not necessary to look at the event id
unless you are looking in the event queue or in the processEvent() method
of a component; just register the appropriate event listener.

Methods

public int getID() �

The getID() method returns the id from the constructor, thus identifying the
event type.

protected void consume() �

The consume() method is called to tell an event that it has been handled. An
event that has been marked “consumed” is still delivered to the source compo-
nent’s peer and to all other registered listeners. However, the peer will ignore
the event; other listeners may also choose to ignore it, but that’s up to them. It
isn’t possible for a listener to “unconsume” an event that has already been
marked “consumed.”

Noncomponent events cannot be consumed. Only keyboard and mouse event
types can be flagged as consumed. Marking an event “consumed” is useful if
you are capturing keyboard input and need to reject a character; if you call
consume(), the key event never makes it to the peer, and the keystroke isn’t
displayed. In Java 1.0, you would achieve the same effect by writing an event
handler (e.g., keyDown()) that returns true.

You can assume that an event won’t be delivered to the peer until all listeners
have had a chance to consume it. However, you should not make any other
assumptions about the order in which listeners are called.

protected boolean isConsumed() �

The isConsumed() method returns whether the event has been consumed. If
the event has been consumed, either by default or through consume(), this
method returns true; other wise, it returns false.

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is called in turn to build the string to display. Since you are most fre-
quently dealing with children of AWTEvent, the children need only to override
paramString() to add their specific information.

10 July 2002 22:18

public String toString() �

The toString() method of AWTEvent returns a string with the name of the
event, specific information about the event, and the source. In the method
MouseAdapter.mouseReleased(), printing the parameter would result in some-
thing like the following:

java.awt.event.MouseEvent[MOUSE_RELEASED,(69,107),mods=0,clickCount=1] on panel1

4.3.2.2 ComponentEvent

Constants

public final static int COMPONENT_FIRST �

public final static int COMPONENT_LAST �

The COMPONENT_FIRST and COMPONENT_LAST constants hold the endpoints of
the range of identifiers for ComponentEvent types.

public final static int COMPONENT_HIDDEN �

The COMPONENT_HIDDEN constant identifies component events that occur
because a component was hidden. The interface method ComponentLis-

tener.componentHidden() handles this event.

public final static int COMPONENT_MOVED �

The COMPONENT_MOVED constant identifies component events that occur
because a component has moved. The ComponentListener.componentMoved()
inter face method handles this event.

public final static int COMPONENT_RESIZED �

The COMPONENT_RESIZED constant identifies component events that occur
because a component has changed size. The interface method ComponentLis-

tener.componentResized() handles this event.

public final static int COMPONENT_SHOWN �

The COMPONENT_SHOWN constant identifies component events that occur
because a component has been shown (i.e., made visible). The interface
method ComponentListener.componentShown() handles this event.

Constructors

public ComponentEvent(Component source, int id) �

This constructor creates a ComponentEvent with the given source; the source is
the object generating the event. The id field identifies the event type. If sys-
tem generated, the id will be one of the last four constants above. However,
nothing stops you from creating your own id for your event types.

4.3 THE JAV A 1.1 EVENT MODEL 125

10 July 2002 22:18

126 CHAPTER 4: EVENTS

Methods

public Component getComponent() �

The getComponent() method returns the source of the event—that is, the
component initiating the event.

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is called in turn to build the string to display. At the ComponentEvent

level, paramString() adds a string containing the event id (if available) and
the bounding rectangle for the source (if appropriate). For example:

java.awt.event.ComponentEvent[COMPONENT_RESIZED (0, 0, 100x100)] on button0

4.3.2.3 ContainerEvent

The ContainerEvent class includes events that result from specific container
operations.

Constants

public final static int CONTAINER_FIRST �

public final static int CONTAINER_LAST �

The CONTAINER_FIRST and CONTAINER_LAST constants hold the endpoints of
the range of identifiers for ContainerEvent types.

public final static int COMPONENT_ADDED �

The COMPONENT_ADDED constant identifies container events that occur because
a component has been added to the container. The interface method Con-

tainerListener.componentAdded() handles this event. Listening for this event
is useful if a common listener should be attached to all components added to
a container.

public final static int COMPONENT_REMOVED �

The COMPONENT_REMOVED constant identifies container events that occur
because a component has been removed from the container. The interface
method ContainerListener.componentRemoved() handles this event.

Constructors

public ContainerEvent(Container source, int id, Component child) �

The constructor creates a ContainerEvent with the given source (the con-
tainer generating the event), to which the given child has been added or
removed. The id field serves as the identifier of the event type. If system gen-
erated, the id will be one of the constants described previously. However,
nothing stops you from creating your own id for your event types.

10 July 2002 22:18

Methods

public Container getContainer() �

The getContainer() method returns the container that generated the event.

public Component getComponent() �

The getComponent() method returns the component that was added to or
removed from the container.

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is in turn called to build the string to display. At the ContainerEvent

level, paramString() adds a string containing the event id (if available) along
with the name of the child.

4.3.2.4 FocusEvent

The FocusEvent class contains the events that are generated when a component
gets or loses focus. These may be either temporary or permanent focus changes. A
temporar y focus change is the result of something else happening, like a window
appearing in front of you. Once the window is removed, focus is restored. A per-
manent focus change is usually the result of focus traversal, using the keyboard or
the mouse: for example, you clicked in a text field to type in it, or used Tab to
move to the next component. More programmatically, permanent focus changes
are the result of calls to Component.requestFocus().

Constants

public final static int FOCUS_FIRST �

public final static int FOCUS_LAST �

The FOCUS_FIRST and FOCUS_LAST constants hold the endpoints of the range
of identifiers for FocusEvent types.

public final static int FOCUS_GAINED �

The FOCUS_GAINED constant identifies focus events that occur because a com-
ponent gains input focus. The FocusListener.focusGained() inter face
method handles this event.

public final static int FOCUS_LOST �

The FOCUS_LOST constant identifies focus events that occur because a compo-
nent loses input focus. The FocusListener.focusLost() inter face method
handles this event.

Constructors

4.3 THE JAV A 1.1 EVENT MODEL 127

10 July 2002 22:18

128 CHAPTER 4: EVENTS

public FocusEvent(Component source, int id, boolean temporary) �

This constructor creates a FocusEvent with the given source; the source is the
object generating the event. The id field serves as the identifier of the event
type. If system generated, the id will be one of the two constants described
previously. However, nothing stops you from creating your own id for your
event types. The temporary parameter is true if this event represents a tempo-
rar y focus change.

public FocusEvent(Component source, int id) �

This constructor creates a FocusEvent by calling the first constructor with the
temporary parameter set to false; that is, it creates an event for a permanent
focus change.

Methods

public boolean isTemporar y() �

The isTemporary() method returns true if the focus event describes a tempo-
rar y focus change, false if the event describes a permanent focus change.
Once set by the constructor, the setting is permanent.

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is in turn called to build the string to display. At the FocusEvent level,
paramString() adds a string showing the event id (if available) and whether
or not it is temporary.

4.3.2.5 WindowEvent

The WindowEvent class encapsulates the window-oriented events.

Constants

public final static int WINDOW_FIRST �

public final static int WINDOW_LAST �

The WINDOW_FIRST and WINDOW_LAST constants hold the endpoints of the range
of identifiers for WindowEvent types.

public final static int WINDOW_ICONIFIED �

The WINDOW_ICONIFIED constant identifies window events that occur because
the user iconifies a window. The WindowListener.windowIconified() inter-
face method handles this event.

10 July 2002 22:18

public final static int WINDOW_DEICONIFIED �

The WINDOW_DEICONIFIED constant identifies window events that occur because
the user de-iconifies a window. The interface method WindowListener.win-

dowDeiconified() handles this event.

public final static int WINDOW_OPENED �

The WINDOW_OPENED constant identifies window events that occur the first time
a Frame or Dialog is made visible with show(). The interface method Win-

dowListener.windowOpened() handles this event.

public final static int WINDOW_CLOSING �

The WINDOW_CLOSING constant identifies window events that occur because the
user wants to close a window. This is similar to the familiar event Event.WIN-
DOW_DESTROY dealt with under 1.0 with frames. The WindowListener.window-

Closing() inter face method handles this event.

public final static int WINDOW_CLOSED �

The WINDOW_CLOSED constant identifies window events that occur because a
Frame or Dialog has finally closed, after hide() or destroy(). This comes
after WINDOW_CLOSING, which happens when the user wants the window to
close. The WindowListener.windowClosed() inter face method handles this
event.

NOTE If there is a call to System.exit() in the windowClosing() listener,
the window will not be around to call windowClosed(), nor will other
listeners know.

public final static int WINDOW_ACTIVATED �

The WINDOW_ACTIVATED constant identifies window events that occur because
the user brings the window to the front, either after showing the window, de-
iconifying, or removing whatever was in front. The interface method Win-

dowListener.windowActivated() handles this event.

public final static int WINDOW_DEACTIVATED �

The WINDOW_DEACTIVATED constant identifies window events that occur because
the user makes another window the active window. The interface method Win-

dowListener.windowDeactivated() handles this event.

Constructors

public WindowEvent(Window source, int id) �

This constructor creates a WindowEvent with the given source; the source is the
object generating the event. The id field serves as the identifier of the event
type. If system generated, the id will be one of the seven constants described
previously. However, nothing stops you from creating your own id for your

4.3 THE JAV A 1.1 EVENT MODEL 129

10 July 2002 22:18

130 CHAPTER 4: EVENTS

event types.

Methods

public Window getWindow() �

The getWindow() method returns the Window that generated the event.

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is in turn called to build the string to display. At the WindowEvent

level, paramString() adds a string containing the event id (if available). In a
call to windowClosing(), printing the parameter would yield:

java.awt.event.WindowEvent[WINDOW_CLOSING] on frame0

4.3.2.6 PaintEvent

The PaintEvent class encapsulates the paint-oriented events. There is no corre-
sponding PaintListener class, so you cannot listen for these events. To process
them, override the paint() and update() routines of Component. The PaintEvent

class exists to ensure that events are serialized properly through the event queue.

Constants

public final static int PAINT_FIRST �

public final static int PAINT_LAST �

The PAINT_FIRST and PAINT_LAST constants hold the endpoints of the range
of identifiers for PaintEvent types.

public final static int PAINT �

The PAINT constant identifies paint events that occur because a component
needs to be repainted. Override the Component.paint() method to handle
this event.

public final static int UPDATE �

The UPDATE constant identifies paint events that occur because a component
needs to be updated before painting. This usually refreshes the display. Over-
ride the Component.update() method to handle this event.

Constructors

public PaintEvent(Component source, int id, Rectangle updateRect) �

This constructor creates a PaintEvent with the given source. The source is the
object whose display needs to be updated. The id field identifies the event
type. If system generated, the id will be one of the two constants described
previously. However, nothing stops you from creating your own id for your
event types. updateRect represents the rectangular area of source that needs
to be updated.

10 July 2002 22:18

Methods

public Rectangle getUpdateRect()
The getUpdateRect() method returns the rectangular area within the
PaintEvent’s source component that needs repainting. This area is set by
either the constructor or the setUpdateRect() method.

public void setUpdateRect(Rectangle updateRect)
The setUpdateRect() method changes the area of the PaintEvent’s source
component that needs repainting.

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is called in turn to build the string to display. At the PaintEvent level,
paramString() adds a string containing the event id (if available) along with
the area requiring repainting (a clipping rectangle). If you peek in the event
queue, one possible result may yield:

java.awt.event.PaintEvent[PAINT,updateRect=java.awt.Rectangle[x=0,y=0,
width=192,height=173]] on frame0

4.3.2.7 InputEvent

The InputEvent class provides the basis for the key and mouse input and move-
ment routines. KeyEvent and MouseEvent provide the specifics of each.

Constants The constants of InputEvent help identify which modifiers are
present when an input event occurs, as shown in Example 4-3. To examine the
event modifiers and test for the presence of these masks, call getModifiers() to
get the current set of modifiers.

public final static int ALT_MASK �

public final static int CTRL_MASK �

public final static int META_MASK �

public final static int SHIFT_MASK �

The first set of InputEvent masks are for the different modifier keys on the
keyboard. They are often set to indicate which button on a multibutton mouse
has been pressed.

public final static int BUTTON1_MASK �

public final static int BUTTON2_MASK �

public final static int BUTTON3_MASK �

The button mask constants are equivalents for the modifier masks, allowing
you to write more intelligible code for dealing with button events. BUT-

TON2_MASK is the same as ALT_MASK, and BUTTON3_MASK is the same as

4.3 THE JAV A 1.1 EVENT MODEL 131

10 July 2002 22:18

132 CHAPTER 4: EVENTS

META_MASK; BUTTON1_MASK currently isn’t usable and is never set. For example,
if you want to check whether the user pressed the second (middle) mouse but-
ton, you can test against BUTTON2_MASK rather than ALT_MASK. Example 4-3
demonstrates how to use these constants.

Constructors InputEvent is an abstract class with no public constructors.

Methods Unlike the Event class, InputEvent has an isAltDown() method to
check the ALT_MASK setting.

public boolean isAltDown() �

The isAltDown() method checks to see if ALT_MASK is set. If so, isAltDown()
returns true; other wise, it returns false.

public boolean isControlDown() �

The isControlDown() method checks to see if CONTROL_MASK is set. If so,
isControlDown() returns true; other wise, it returns false.

public boolean isMetaDown() �

The isMetaDown() method checks to see if META_MASK is set. If so, the method
isMetaDown() returns true; other wise, it returns false.

public boolean isShiftDown() �

The isShiftDown() method checks to see if SHIFT_MASK is set. If so, the
method isShiftDown() returns true; other wise, it returns false.

public int getModifiers() �

The getModifiers() method returns the current state of the modifier keys.
For each modifier key pressed, a different flag is raised in the return argu-
ment. To check if a modifier is set, AND the return value with a flag and check
for a nonzero value.

if ((ie.getModifiers() & MouseEvent.META_MASK) != 0) {
System.out.println ("Meta is set");

}

public long getWhen() �

The getWhen() method returns the time at which the event occurred. The
return value is in milliseconds. Convert the long value to a Date to examine
the contents. For example:

Date d = new Date (ie.getWhen());

public void consume() �

This class overrides the AWTEvent.consume() method to make it public. Any-
one, not just a subclass, can mark an InputEvent as consumed.

10 July 2002 22:18

public boolean isConsumed() �

This class overrides the AWTEvent.isconsumed() method to make it public.
Anyone can find out if an InputEvent has been consumed.

4.3.2.8 KeyEvent

The KeyEvent class is a subclass of InputEvent for dealing with keyboard events.
There are two fundamental key actions: key presses and key releases. These are
represented by KEY_PRESSED and KEY_RELEASED events. Of course, it’s inconvenient
to think in terms of all these individual actions, so Java also keeps track of the “log-
ical” keys you type. These are represented by KEY_TYPED events. For every keyboard
key pressed, a KeyEvent.KEY_PRESSED event occurs; the key that was pressed is
identified by one of the virtual keycodes from Table 4-4 and is available through
the getKeyCode() method. For example, if you type an uppercase A, you will get
two KEY_PRESSED events, one for shift (VK_SHIFT) and one for the “a” (VK_A). You
will also get two KeyEvent.KEY_RELEASED events. However, there will only be one
KeyEvent.KEY_TYPED event; if you call getKeyChar() for the KEY_TYPED event, the
result will be the Unicode character “A” (type char). KEY_TYPED events do not hap-
pen for action-oriented keys like function keys.

Constants Like the Event class, numerous constants help you identify all the
keyboard keys. Table 4-4 shows the constants that refer to these keyboard keys. The
values are all declared public static final int. A few keys represent ASCII
characters that have string equivalents like \n.

Table 4–4: Key Constants in Java 1.1

VK_ENTER VK_0 VK_A VK_F1 VK_ACCEPT

VK_BACK_SPACE VK_1 VK_B VK_F2 VK_CONVERT

VK_TAB VK_2 VK_C VK_F3 VK_FINAL

VK_CANCEL VK_3 VK_D VK_F4 VK_KANA

VK_CLEAR VK_4 VK_E VK_F5 VK_KANJI

VK_SHIFT VK_5 VK_F VK_F6 VK_MODECHANGE

VK_CONTROL VK_6 VK_G VK_F7 VK_NONCONVERT

VK_ALT VK_7 VK_H VK_F8

VK_PAUSE VK_8 VK_I VK_F9

VK_CAPS_LOCK VK_9 VK_J VK_F10

VK_ESCAPE VK_NUMPAD0 VK_K VK_F11

VK_SPACE VK_NUMPAD1 VK_L VK_F12

VK_PAGE_UP VK_NUMPAD2 VK_M VK_DELETE

4.3 THE JAV A 1.1 EVENT MODEL 133

10 July 2002 22:18

134 CHAPTER 4: EVENTS

Table 4–4: Key Constants in Java 1.1 (continued)

VK_PAGE_DOWN VK_NUMPAD3 VK_N VK_NUM_LOCK

VK_END VK_NUMPAD4 VK_O VK_SCROLL_LOCK

VK_HOME VK_NUMPAD5 VK_P VK_PRINTSCREEN

VK_LEFT VK_NUMPAD6 VK_Q VK_INSERT

VK_UP VK_NUMPAD7 VK_R VK_HELP

VK_RIGHT VK_NUMPAD8 VK_S VK_META

VK_DOWN VK_NUMPAD9 VK_T VK_BACK_QUOTE

VK_COMMA VK_MULTIPLY VK_U VK_QUOTE

VK_PERIOD VK_ADD VK_V VK_OPEN_BRACKET

VK_SLASH VK_W VK_CLOSE_BRACKETVK_SEPARATERa

VK_SEMICOLON VK_SUBTRACT VK_X

VK_EQUALS VK_DECIMAL VK_Y

VK_BACK_SLASH VK_DIVIDE VK_Z

a Expect VK_SEPARATOR to be added at some future point. This constant represents the numeric
separator key on your keyboard.

public final static int VK_UNDEFINED �

When a KEY_TYPED event happens, there is no keycode. If you ask for it, the
getKeyCode() method returns VK_UNDEFINED.

public final static char CHAR_UNDEFINED �

For KEY_PRESSED and KEY_RELEASED events that do not have a corresponding
Unicode character to display (like Shift), the getKeyChar() method returns
CHAR_UNDEFINED.

Other constants identify what the user did with a key.

public final static int KEY_FIRST �

public final static int KEY_LAST �

The KEY_FIRST and KEY_LAST constants hold the endpoints of the range of
identifiers for KeyEvent types.

public final static int KEY_PRESSED �

The KEY_PRESSED constant identifies key events that occur because a keyboard
key has been pressed. To differentiate between action and non-action keys, call
the isActionKey() method described later. The KeyListener.keyPressed()

inter face method handles this event.

10 July 2002 22:18

public final static int KEY_RELEASED �

The KEY_RELEASED constant identifies key events that occur because a key-
board key has been released. The KeyListener.keyReleased() inter face
method handles this event.

public final static int KEY_TYPED �

The KEY_TYPED constant identifies a combination of a key press followed by a
key release for a non-action oriented key. The KeyListener.keyTyped() inter-
face method handles this event.

Constructors

public KeyEvent(Component source, int id, long when, int modifiers, int keyCode,
char keyChar) �

This constructor* creates a KeyEvent with the given source; the source is the
object generating the event. The id field identifies the event type. If system-
generated, the id will be one of the constants above. However, nothing stops
you from creating your own id for your event types. The when parameter rep-
resents the time the event happened. The modifiers parameter holds the
state of the various modifier keys; masks to represent these keys are defined in
the InputEvent class. Finally, keyCode is the virtual key that triggered the
event, and keyChar is the character that triggered it.

The KeyEvent constructor throws the IllegalArgumentException run-time
exception in two situations. First, if the id is KEY_TYPED and keyChar is
CHAR_UNDEFINED, it throws an exception because if a key has been typed, it
must be associated with a character. Second, if the id is KEY_TYPED and key-

Code is not VK_UNDEFINED, it throws an exception because typed keys fre-
quently represent combinations of key codes (for example, Shift struck with
“a”). It is legal for a KEY_PRESSED or KEY_RELEASED event to contain both a
keyCode and a keyChar, though it’s not clear what such an event would repre-
sent.

Methods

public char getKeyChar() �

The getKeyChar() method retrieves the Unicode character associated with the
key in this KeyEvent. If there is no character, CHAR_UNDEFINED is returned.

public void setKeyChar(char KeyChar) �

The setKeyChar() method allows you to change the character for the
KeyEvent. You could use this method to convert characters to uppercase.

* Beta releases of Java 1.1 have an additional constructor that lacks the keyChar parameter. Comments
in the code indicate that this constructor will be deleted prior to the 1.1.1 release.

4.3 THE JAV A 1.1 EVENT MODEL 135

10 July 2002 22:18

136 CHAPTER 4: EVENTS

public int getKeyCode() �

The getKeyCode() method retrieves the virtual keycode (i.e., one of the con-
stants in Table 4-4) of this KeyEvent.

public void setKeyCode(int keyCode) �

The setKeyCode() method allows you to change the keycode for the KeyEvent.
Changes you make to the KeyEvent are seen by subsequent listeners and the
component’s peer.

public void setModifiers(int modifiers) �

The setModifiers() method allows you to change the modifier keys associ-
ated with a KeyEvent to modifiers. The parent class InputEvent already has a
getModifiers() method that is inherited. Since this is your own personal copy
of the KeyEvent, no other listener can find out about the change.

public boolean isActionKey() �

The isActionKey() method allows you to check whether the key associated
with the KeyEvent is an action key (e.g., function, arrow, keypad) or not (e.g.,
an alphanumeric key). For action keys, this method returns true; other wise, it
returns false. For action keys, the keyChar field usually has the value
CHAR_UNDEFINED.

public static String getKeyText (int keyCode) �

The static getKeyText() method returns the localized textual string for key-
Code. For each nonalphanumeric virtual key, there is a key name (the “key
text”); these names can be changed using the AWT properties. Table 4-5 shows
the properties used to redefine the key names and the default name for each
key.

Table 4–5: Key Text Properties

Property Default Property Default

AWT.accept Accept AWT.f8 F8

AWT.add NumPad + AWT.f9 F9

AWT.alt Alt AWT.help Help

AWT.backQuote Back Quote AWT.home Home

AWT.backSpace Backspace AWT.insert Insert

AWT.cancel Cancel AWT.kana Kana

AWT.capsLock Caps Lock AWT.kanji Kanji

AWT.clear Clear AWT.left Left

AWT.control Control AWT.meta Meta

AWT.decimal NumPad . AWT.modechange Mode Change

AWT.delete Delete AWT.multiply NumPad *

AWT.divide NumPad / AWT.noconvert No Convert

10 July 2002 22:18

Table 4–5: Key Text Properties (continued)

Property Default Property Default

AWT.down Down AWT.numLock Num Lock

AWT.end End AWT.numpad NumPad

AWT.enter Enter AWT.pause Pause

AWT.escape Escape AWT.pgdn Page Down

AWT.final Final AWT.pgup Page Up

AWT.f1 F1 AWT.printScreen Print Screen

AWT.f10 F10 AWT.quote Quote

AWT.f11 F11 AWT.right Right

AWT.f12 F12 AWT.scrollLock Scroll Lock

AWT.f2 F2 AWT.separator NumPad ,

AWT.f3 F3 AWT.shift Shift

AWT.f4 F4 AWT.space Space

AWT.f5 F5 AWT.subtract NumPad -

AWT.f6 F6 AWT.tab Tab

AWT.f7 F7 AWT.unknown Unknown keyCode

AWT.up Up

public static String getKeyModifiersText (int modifiers) �

The static getKeyModifiersText() method returns the localized textual string
for modifiers. The parameter modifiers is a combination of the key masks
defined by the InputEvent class. As with the keys themselves, each modifier is
associated with a textual name. If multiple modifiers are set, they are concate-
nated with a plus sign (+) separating them. Similar to getKeyText(), the
strings are localized because for each modifier, an awt property is available to
redefine the string. Table 4-6 lists the properties and the default modifier
names.

Table 4–6: Key Modifiers Text Properties

Property Default

AWT.alt Alt

AWT.control Ctrl

AWT.meta Meta

AWT.shift Shift

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is called in turn to build the string to display. At the KeyEvent level,

4.3 THE JAV A 1.1 EVENT MODEL 137

10 July 2002 22:18

138 CHAPTER 4: EVENTS

paramString() adds a textual string for the id (if available), the text for the
key (if available from getKeyText()), and modifiers (from getKeyModifiers-

Text()). A key press event would result in something like the following:

java.awt.event.KeyEvent[KEY_PRESSED,keyCode=118,
F7,modifiers=Ctrl+Shift] on textfield0

4.3.2.9 MouseEvent

The MouseEvent class is a subclass of InputEvent for dealing with mouse events.

Constants

public final static int MOUSE_FIRST �

public final static int MOUSE_LAST �

The MOUSE_FIRST and MOUSE_LAST constants hold the endpoints of the range
of identifiers for MouseEvent types.

public final static int MOUSE_CLICKED �

The MOUSE_CLICKED constant identifies mouse events that occur when a mouse
button is clicked. A mouse click consists of a mouse press and a mouse release.
The MouseListener.mouseClicked() inter face method handles this event.

public final static int MOUSE_DRAGGED �

The MOUSE_DRAGGED constant identifies mouse events that occur because the
mouse is moved over a component with a mouse button pressed. The interface
method MouseMotionListener.mouseDragged() handles this event.

public final static int MOUSE_ENTERED �

The MOUSE_ENTERED constant identifies mouse events that occur when the
mouse first enters a component. The MouseListener.mouseEntered() inter-
face method handles this event.

public final static int MOUSE_EXITED �

The MOUSE_EXISTED constant identifies mouse events that occur because the
mouse leaves a component’s space. The MouseListener.mouseExited() inter-
face method handles this event.

public final static int MOUSE_MOVED �

The MOUSE_MOVED constant identifies mouse events that occur because the
mouse is moved without a mouse button down. The interface method Mouse-

MotionListener.mouseMoved() handles this event.

public final static int MOUSE_PRESSED �

The MOUSE_PRESSED constant identifies mouse events that occur because a
mouse button has been pressed. The MouseListener.mousePressed() inter-
face method handles this event.

10 July 2002 22:18

public final static int MOUSE_RELEASED �

The MOUSE_RELEASED constant identifies mouse events that occur because a
mouse button has been released. The MouseListener.mouseReleased() inter-
face method handles this event.

Constructors

public MouseEvent(Component source, int id, long when, int modifiers, int x, int y,
int clickCount, boolean popupTrigger) �

This constructor creates a MouseEvent with the given source; the source is the
object generating the event. The id field serves as the identifier of the event
type. If system-generated, the id will be one of the constants described in the
previous section. However, nothing stops you from creating your own id for
your event types. The when parameter represents the time the event happened.
The modifiers parameter holds the state of the various modifier keys, using
the masks defined for the InputEvent class, and lets you determine which but-
ton was pressed. (x, y) represents the coordinates of the event relative to the
origin of source, while clickCount designates the number of consecutive
times the mouse button was pressed within an indeterminate time period.
Finally, the popupTrigger parameter signifies whether this mouse event should
trigger the display of a PopupMenu, if one is available. (The PopupMenu class is
discussed in Chapter 10, Would You Like to Choose from the Menu?)

Methods

public int getX() �

The getX() method returns the current x coordinate of the event relative to
the source.

public int getY() �

The getY() method returns the current y coordinate of the event relative to
the source.

public synchronized Point getPoint() �

The getPoint() method returns the current x and y coordinates of the event
relative to the event source.

public synchronized void translatePoint(int x, int y) �

The translatePoint() method translates the x and y coordinates of the
MouseEvent instance by x and y. This method functions similarly to the
Event.translate() method.

4.3 THE JAV A 1.1 EVENT MODEL 139

10 July 2002 22:18

140 CHAPTER 4: EVENTS

public int getClickCount() �

The getClickCount() method retrieves the current clickCount setting for the
event.

public boolean isPopupTrigger() �

The isPopupTrigger() method retrieves the state of the popupTrigger setting
for the event. If this method returns true and the source of the event has an
associated PopupMenu, the event should be used to display the menu, as shown
in the following code. Since the action the user performs to raise a pop-up
menu is platform specific, this method lets you raise a pop-up menu without
worr ying about what kind of event took place. You only need to call isPopup-
Trigger() and show the menu if it returns true.

public void processMouseEvent(MouseEvent e) {
if (e.isPopupTrigger())

aPopup.show(e.getComponent(), e.getX(), e.getY());
super.processMouseEvent(e);

}

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is called in turn to build the string to display. At the MouseEvent level,
a textual string for the id (if available) is tacked on to the coordinates, modi-
fiers, and click count. A mouse down event would result in something like the
following:

java.awt.event.MouseEvent[MOUSE_PRESSED,(5,7),mods=0,clickCount=2] on textfield0

4.3.2.10 ActionEvent

The ActionEvent class is the first higher-level event class. It encapsulates events
that signify that the user is doing something with a component. When the user
selects a button, list item, or menu item, or presses the Return key in a text field,
an ActionEvent passes through the event queue looking for listeners.

Constants

public final static int ACTION_FIRST �

public final static int ACTION_LAST �

The ACTION_FIRST and ACTION_LAST constants hold the endpoints of the range
of identifiers for ActionEvent types.

public final static int ACTION_PERFORMED �

The ACTION_PERFORMED constant represents when a user activates a compo-
nent. The ActionListener.actionPerformed() inter face method handles this
event.

10 July 2002 22:18

public static final int ALT_MASK �

public static final int CTRL_MASK �

public static final int META_MASK �

public static final int SHIFT_MASK �

Similar to the mouse events, action events have modifiers. However, they are
not automatically set by the system, so they don’t help you see what modifiers
were pressed when the event occurred. You may be able to use these constants
if you are generating your own action events. To see the value of an action
event’s modifiers, call getModifiers().

Constructors

public ActionEvent(Object source, int id, String command) �

This constructor creates an ActionEvent with the given source; the source is
the object generating the event. The id field serves as the identifier of the
event type. If system-generated, the id will be ACTION_PERFORMED. However,
nothing stops you from creating your own id for your event types. The com-

mand parameter is the event’s action command. Ideally, the action command
should be some locale-independent string identifying the user’s action. Most
components that generate action events set this field to the selected item’s
label by default.

public ActionEvent(Object source, int id, String command, int modifiers) �

This constructor adds modifiers to the settings for an ActionEvent. This
allows you to define action-oriented events that occur only if certain modifier
keys are pressed.

Methods

public String getActionCommand() �

The getActionCommand() method retrieves the command field from the event. It
represents the command associated with the object that triggered the event.
The idea behind the action command is to differentiate the command associ-
ated with some event from the displayed content of the event source. For
example, the action command for a button may be Help. However, what the
user sees on the label of the button could be a string localized for the environ-
ment of the user. Instead of having your event handler look for 20 or 30 possi-
ble labels, you can test whether an event has the action command Help.

public int getModifiers() �

The getModifiers() method returns the state of the modifier keys. For each
one set, a different flag is raised in the method’s return value. To check if a
modifier is set, AND the return value with a flag, and check for a nonzero
value.

4.3 THE JAV A 1.1 EVENT MODEL 141

10 July 2002 22:18

142 CHAPTER 4: EVENTS

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is called in turn to build the string to display. At the ActionEvent

level, paramString() adds a textual string for the event id (if available), along
with the command from the constructor. When the user selects a Button with
the action command Help, printing the resulting event yields:

java.awt.event.ActionEvent[ACTION_PERFORMED,cmd=Help] on button0

4.3.2.11 AdjustmentEvent

The AdjustmentEvent class is another higher-level event class. It encapsulates
events that represent scrollbar motions. When the user moves the slider of a scroll-
bar or scroll pane, an AdjustmentEvent passes through the event queue looking
for listeners. Although there is only one type of adjustment event, there are five
subtypes represented by constants UNIT_DECREMENT, UNIT_INCREMENT, and so on.

Constants

public final static int ADJUSTMENT_FIRST �

public final static int ADJUSTMENT_LAST �

The ADJUSTMENT_FIRST and ADJUSTMENT_LAST constants hold the endpoints of
the range of identifiers for AdjustmentEvent types.

public final static int ADJUSTMENT_VALUE_CHANGED �

The ADJUSTMENT_VALUE_CHANGED constant identifies adjustment events that
occur because a user moves the slider of a Scrollbar or ScrollPane. The
AdjustmentListener.adjustmentValueChanged() inter face method handles
this event.

public static final int UNIT_DECREMENT �

UNIT_DECREMENT identifies adjustment events that occur because the user
selects the increment arrow.

public static final int UNIT_INCREMENT �

UNIT_INCREMENT identifies adjustment events that occur because the user
selects the decrement arrow.

public static final int BLOCK_DECREMENT �

BLOCK_DECREMENT identifies adjustment events that occur because the user
selects the block decrement area, between the decrement arrow and the slider.

public static final int BLOCK_INCREMENT �

BLOCK_INCREMENT identifies adjustment events that occur because the user
selects the block increment area, between the increment arrow and the slider.

10 July 2002 22:18

public static final int TRACK �

TRACK identifies adjustment events that occur because the user selects the
slider and drags it. Multiple adjustment events of this subtype usually occur
consecutively.

Constructors

public AdjustmentEvent(Adjustable source, int id, int type, int value) �

This constructor creates an AdjustmentEvent with the given source; the
source is the object generating the event. The id field serves as the identifier
of the event type. If system-generated, the id of the AdjustmentEvent will be
ADJUSTMENT_VALUE_CHANGED. However, nothing stops you from creating your
own id for your event types. The type parameter is normally one of the five
subtypes, with value being the current setting of the slider, but is not
restricted to that.

Methods

public Adjustable getAdjustable() �

The getAdjustable() method retrieves the Adjustable object associated with
this event—that is, the event’s source.

public int getAdjustmentType() �

The getAdjustmentType() method retrieves the type parameter from the con-
structor. It represents the subtype of the current event and, if system-gener-
ated, is one of the following constants: UNIT_DECREMENT, UNIT_INCREMENT,
BLOCK_DECREMENT, BLOCK_INCREMENT, or TRACK.

public int getValue() �

The getValue() method retrieves the value parameter from the constructor.
It represents the current setting of the adjustable object.

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is called to help build the string to display. At the AdjustableEvent

level, paramString() adds a textual string for the event id (if available), along
with a textual string of the type (if available), and value. For example:

java.awt.event.AdjustableEvent[ADJUSTMENT_VALUE_CHANGED,
adjType=TRACK,value=27] on scrollbar0

4.3.2.12 ItemEvent

The ItemEvent class is another higher-level event class. It encapsulates events that
occur when the user selects a component, like ActionEvent. When the user selects

4.3 THE JAV A 1.1 EVENT MODEL 143

10 July 2002 22:18

144 CHAPTER 4: EVENTS

a checkbox, choice, list item, or checkbox menu item, an ItemEvent passes
through the event queue looking for listeners. Although there is only one type of
ItemEvent, there are two subtypes represented by the constants SELECTED and DE-

SELECTED.

Constants

public final static int ITEM_FIRST �

public final static int ITEM_LAST �

The ITEM_FIRST and ITEM_LAST constants hold the endpoints of the range of
identifiers for ItemEvent types.

public final static int ITEM_STATE_CHANGED �

The ITEM_STATE_CHANGED constant identifies item events that occur because a
user selects a component, thus changing its state. The interface method Item-

Listener.itemStateChanged() handles this event.

public static final int SELECTED �

SELECTED indicates that the user selected the item.

public static final int DESELECTED �

DESELECTED indicates that the user deselected the item.

Constructors

public ItemEvent(ItemSelectable source, int id, Object item, int stateChange) �

This constructor creates a ItemEvent with the given source; the source is the
object generating the event. The id field serves as the identifier of the event
type. If system-generated, the id will be ITEM_STATE_CHANGE. However, noth-
ing stops you from creating your own id for your event types. The item param-
eter represents the text of the item selected: for a Checkbox, this would be its
label, for a Choice the current selection. For your own events, this parameter
could be virtually anything, since its type is Object.

Methods

public ItemSelectable getItemSelectable() �

The getItemSelectable() method retrieves the ItemSelectable object associ-
ated with this event—that is, the event’s source.

public Object getItem() �

The getItem() method returns the item that was selected. This usually repre-
sents some text to help identify the source but could be nearly anything for
user-generated events.

10 July 2002 22:18

public int getStateChange() �

The getStateChange() method returns the stateChange parameter from the
constructor and, if system generated, is either SELECTED or DESELECTED.

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is called in turn to build the string to display. At the ItemEvent level,
paramString() adds a textual string for the event id (if available), along with a
textual string indicating the value of stateChange (if available) and item. For
example:

java.awt.event.ItemEvent[ITEM_STATE_CHANGED,item=Help,
stateChange=SELECTED] on checkbox1

4.3.2.13 TextEvent

The TextEvent class is yet another higher-level event class. It encapsulates events
that occur when the contents of a TextComponent have changed, although is not
required to have a TextComponent source. When the contents change, either pro-
grammatically by a call to setText() or because the user typed something, a
TextEvent passes through the event queue looking for listeners.

Constants

public final static int TEXT_FIRST �

public final static int TEXT_LAST �

The TEXT_FIRST and TEXT_LAST constants hold the endpoints of the range of
identifiers for TextEvent types.

public final static int TEXT_VALUE_CHANGED �

The TEXT_VALUE_CHANGED constant identifies text events that occur because a
user changes the contents of a text component. The interface method
TextListener.textValueChanged() handles this event.

Constructors

public TextEvent(Object source, int id) �

This constructor creates a TextEvent with the given source; the source is the
object generating the event. The id field identifies the event type. If system-
generated, the id will be TEXT_VALUE_CHANGE. However, nothing stops you
from creating your own id for your event types.

Method

public String paramString() �

When you call the toString() method of an AWTEvent, the paramString()

method is called in turn to build the string to display. At the TextEvent level,
paramString() adds a textual string for the event id (if available).

4.3 THE JAV A 1.1 EVENT MODEL 145

10 July 2002 22:18

146 CHAPTER 4: EVENTS

4.3.3 Event Listener Interfaces and Adapters
Java 1.1 has 11 event listener interfaces, which specify the methods a class must
implement to receive different kinds of events. For example, the ActionListener

inter face defines the single method that is called when an ActionEvent occurs.
These interfaces replace the various event-handling methods of Java 1.0: action()
is now the actionPerformed() method of the ActionListener inter face,
mouseUp() is now the mouseReleased() method of the MouseListener inter face,
and so on. Most of the listener interfaces have a corresponding adapter class,
which is an abstract class that provides a null implementation of all the methods in
the interface. (Although an adapter class has no abstract methods, it is declared
abstract to remind you that it must be subclassed.) Rather than implementing a
listener interface directly, you have the option of extending an adapter class and
overriding only the methods you care about. (Much more complex adapters are
possible, but the adapters supplied with AWT are very simple.) The adapters are
available for the listener interfaces with multiple methods. (If there is only one
method in the listener interface, there is no need for an adapter.)

This section describes Java 1.1’s listener interfaces and adapter classes. It’s worth
noting here that Java 1.1 does not allow you to modify the original event when
you’re writing an event handler.

4.3.3.1 ActionListener

The ActionListener inter face contains the one method that is called when an
ActionEvent occurs. It has no adapter class. For an object to listen for action
events, it is necessary to call the addActionListener() method with the class that
implements the ActionListener inter face as the parameter. The method addAc-

tionListener() is implemented by Button, List, MenuItem, and TextField com-
ponents. Other components don’t generate action events.

public abstract void actionPerformed(ActionEvent e) �

The actionPerformed() method is called when a component is selected or
activated. Every component is activated differently; for a List, activation
means that the user has double-clicked on an entry. See the appropriate sec-
tion for a description of each component.

actionPerformed() is the Java 1.1 equivalent of the action() method in the
1.0 event model.

4.3.3.2 AdjustmentListener

The AdjustmentListener inter face contains the one method that is called when
an AdjustmentEvent occurs. It has no adapter class. For an object to listen for
adjustment events, it is necessary to call addAdjustmentListener() with the class

10 July 2002 22:18

that implements the AdjustmentListener inter face as the parameter. The addAd-

justmentListener() method is implemented by the Scrollbar component and
the Adjustable inter face. Other components don’t generate adjustment events.

public abstract void adjustmentValueChanged(AdjustmentEvent e) �

The adjustmentValueChanged() method is called when a slider is moved. The
Scrollbar and ScrollPane components have sliders, and generate adjustment
events when the sliders are moved. (The TextArea and List components also
have sliders, but do not generate adjustment events.) See the appropriate sec-
tion for a description of each component.

There is no real equivalent to adjustmentValueChanged() in Java 1.0; to work
with scrolling events, you had to override the handleEvent() method.

4.3.3.3 ComponentListener and ComponentAdapter

The ComponentListener inter face contains four methods that are called when a
ComponentEvent occurs; component events are used for general actions on compo-
nents, like moving or resizing a component. The adapter class corresponding to
ComponentListener is ComponentAdapter. If you care only about one or two of the
methods in ComponentListener, you can subclass the adapter and override only
the methods that you are interested in. For an object to listen for component
events, it is necessary to call Component.addComponentListener() with the class
that implements the interface as the parameter.

public abstract void componentResized(ComponentEvent e) �

The componentResized() method is called when a component is resized (for
example, by a call to Component.setSize()).

public abstract void componentMoved(ComponentEvent e) �

The componentMoved() method is called when a component is moved (for
example, by a call to Component.setLocation()).

public abstract void componentShown(ComponentEvent e) �

The componentShown() method is called when a component is shown (for
example, by a call to Component.show()).

public abstract void componentHidden(ComponentEvent e) �

The componentHidden() method is called when a component is hidden (for
example, by a call to Component.hide()).

4.3.3.4 ContainerListener and ContainerAdapter

The ContainerListener inter face contains two methods that are called when a
ContainerEvent occurs; container events are generated when components are

4.3 THE JAV A 1.1 EVENT MODEL 147

10 July 2002 22:18

148 CHAPTER 4: EVENTS

added to or removed from a container. The adapter class for ContainerListener is
ContainerAdapter. If you care only about one of the two methods in Container-

Listener, you can subclass the adapter and override only the method that you are
interested in. For a container to listen for container events, it is necessary to call
Container.addContainerListener() with the class that implements the interface
as the parameter.

public abstract void componentAdded(ContainerEvent e) �

The componentAdded() method is called when a component is added to a con-
tainer (for example, by a call to Container.add()).

public abstract void componentRemoved(ContainerEvent e) �

The componentRemoved() method is called when a component is removed
from a container (for example, by a call to Container.remove()).

4.3.3.5 FocusListener and FocusAdapter

The FocusListener inter face has two methods, which are called when a Focus-

Event occurs. Its adapter class is FocusAdapter. If you care only about one of the
methods, you can subclass the adapter and override the method you are interested
in. For an object to listen for a FocusEvent, it is necessar y to call the Compo-

nent.addFocusListener() method with the class that implements the FocusLis-

tener inter face as the parameter.

public abstract void focusGained(FocusEvent e) �

The focusGained() method is called when a component receives input focus,
usually by the user clicking the mouse in the area of the component.

This method is the Java 1.1 equivalent of Component.gotFocus() in the Java
1.0 event model.

public abstract void focusLost(FocusEvent e) �

The focusLost() method is called when a component loses the input focus.

This method is the Java 1.1 equivalent of Component.lostFocus() in the Java
1.0 event model.

4.3.3.6 ItemListener

The ItemListener inter face contains the one method that is called when an Ite-

mEvent occurs. It has no adapter class. For an object to listen for an ItemEvent, it is
necessar y to call addItemListener() with the class that implements the ItemLis-

tener inter face as the parameter. The addItemListener() method is implemented
by the Checkbox, CheckboxMenuItem, Choice, and List components. Other compo-
nents don’t generate item events.

10 July 2002 22:18

public abstract void itemStateChanged(ItemEvent e) �

The itemStateChanged() method is called when a component’s state is modi-
fied. Every component is modified differently; for a List, modifying the com-
ponent means single-clicking on an entry. See the appropriate section for a
description of each component.

4.3.3.7 KeyListener and KeyAdapter

The KeyListener inter face contains three methods that are called when a
KeyEvent occurs; key events are generated when the user presses or releases keys.
The adapter class for KeyListener is KeyAdapter. If you only care about one or two
of the methods in KeyListener, you can subclass the adapter and only override the
methods that you are interested in. For an object to listen for key events, it is nec-
essar y to call Component.addKeyListener() with the class that implements the
inter face as the parameter.

public abstract void keyPressed(KeyEvent e) �

The keyPressed() method is called when a user presses a key. A key press is,
literally, just what it says. A key press event is called for every key that is
pressed, including keys like Shift and Control. Therefore, a KEY_PRESSED event
has a virtual key code identifying the physical key that was pressed; but that’s
not the same as a typed character, which usually consists of several key presses
(for example, Shift+A to type an uppercase A). The keyTyped() method
reports actual characters.

This method is the Java 1.1 equivalent of Component.keyDown() in the Java 1.0
event model.

public abstract void keyReleased(KeyEvent e) �

The keyReleased() method is called when a user releases a key. Like the key-
Pressed() method, when dealing with keyReleased(), you must think of vir-
tual key codes, not characters.

This method is the Java 1.1 equivalent of Component.keyUp() in the Java 1.0
event model.

public abstract void keyTyped(KeyEvent e) �

The keyTyped() method is called when a user types a key. The method key-

Typed() method reports the actual character typed. Action-oriented keys, like
function keys, do not trigger this method being called.

4.3.3.8 MouseListener and MouseAdapter

The MouseListener inter face contains five methods that are called when a non-
motion oriented MouseEvent occurs; mouse events are generated when the user
presses or releases a mouse button. (Separate classes, MouseMotionListener and

4.3 THE JAV A 1.1 EVENT MODEL 149

10 July 2002 22:18

150 CHAPTER 4: EVENTS

MouseMotionAdapter, are used to handle mouse motion events; this means that
you can listen for mouse clicks only, without being bothered by thousands of
mouse motion events.) The adapter class for MouseListener is MouseAdapter. If
you care about only one or two of the methods in MouseListener, you can subclass
the adapter and override only the methods that you are interested in. For an
object to listen for mouse events, it is necessary to call the method Window.addWin-

dowListener() with the class that implements the interface as the parameter.

public abstract void mouseEntered(MouseEvent e) �

The mouseEntered() method is called when the mouse first enters the bound-
ing area of the component.

This method is the Java 1.1 equivalent of Component.mouseEnter() in the Java
1.0 event model.

public abstract void mouseExited(MouseEvent e) �

The mouseExited() method is called when the mouse leaves the bounding
area of the component.

This method is the Java 1.1 equivalent of Component.mouseExit() in the Java
1.0 event model.

public abstract void mousePressed(MouseEvent e) �

The mousePressed() method is called each time the user presses a mouse but-
ton within the component’s space.

This method is the Java 1.1 equivalent of Component.mouseDown() in the Java
1.0 event model.

public abstract void mouseReleased(MouseEvent e) �

The mouseReleased() method is called when the user releases the mouse but-
ton after a mouse press. The user does not have to be over the original com-
ponent any more; the original component (i.e., the component in which the
mouse was pressed) is the source of the event.

This method is the Java 1.1 equivalent of Component.mouseUp() in the Java 1.0
event model.

public abstract void mouseClicked(MouseEvent e) �

The mouseClicked() method is called once each time the user clicks a mouse
button; that is, once for each mouse press/mouse release combination.

4.3.3.9 MouseMotionListener and MouseMotionAdapter

The MouseMotionListener inter face contains two methods that are called when a
motion-oriented MouseEvent occurs; mouse motion events are generated when the
user moves the mouse, whether or not a button is pressed. (Separate classes,

10 July 2002 22:18

MouseListener and MouseAdapter, are used to handle mouse clicks and enter-
ing/exiting components. This makes it easy to ignore mouse motion events, which
are very frequent and can hurt performance. You should listen only for mouse
motion events if you specifically need them.) MouseMotionAdapter is the adapter
class for MouseMotionListener. If you care about only one of the methods in
MouseMotionListener, you can subclass the adapter and override only the method
that you are interested in. For an object to listen for mouse motion events, it is
necessar y to call Component.addMouseMotionListener() with the class that imple-
ments the interface as the parameter.

public abstract void mouseMoved(MouseEvent e) �

The mouseMoved() method is called every time the mouse moves within the
bounding area of the component, and no mouse button is pressed.

This method is the Java 1.1 equivalent of Component.mouseMove() in the Java
1.0 event model.

public abstract void mouseDragged(MouseEvent e) �

The mouseDragged() method is called every time the mouse moves while a
mouse button is pressed. The source of the MouseEvent is the component that
was under the mouse when it was first pressed.

This method is the Java 1.1 equivalent of Component.mouseDrag() in the Java
1.0 event model.

4.3.3.10 TextListener

The TextListener inter face contains the one method that is called when a Text-
Event occurs. It has no adapter class. For an object to listen for a TextEvent, it is
necessar y to call addTextListener() with the class that implements the Text-

Listener inter face as the parameter. The addTextListener() method is imple-
mented by the TextComponent class, and thus the TextField and TextArea

components. Other components don’t generate text events.

public abstract void textValueChanged(TextEvent e) �

The textValueChanged() method is called when a text component’s contents
are modified, either by the user (by a keystroke) or programmatically (by the
setText() method).

4.3.3.11 WindowListener and WindowAdapter

The WindowListener inter face contains seven methods that are called when a Win-
dowEvent occurs; window events are generated when something changes the visibil-
ity or status of a window. The adapter class for WindowListener is WindowAdapter.

4.3 THE JAV A 1.1 EVENT MODEL 151

10 July 2002 22:18

152 CHAPTER 4: EVENTS

If you care about only one or two of the methods in WindowListener, you can sub-
class the adapter and override only the methods that you are interested in. For an
object to listen for window events, it is necessary to call the method Win-

dow.addWindowListener() or Dialog.addWindowListener() with the class that
implements the interface as the parameter.

public abstract void windowOpened(WindowEvent e) �

The windowOpened() method is called when a Window is first opened.

public abstract void windowClosing(WindowEvent e) �

The windowClosing() method is triggered whenever the user tries to close the
Window.

public abstract void windowClosed(WindowEvent e) �

The windowClosed() method is called after the Window has been closed.

public abstract void windowIconified(WindowEvent e) �

The windowIconified() method is called whenever a user iconifies a Window.

public abstract void windowDeiconified(WindowEvent e) �

The windowDeiconified() method is called when the user deiconifies the
Window.

public abstract void windowActivated(WindowEvent e) �

The windowActivated() method is called whenever a Window is brought to the
front.

public abstract void windowDeactivated(WindowEvent e) �

The windowDeactivated() method is called when the Window is sent away from
the front, either through iconification, closing, or another window becoming
active.

4.3.4 AWTEventMulticaster
The AWTEventMulticaster class is used by AWT to manage the listener queues for
the different events, and for sending events to all interested listeners when they
occur (multicasting). Ordinarily, you have no need to work with this class or know
about its existence. However, if you wish to create your own components that have
their own set of listeners, you can use the class instead of implementing your own
event-deliver y system. See “Constructor methods” in this section for more on how
to use the AWTEventMulticaster.

AWTEventMulticaster looks like a strange beast, and to some extent, it is. It con-
tains methods to add and remove every possible kind of listener and implements
all of the listener interfaces (11 as of Java 1.1). Because it implements all the lis-
tener interfaces, you can pass an event multicaster as an argument wherever you

10 July 2002 22:18

expect any kind of listener. However, unlike a class you might implement to listen
for a specific kind of event, the multicaster includes machinery for maintaining
chains of listeners. This explains the rather odd signatures for the add() and
remove() methods. Let’s look at one in particular:

public static ActionListener add(ActionListener first, ActionListener second)

This method takes two ActionListeners and returns another ActionListener.
The returned listener is actually an event multicaster that contains the two listen-
ers given as arguments in a linked list. However, because it implements the
ActionListener inter face, it is just as much an ActionListener as any class you
might write; the fact that it contains two (or more) listeners inside it is irrelevant.
Furthermore, both arguments can also be event multicasters, containing arbitrarily
long chains of action listeners; in this case, the returned listener combines the two
chains. Most often, you will use add to add a single listener to a chain that you’re
building, like this:

actionListenerChain=AWTEventMulticaster.add(actionListenerChain,
newActionListener);

actionListenerChain is an ActionListener—but it is also a multicaster holding a
chain of action listeners. To start a chain, use null for the first argument. You
rarely need to call the AWTEventMulticaster constructor. add() is a static method,
so you can use it with either argument set to null to start the chain.

Now that you can maintain chains of listeners, how do you use them? Simple; just
deliver your event to the appropriate method in the chain. The multicaster takes
care of sending the event to all the listeners it contains:

actionListenerChain.actionPerformed(new ActionEvent(...));

Variables

protected EventListener a; �

protected EventListener b; �

The a and b event listeners each consist of a chain of EventListeners.

Constructor methods

protected AWTEventMulticaster(EventListener a, EventListener b) �

The constructor is protected. It creates an AWTEventMulticaster instance
from the two chains of listeners. An instance is automatically created for you
when you add your second listener by calling an add() method.

4.3 THE JAV A 1.1 EVENT MODEL 153

10 July 2002 22:18

154 CHAPTER 4: EVENTS

Listener methods

These methods implement all of the listener interfaces. Rather than repeating all
the descriptions, the methods are just listed.

public void actionPerformed(ActionEvent e) �

public void adjustmentValueChanged(AdjustmentEvent e) �

public void componentAdded(ContainerEvent e) �

public void componentHidden(ComponentEvent e) �

public void componentMoved(ComponentEvent e) �

public void componentRemoved(ContainerEvent e) �

public void componentResized(ComponentEvent e) �

public void componentShown(ComponentEvent e) �

public void focusGained(FocusEvent e) �

public void focusLost(FocusEvent e) �

public void itemStateChanged(ItemEvent e) �

public void keyPressed(KeyEvent e) �

public void keyReleased(KeyEvent e) �

public void keyTyped(KeyEvent e) �

public void mouseClicked(MouseEvent e) �

public void mouseDragged(MouseEvent e) �

public void mouseEntered(MouseEvent e) �

public void mouseExited(MouseEvent e) �

public void mouseMoved(MouseEvent e) �

public void mousePressed(MouseEvent e) �

public void mouseReleased(MouseEvent e) �

public void textValueChanged(TextEvent e) �

public void windowActivated(WindowEvent e) �

public void windowClosed(WindowEvent e) �

public void windowClosing(WindowEvent e) �

public void windowDeactivated(WindowEvent e) �

public void windowDeiconified(WindowEvent e) �

public void windowIconified(WindowEvent e) �

public void windowOpened(WindowEvent e) �

These methods broadcast the event given as an argument to all the listeners.

Support methods

There is an add() method for every listener interface. Again, I’ve listed them with
a single description.

public static ActionListener add(ActionListener first, ActionListener second) �

public static AdjustmentListener add(AdjustmentListener first,
AdjustmentListener second) �

10 July 2002 22:18

public static ComponentListener add(ComponentListener first, ComponentListener second) �

public static ContainerListener add(ContainerListener first, ContainerListener second) �

public static FocusListener add(FocusListener first, FocusListener second) �

public static ItemListener add(ItemListener first, ItemListener second) �

public static KeyListener add(KeyListener first, KeyListener second)
public static MouseListener add(MouseListener first, MouseListener second) �

public static MouseMotionListener add(MouseMotionListener first,
MouseMotionListener second) �

public static TextListener add(TextListener first, TextListener second) �

public static WindowListener add(WindowListener first, WindowListener second) �

These methods combine the listener sets together; they are called by the “add
listener” methods of the various components. Usually, the first parameter is
the initial listener chain, and the second parameter is the listener to add. How-
ever, nothing forces that. The combined set of listeners is returned.

protected static EventListener addInternal(EventListener first, EventListener second) �

The addInternal() method is a support routine for the various add() meth-
ods. The combined set of listeners is returned.

Again, there are remove() methods for every listener type, and I’ve economized on
the descriptions.

public static ComponentListener remove(ComponentListener list,
ComponentListener oldListener) �

public static ContainerListener remove(ContainerListener list,
ContainerListener oldListener) �

public static FocusListener remove(FocusListener list, FocusListener oldListener) �

public static KeyListener remove(KeyListener list, KeyListener oldListener) �

public static MouseMotionListener remove(MouseMotionListener list,
MouseMotionListener oldListener) �

public static MouseListener remove(MouseListener list, MouseListener oldListener) �

public static WindowListener remove(WindowListener list, WindowListener oldListener) �

public static ActionListener remove(ActionListener list, ActionListener oldListener) �

public static ItemListener remove(ItemListener list, ItemListener oldListener) �

public static AdjustmentListener remove(AdjustmentListener list,
AdjustmentListener oldListener) �

public static TextListener remove(TextListener list, TextListener oldListener) �

These methods remove oldListener from the list of listeners, list. They are
called by the “remove listener” methods of the different components. If
oldListener is not found in the list, nothing happens. All these methods
return the new list of listeners.

4.3 THE JAV A 1.1 EVENT MODEL 155

10 July 2002 22:18

156 CHAPTER 4: EVENTS

protected static EventListener removeInternal(EventListener list,
EventListener oldListener) �

The removeInternal() method is a support routine for the various remove()
methods. It removes oldListener from the list of listeners, list. Nothing
happens if oldListener is not found in the list. The new set of listeners is
returned.

protected EventListener remove(EventListener oldListener) �

This remove() method removes oldListener from the AWTEventMulticaster.
It is a support routine for removeInternal().

protected void saveInternal(ObjectOutputStream s, String k) throws IOException �

The saveInternal() method is a support method for serialization.

4.3.4.1 Using an event multicaster

Example 4-4 shows how to use AWTEventMulticaster to create a component that
generates ItemEvents. The AWTEventMulticaster is used in the addItemLis-

tener() and removeItemListener() methods. When it comes time to generate the
event in processEvent(), the itemStateChanged() method is called to notify any-
one who might be interested. The item event is generated when a mouse button is
clicked; we just count the number of clicks to determine whether an item was
selected or deselected. Since we do not have any mouse listeners, we need to
enable mouse events with enableEvents() in the constructor, as shown in the fol-
lowing example.

Example 4–4: Using an AWTEventMulticaster

// Java 1.1 only
import java.awt.*;
import java.awt.event.*;
class ItemEventComponent extends Component implements ItemSelectable {

boolean selected;
int i = 0;
ItemListener itemListener = null;
ItemEventComponent () {

enableEvents (AWTEvent.MOUSE_EVENT_MASK);
}
public Object[] getSelectedObjects() {

Object o[] = new Object[1];
o[0] = new Integer (i);
return o;

}
public void addItemListener (ItemListener l) {

itemListener = AWTEventMulticaster.add (itemListener, l);
}
public void removeItemListener (ItemListener l) {

itemListener = AWTEventMulticaster.remove (itemListener, l);
}
public void processEvent (AWTEvent e) {

10 July 2002 22:18

Example 4–4: Using an AWTEventMulticaster (continued)

if (e.getID() == MouseEvent.MOUSE_PRESSED) {
if (itemListener != null) {

selected = !selected;
i++;
itemListener.itemStateChanged (

new ItemEvent (this, ItemEvent.ITEM_STATE_CHANGED,
getSelectedObjects(),
(selected?ItemEvent.SELECTED:ItemEvent.DESELECTED)));

}
}

}
}

public class ItemFrame extends Frame implements ItemListener {
ItemFrame () {

super ("Listening In");
ItemEventComponent c = new ItemEventComponent ();
add (c, "Center");
c.addItemListener (this);
c.setBackground (SystemColor.control);
setSize (200, 200);

}
public void itemStateChanged (ItemEvent e) {

Object[] o = e.getItemSelectable().getSelectedObjects();
Integer i = (Integer)o[0];
System.out.println (i);

}
public static void main (String args[]) {

ItemFrame f = new ItemFrame();
f.show();

}
}

The ItemFrame displays just an ItemEventComponent and listens for its item events.

The EventQueue class lets you manage Java 1.1 events directly. You don’t usually
need to manage events yourself; the system takes care of event delivery behind the
scene. However, should you need to, you can acquire the system’s event queue by
calling Toolkit.getSystemEventQueue(), peek into the event queue by calling
peekEvent(), or post new events by calling postEvent(). All of these operations
may be restricted by the SecurityManager. You should not remove the events from
the queue (i.e., don’t call getNextEvent()) unless you really mean to.

Constructors

public EventQueue() �

This constructor creates an EventQueue for those rare times when you need to
manage your own queue of events. More frequently, you just work with the
system event queue acquired through the Toolkit.

4.3 THE JAV A 1.1 EVENT MODEL 157

10 July 2002 22:18

158 CHAPTER 4: EVENTS

Methods

public synchronized AWTEvent peekEvent() �

The peekEvent() method looks into the event queue and returns the first
event, without removing that event. If you modify the event, your modifica-
tions are reflected in the event still on the queue. The returned object is an
instance of AWTEvent. If the queue is empty, peekEvent() returns null.

public synchronized AWTEvent peekEvent(int id) �

This peekEvent() method looks into the event queue for the first event of the
specified type. id is one of the integer constants from an AWTEvent subclass or
an integer constant of your own. If there are no events of the appropriate type
on the queue, peekEvent() returns null.

Note that a few of the AWTEvent classes have both event types and subtypes;
peekEvent() checks event types only and ignores the subtype. For example, to
find an ItemEvent, you would call peekEvent(ITEM_STATE_CHANGED). However,
a call to peekEvent(SELECTED) would return null, since SELECTED identifies an
ItemEvent subtype.

public synchronized void postEvent(AWTEvent theEvent) �

This version of postEvent() puts a new style (Java1.1) event on the event
queue.

public synchronized AWTEvent getNextEvent() throws InterruptedException �

The getNextEvent() method removes an event from the queue. If the queue
is empty, the call waits. The object returned is the item taken from the queue;
it is either an Event or an AWTEvent. If the method call is interrupted, the
method getNextEvent() throws an InterruptedException.

10 July 2002 22:18

5

Components

In this chapter:
• Component
• Labels
• Buttons
• A Simple Calculator
• Canvas
• Creating Your Own

Component
• Cursor

This chapter introduces the generic graphical widget used within the AWT pack-
age, Component, along with a trio of specific components: Label, Button, and Can-

vas. It also covers the Cursor class, new to Java 1.1. (Cursor support was previously
part of the Frame class.) Although many objects within AWT don’t subclass Compo-
nent, and though you will never create an instance of Component, anything that
provides screen-based user interaction and relies on the system for its layout will be
a child of Component. As a subclass of Component, each child inherits a common set
of methods and an API for dealing with the different events (i.e., mouse click, key-
board input) that occur within your Java programs.

After discussing the methods in Component classes, this chapter goes into detail
about two specific components, Label and Button. A Label is a widget that con-
tains descriptive text, usually next to an input field. A Button is a basic mechanism
that lets the user signal the desire to perform an action. You will learn about the
Canvas object and how to use a Canvas to create your own component. Finally, we
cover the Cursor class, which lets you change the cursor over a Component.

Before going into the mechanics of the Component class, it’s necessar y to say a little
about the relationship between components and containers. A Container is also a
component with the ability to contain other components. There are several differ-
ent kinds of containers; they are discussed in Chapter 6, Containers. To display a
component, you have to put it in a container by calling the container’s add()

method. We often call the container that holds a component the component’s
parent ; likewise, we call the components a container holds its children. Certain oper-
ations are legal only if a component has a parent—that is, the component is in a
container. Of course, since containers are components, containers can contain
other containers, ad infinitum.

159

10 July 2002 22:19

160 CHAPTER 5: COMPONENTS

NOTE If you think some component is missing a method that should obvi-
ously be there, check the methods it inherits. For example, the Label
class appears to lack a setFont() method. Obviously, labels ought to
be able to change their fonts. The setFont() method really is there;
it is inherited from the Component class, and therefore, not docu-
mented as part of the Label class. Even if you’re familiar with object-
oriented techniques, the need to work up a class hierarchy to find all
of the class’s methods can lead to confusion and frustration. While
all Java objects inherit methods from other classes, the potential for
confusion is worst with components, which inherit over a hundred
methods from Component and may only have a few methods of their
own.

5.1 Component
Ever y GUI-based program consists of a screen with a set of objects. With Java, these
objects are called components. Some of the more frequently used components are
buttons, text fields, and containers.

A container is a special component that allows you to group different components
together within it. You will learn more about containers in the next chapter, but
they are in fact just another kind of component. Also, some of the parameters and
return types for the methods of Component have not been explained yet and have
their own sections in future chapters.

5.1.1 Component Methods
Constants

Prior to Java 1.1, you could not subclass Component or Container. With the in-
troduction of the LightweightPeer, you can now subclass either Component or
Container. However, since you no longer have a native peer, you must rely on your
container to provide a display area and other services that are normally provided
by a full-fledged peer. Because you cannot rely on your peer to determine your
alignment, the Component class now has five constants to indicate six possible align-
ment settings (one constant is used twice). The alignment constants designate
where to position a lightweight component; their values range from 0.0 to 1.0. The
lower the number, the closer the component will be placed to the origin (top left
corner) of the space allotted to it.*

* As of Beta 3, these constants appear to be seldom used. The getAlignmentX() and getAlignmentY()
methods return these values, but there are no setAlignment methods.

10 July 2002 22:19

public static final float BOTTOM_ALIGNMENT �

The BOTTOM_ALIGNMENT constant indicates that the component should align
itself to the bottom of its available space. It is a return value from the method
getAlignmentY().

public static final float CENTER_ALIGNMENT �

The CENTER_ALIGNMENT constant indicates that the component should align
itself to the middle of its available space. It is a return value from either the
getAlignmentX() or getAlignmentY() method. This constant represents both
the horizontal and vertical center.

public static final float LEFT_ALIGNMENT �

The LEFT_ALIGNMENT constant indicates that the component should align itself
to the left side of its available space. It is a return value from getAlignmentX().

public static final float RIGHT_ALIGNMENT �

The RIGHT_ALIGNMENT constant indicates that the component should align
itself to the right side of its available space. It is a return value from the
method getAlignmentX().

public static final float TOP_ALIGNMENT �

The TOP_ALIGNMENT constant indicates that the component should align itself
to the top of its available space. It is a return value from getAlignmentY().

Variables

protected Locale locale �

The protected locale variable can be accessed by calling the getLocale()

method.

Constructor

Prior to Java 1.1, there was no public or protected constructor for Component. Only
package members were able to subclass Component directly. With the introduction
of lightweight peers, components can exist without a native peer, so the construc-
tor was made protected, allowing you to create your own Component subclasses.

protected Component() �

The constructor for Component creates a new component without a native peer.
Since you no longer have a native peer, you must rely on your container to
provide a display area. This allows you to create components that require
fewer system resources than components that subclass Canvas. The example
in the “Using an event multicaster” section of the previous chapter is of a
lightweight component. Use the SystemColor class to help you colorize the
new component appropriately or make it transparent.

5.1 COMPONENT 161

10 July 2002 22:19

162 CHAPTER 5: COMPONENTS

Appearance

public Toolkit getToolkit ()
The getToolkit() method returns the current Toolkit of the Component. This
returns the parent’s Toolkit (from a getParent() call) when the Component

has not been added to the screen yet or is lightweight. If there is no parent,
getToolkit() returns the default Toolkit. Through the Toolkit, you have
access to the details of the current platform (like screen resolution, screen
size, and available fonts), which you can use to adjust screen real estate
requirements or check on the availability of a font.

public Color getForeground ()
The getForeground() method returns the foreground color of the compo-
nent. If no foreground color is set for the component, you get its parent’s fore-
ground color. If none of the component’s parents have a foreground color
set, null is returned.

public void setForeground (Color c)
The setForeground() method changes the current foreground color of the
area of the screen occupied by the component to c. After changing the color,
it is necessary for the screen to refresh before the change has any effect. To
refresh the screen, call repaint().

public Color getBackground ()
The getBackground() method returns the background color of the compo-
nent. If no background color is set for the component, its parent’s back-
ground color is retrieved. If none of the component’s parents have a back-
ground color set, null is returned.

public void setBackground (Color c)
The setBackground() method changes the current background color of the
area of the screen occupied by the component to c. After changing the color,
it is necessary for the screen to refresh before the change has any affect. To
refresh the screen, call repaint().

public Font getFont ()
The getFont() method returns the font of the component. If no font is set for
the component, its parent’s font is retrieved. If none of the component’s par-
ents have a font set, null is returned.

public synchronized void setFont (Font f)
The setFont() method changes the component’s font to f. If the font family
(such as TimesRoman) provided within f is not available on the current plat-
form, the system uses a default font family, along with the supplied size and
style (plain, bold, italic). Depending upon the platform, it may be necessary to
refresh the component/screen before seeing any changes.

10 July 2002 22:19

Changing the font of a component could have an affect on the layout of the
component.

public synchronized ColorModel getColorModel ()
The getColorModel() method returns the ColorModel used to display the cur-
rent component. If the component is not displayed, the ColorModel from the
component’s Toolkit is used. The normal ColorModel for a Java program is 8
bits each for red, green, and blue.

public Graphics getGraphics ()
The getGraphics() method gets the component’s graphics context. Most non-
container components do not manage them correctly and therefore throw an
InternalError exception when you call this method. The Canvas component
is one that does since you can draw on that directly. If the component is not
visible, null is returned.

public FontMetrics getFontMetrics (Font f)
The getFontMetrics() method retrieves the component’s view of the Font-

Metrics for the requested font f. Through the FontMetrics, you have access
to the platform-specific sizing for the appearance of a character or string.

public Locale getLocale () �

The getLocale() method retrieves the current Locale of the component, if it
has one. Using a Locale allows you to write programs that can adapt them-
selves to different languages and different regional variants. If no Locale has
been set, getLocale() returns the parent’s Locale.* If the component has no
locale of its own and no parent (i.e., it isn’t in a container), getLocale()
throws the run-time exception IllegalComponentStateException.

public void setLocale (Locale l) �

The setLocale() method changes the current Locale of the component to l.
In order for this change to have any effect, you must localize your components
so that they have different labels or list values for different environments.
Localization is part of the broad topic of internationalization and is beyond
the scope of this book.

public Cursor getCursor () �

The getCursor() method retrieves the component’s current Cursor. If one
hasn’t been set, the default is Cursor.DEFAULT_CURSOR. The Cursor class is
described fully in Section 5.7. Prior to Java 1.1, the ability to associate cursors
with components was restricted to frames.

* For more on the Locale class, see the Java Fundamental Classes Reference from O’Reilly & Associates.

5.1 COMPONENT 163

10 July 2002 22:19

164 CHAPTER 5: COMPONENTS

public synchronized void setCursor (Cursor c) �

The setCursor() method changes the current Cursor of the component to c.
The change takes effect as soon as the cursor is moved. Lightweight compo-
nents cannot change their cursors.

Positioning/Sizing

Component provides a handful of methods for positioning and sizing objects. Most
of these are used behind the scenes by the system. You will also need them if you
create your own LayoutManager or need to move or size an object. All of these
depend on support for the functionality from the true component’s peer.

public Point getLocation () �

public Point location () ✩

The getLocation() method returns the current position of the Component in
its parent’s coordinate space. The Point is the top left corner of the bounding
box around the Component.

location()is the Java 1.0 name for this method.

public Point getLocationOnScreen () �

The getLocationOnScreen() method returns the current position of the Com-

ponent in the screen’s coordinate space. The Point is the top left corner of the
bounding box around the Component. If the component is not showing, the
getLocationOnScreen() method throws the IllegalComponentStateExcep-

tion run-time exception.

public void setLocation (int x, int y) �

public void move (int x, int y) ✩

The setLocation() method moves the Component to the new position (x, y).
The coordinates provided are in the parent container’s coordinate space. This
method calls setBounds() to move the component. The LayoutManager of the
container may make it impossible to change a component’s location.

Calling this method with a new position for the component generates a Compo-
nentEvent with the ID COMPONENT_MOVED.

move()is the Java 1.0 name for this method.

public void setLocation (Point p) �

This setLocation() method moves the component to the position specified
by the given Point. It is the same as calling setLocation(p.x, p.y).

Calling this method with a new position for the component generates a Compo-
nentEvent with the ID COMPONENT_MOVED.

10 July 2002 22:19

public Dimension getSize () �

public Dimension size () ✩

The getSize() method returns the width and height of the component as a
Dimension object.

size()is the Java 1.0 name for this method.

public void setSize (int width, int height) �

public void resize (int width, int height) ✩

The setSize() method changes the component’s width and height to the
width and height provided. width and height are specified in pixels. The
component is resized by a call to setBounds(). The LayoutManager of the
Container that contains the component may make it impossible to change a
component’s size.

Calling this method with a new size for the component generates a Component-
Event with the ID COMPONENT_RESIZED.

resize()is the Java 1.0 name for this method.

public void setSize (Dimension d) �

public void resize (Dimension d) ✩

This setSize() method changes the component’s width and height to the
Dimension d provided. The Dimension object includes the width and height
attributes in one object. The component is resized by a call to the setBounds()
method. The LayoutManager of the Container that contains the component
may make it impossible to change a component’s size.

Calling this method with a new size for the component generates a Component-
Event with the ID COMPONENT_RESIZED.

resize()is the Java 1.0 name for this method.

public Rectangle getBounds () �

public Rectangle bounds () ✩

The getBounds() method returns the bounding rectangle of the object. The
fields of the Rectangle that you get back contain the component’s position
and dimensions.

bounds()is the Java 1.0 name for this method.

public void setBounds (int x, int y, int width, int height) �

public void reshape (int x, int y, int width, int height) ✩

The setBounds() method moves and resizes the component to the bounding
rectangle with coordinates of (x, y) (top left corner) and width height. If the
size and shape have not changed, no reshaping is done. If the component is
resized, it is invalidated, along with its parent container. The LayoutManager of

5.1 COMPONENT 165

10 July 2002 22:19

166 CHAPTER 5: COMPONENTS

the Container that contains the component may make it impossible to change
the component’s size or position. Calling setBounds() invalidates the
container, which results in a call to the LayoutManager to rearrange the
container’s contents. In turn, the LayoutManager calls setBounds() to give the
component its new size and position, which will probably be the same size and
position it had originally. In short, if a layout manager is in effect, it will proba-
bly undo your attempts to change the component’s size and position.

Calling this method with a new size for the component generates a Component-
Event with the ID COMPONENT_RESIZED. Calling this method with a new posi-
tion generates a ComponentEvent with the ID COMPONENT_MOVED.

reshape()is the Java 1.0 name for this method.

public void setBounds (Rectangle r) �

This setBounds() method calls the previous method with parameters of r.x,
r.y, r.width, and r.height.

Calling this method with a new size for the component generates a Component-
Event with the ID COMPONENT_RESIZED. Calling this method with a new posi-
tion generates a ComponentEvent with the ID COMPONENT_MOVED.

public Dimension getPreferredSize () �

public Dimension preferredSize () ✩

The getPreferredSize() method returns the Dimension (width and height)
for the preferred size of the component. Each component’s peer knows its
preferred size. Lightweight objects return getSize().

preferredSize()is the Java 1.0 name for this method.

public Dimension getMinimumSize () �

public Dimension minimumSize () ✩

The getMinimumSize() method returns the Dimension (width and height) for
the minimum size of the component. Each component’s peer knows its mini-
mum size. Lightweight objects return getSize(). It is possible that the meth-
ods getMinimumSize() and getPreferredSize() will return the same dimen-
sions.

minimumSize()is the Java 1.0 name for this method.

public Dimension getMaximumSize () �

The getMaximumSize() method returns the Dimension (width and height) for
the maximum size of the component. This may be used by a layout manager to
prevent a component from growing beyond a predetermined size. None of the
java.awt layout managers call this method. By default, the value returned is
Short.MAX_VALUE for both dimensions.

10 July 2002 22:19

public float getAlignmentX () �

The getAlignmentX() method returns the alignment of the component along
the x axis. The alignment could be used by a layout manager to position this
component relative to others. The return value is between 0.0 and 1.0. Values
nearer 0 indicate that the component should be placed closer to the left edge
of the area available. Values nearer 1 indicate that the component should be
placed closer to the right. The value 0.5 means the component should be cen-
tered. The default setting is Component.CENTER_ALIGNMENT.

public float getAlignmentY () �

The getAlignmentY() method returns the alignment of the component along
the y axis. The alignment could be used by a layout manager to position this
component relative to others. The return value is between 0.0 and 1.0. Values
nearer 0 indicate that the component should be placed closer to the top of the
area available. Values nearer 1 indicate that the component should be placed
closer to the bottom. The value 0.5 means the component should be centered.
The default setting is Component.CENTER_ALIGNMENT.

public void doLayout () �

public void layout () ✩

The doLayout() method of Component does absolutely nothing. It is called
when the Component is validated (through the validate() method). The
Container class overrides this method.

layout()is the Java 1.0 name for this method.

public boolean contains (int x, int y) �

public boolean inside (int x, int y) ✩

The contains() method checks if the x and y coordinates are within the
bounding box of the component. If the Component is not rectangular, the
method acts as if there is a rectangle around the Component. contains()
returns true if the x and y coordinates are within the component, false oth-
er wise.

inside()is the Java 1.0 name for this method.

public boolean contains (Point p) �

This contains() method calls the previous method with parameters of p.x
and p.y.

public Component getComponentAt (int x, int y) �

public Component locate (int x, int y) ✩

The getComponentAt() method uses contains() to see if the x and y coordi-
nates are within the component. If they are, this method returns the Compo-

nent. If they aren’t, it returns null. getComponentAt() is overridden by
Container to provide enhanced functionality.

5.1 COMPONENT 167

10 July 2002 22:19

168 CHAPTER 5: COMPONENTS

locate()is the Java 1.0 name for this method.

public Component getComponentAt (Point p) �

This getComponentAt() method calls the previous method with parameters of
p.x and p.y.

Painting

The only methods in this section that you call directly are the versions of
repaint(). The paint() and update() methods are called by the system when the
display area requires refreshing, such as when a user resizes a window. When your
program changes the display you should call repaint() to trigger a call to
update() and paint(). Other wise, the system is responsible for updating the dis-
play.

public void paint (Graphics g)
The paint() method is offered so the system can display whatever you want in
a Component. In the base Component class, this method does absolutely noth-
ing. Ordinarily, it would be overridden in an applet to do something other
than the default, which is display a box in the current background color. g is
the graphics context of the component being drawn on.

public void update (Graphics g)
The update() method is automatically called when you ask to repaint the Com-
ponent. If the component is not lightweight, the default implementation of
update() clears graphics context g by drawing a filled rectangle in the back-
ground color, resetting the color to the current foreground color, and calling
paint(). If you do not override update() when you do animation, you will see
some flickering because Component clears the screen. Animation is discussed in
Chapter 2, Simple Graphics.

public void paintAll (Graphics g)
The paintAll() method validates the component and paints its peer if it is vis-
ible. g represents the graphics context of the component. This method is
called when the paintComponents() method of Container is called.

public void repaint ()
The repaint() method requests the scheduler to redraw the component as
soon as possible. This will result in update() getting called soon thereafter.
There is not a one-to-one correlation between repaint() and update() calls. It
is possible that multiple repaint() calls can result in a single update().

10 July 2002 22:19

public void repaint (long tm)
This version of repaint() allows for a delay of tm milliseconds. It says, please
update this component within tm milliseconds, which may happen immedi-
ately.

public void repaint (int x, int y, int width, int height)
This version of repaint() allows you to select the region of the Component you
desire to be updated. (x, y) are the coordinates of the upper left corner of the
bounding box of the component with dimensions of widthheight. This is sim-
ilar to creating a clipping area and results in a quicker repaint.

public void repaint (long tm, int x, int y, int width, int height)
This final version of repaint() is what the other three repaint() methods
call. tm is the maximum delay in milliseconds before update should be called.
(x, y) are the coordinates of the upper left corner of the clipping area of the
component with dimensions of width height.

public void print (Graphics g)
The default implementation of the print() method calls paint().

In Java 1.0, there was no way to print; in Java 1.1, if the graphics parameter
implements PrintGraphics, anything drawn on g will be printed. Printing is
covered in Chapter 17, Printing.

public void printAll (Graphics g)
The printAll() method validates the component and paints its peer if it is vis-
ible. g represents the graphics context of the component. This method is
called when the printComponents() method of Container is called or when
you call it with a PrintGraphics parameter.

The default implementation of printAll() is identical to paintAll(). As with
paintAll(), g represents the graphics context of the component; if g imple-
ments PrintGraphics, it can be printed.

Imaging

Background information about using images is discussed in Chapter 2 and Chap-
ter 12, Image Processing. The imageUpdate() method of Component is the sole
method of the ImageObserver inter face. Since images are loaded in a separate
thread, this method is called whenever additional information about the image
becomes available.

public boolean imageUpdate (Image image, int infoflags, int x, int y, int width, int height)
imageUpdate() is the java.awt.image.ImageObserver method implemented
by Component. It is an asynchronous update interface for receiving

5.1 COMPONENT 169

10 July 2002 22:19

170 CHAPTER 5: COMPONENTS

notifications about Image information as image is loaded and is automatically
called when additional information becomes available. This method is neces-
sar y because image loading is done in a separate thread from the getImage()

call. Ordinarily, x and y would be the coordinates of the upper left corner of
the image loaded so far, usually (0, 0). However, the method imageUpdate() of
the component ignores these parameters. width and height are the image’s
dimensions, so far, in the loading process.

The infoflags parameter is a bit-mask of information available to you about
image. Please see the text about ImageObserver in Chapter 12 for a complete
description of the different flags that can be set. When overriding this
method, you can wait for some condition to be true by checking a flag in your
program and then taking the desired action. To check for a particular flag,
per form an AND (&) of infoflags and the constant. For example, to check if
the FRAMEBITS flag is set:

if ((infoflags & ImageObserver.FRAMEBITS) == ImageObserver.FRAMEBITS)
System.out.println ("The Flag is set");

The return value from a call to imageUpdate() is true if image has changed
and false other wise.

Two system properties let the user control the behavior of updates:

• awt.image.incrementaldraw allows the user to control whether or not
partial images are displayed. Initially, the value of incrementaldraw is
unset and defaults to true, which means that partial images are drawn. If
incrementaldraw is set to false, the image will be drawn only when it is
complete or when the screen is resized or refreshed.

• awt.image.redrawrate allows the user to change the delay between suc-
cessive repaints. If not set, the default redraw rate is 100 milliseconds.

public Image createImage (int width, int height)
The createImage() method creates an empty Image of size width height. The
returned Image is an in-memory image that can be drawn on for double
buffering to manipulate an image in the background. If an image of size width
height cannot be created, the call returns null. In order for createImage() to
succeed, the peer of the Component must exist; if the component is lightweight,
the peer of the component’s container must exist.

public Image createImage (ImageProducer producer)
This createImage() method allows you to take an existing image and modify it
in some way to produce a new Image. This can be done through ImageFilter

and FilteredImageSource or a MemoryImageSource, which accepts an array of
pixel information. You can learn more about these classes and this method in
Chapter 12.

10 July 2002 22:19

public boolean prepareImage (Image image, ImageObserver observer)
The prepareImage() method forces image to start loading, asynchronously, in
another thread. observer is the Component that image will be rendered on and
is notified (via imageUpdate()) as image is being loaded. In the case of an
Applet, this would be passed as the ImageObserver. If image has already been
fully loaded, prepareImage() returns true. Other wise, false is returned.
Since image is loaded asynchronously, prepareImage() returns immediately.
Ordinarily, prepareImage() would be called by the system when image is first
needed to be displayed (in drawImage() within paint()). As more information
about the image gets loaded, imageUpdate() is called periodically.

If you do not want to go through the trouble of creating a MediaTracker

instance to start the loading of the image objects, you can call prepareImage()
to trigger the start of image loading prior to a call to drawImage().

If image has already started loading when this is called or if this is an in-mem-
or y image, there is no effect.

public boolean prepareImage (Image image, int width, int height, ImageObserver observer)
This version of prepareImage() is identical to the previous one, with the addi-
tion of a scaling factor of widthheight. As with other width and height

parameters, the units for these parameters are pixels. Also, if width and
height are −1, no scaling factor is assumed. This method is called by one of
the internal MediaTracker methods.

public int checkImage (Image image, ImageObserver observer)
The checkImage() method returns the status of the construction of a screen
representation of image, being watched by observer. If image has not started
loading yet, this will not start it. The return value is the ImageObserver flags
ORed together for the data that is now available. The available ImageObserver
flags are: WIDTH, HEIGHT, PROPERTIES, SOMEBITS, FRAMEBITS, ALLBITS, ERROR,
and ABORT. See Chapter 12 for a complete description of ImageObserver.

public int checkImage (Image image, int width, int height, ImageObserver observer)
This version of checkImage() is identical to the previous one, with the addi-
tion of a scaling factor of widthheight. If you are using the drawImage() ver-
sion with width and height parameters, you should use this version of
checkImage() with the same width and height.

Peers

public ComponentPeer getPeer () ✩

The getPeer() method returns a reference to the component’s peer as a Com-
ponentPeer object. For example, if you issue this method from a Button

object, getPeer() returns an instance of the ComponentPeer subclass Button-
Peer.

5.1 COMPONENT 171

10 July 2002 22:19

172 CHAPTER 5: COMPONENTS

This method is flagged as deprecated in comments but not with @deprecated.
There is no replacement method for Java 1.1.

public void addNotify ()
The addNotify() method is overridden by each individual component type.
When addNotify() is called, the peer of the component gets created, and the
Component is invalidated. The addNotify() method is called by the system
when it needs to create the peer. The peer needs to be created when a Compo-
nent is first shown, or when a new Component is added to a Container and the
Container is already being shown (in which case it already has a peer, but a
new one must be created to take account of the new Component). If you over-
ride this method for a specific Component, call super.addNotify() first, then
do what you need for the Component. You will then have information available
about the newly created peer.

Certain tasks cannot succeed unless the peer has been created. An incomplete
list includes finding the size of a component, laying out a container (because
it needs the component’s size), and creating an Image object. Peers are dis-
cussed in more depth in Chapter 15, Toolkit and Peers.

public synchronized void removeNotify ()
The removeNotify() method destroys the peer of the component and
removes it from the screen. The state information about the Component is
retained by the specific subtype. The removeNotify() method is called by the
system when it determines the peer is no longer needed. Such times would be
when the Component is removed from a Container, when its container
changes, or when the Component is disposed. If you override this method for a
specific Component, issue the particular commands for you need for this
Component, then call super.removeNotify() last.

State Procedures

These methods determine whether the component is ready to be displayed and
can be seen by the user. The first requirement is that it be valid—that is, whether
the system knows its size, and (in the case of a container) whether the layout man-
ager is aware of all its parts and has placed them as requested. A component
becomes invalid if the size has changed since it was last displayed. If the compo-
nent is a container, it becomes invalid when one of the components contained
within it becomes invalid.

Next, the component must be visible—a possibly confusing term, because compo-
nents can be considered “visible” without being seen by the user. Frames (because
they have their own top-level windows) are not visible until you request that they
be shown, but other components are visible as soon as you create them.

10 July 2002 22:19

Finally, to be seen, a component must be showing. You show a component by
adding it to its container. For something to be showing, it must be visible and be in
a container that is visible and showing.

A subsidiar y aspect of state is the enabled quality, which determines whether a com-
ponent can accept input.

public boolean isValid ()
The isValid() method tells you whether or not the component needs to be
laid out.

public void validate ()
The validate() method sets the component’s valid state to true. Ordinarily,
this is done for you when the Component is laid out by its Container. Since
objects are invalid when they are first drawn on the screen, you should call
validate() to tell the system you are finished adding objects so that it can vali-
date the screen and components. One reason you can override validate() is
to find out when the container that the component exists in has been resized.
The only requirement when overriding is that the original validate() be
called. With Java 1.1, instead of overriding, you can listen for resize events.

public void invalidate ()
The invalidate() method sets the component’s valid state to false and prop-
agates the invalidation to its parent. Ordinarily, this is done for you, or should
be, whenever anything that affects the layout is changed.

public boolean isVisible ()
The isVisible() methods tells you if the component is currently visible. Most
components are initially visible, except for top-level objects like frames. Any
component that is visible will be shown on the screen when the screen is
painted.

public boolean isShowing ()
The isShowing() method tells you if the component is currently shown on the
screen. It is possible for isVisible() to return true and isShowing() to
return false if the screen has not been painted yet.

Table 5-1 compares possible return values from isVisible() and isShowing().
The first two entries are for objects that have their own Window. These will always
return the same values for isVisible() and isShowing(). The next three are for
Component objects that exist within a Window, Panel, or Applet. The visible setting is
always initially true. However, the showing setting is not true until the object is
actually drawn. The last case shows another possibility. If the component exists
within an invisible Container, the component will be visible but will not be shown.

5.1 COMPONENT 173

10 July 2002 22:19

174 CHAPTER 5: COMPONENTS

Table 5–1: isVisible vs. isShowing

Happenings isVisible isShowing

Frame created false false

Frame f = new Frame ()

Frame showing true true

f.show ()

Component created true false

Button b= new Button (“Help”)

Button added to screen in init() true false

add (b)

Container laid out with Button in it true true

Button within Panel that is not visible true false

public void show ()
The show() method displays a component by making it visible and showing its
peer. The parent Container becomes invalid because the set of children to dis-
play has changed. You would call show() directly to display a Frame or Dialog.

In Java 1.1, you should use setVisible() instead.

public void hide ()
The hide() method hides a component by making it invisible and hiding its
peer. The parent Container becomes invalid because the set of children to dis-
play has changed. If you call hide() for a Component that does not subclass
Window, the component’s Container reser ves space for the hidden object.

In Java 1.1, you should use setVisible() instead.

public void setVisible(boolean condition) �

public void show (boolean condition) ✩

The setVisible() method calls either show() or hide() based on the value of
condition. If condition is true, show() is called. When condition is false,
hide() is called.

show() is the Java 1.0 name for this method.

public boolean isEnabled ()
The isEnabled() method checks to see if the component is currently enabled.
An enabled Component can be selected and trigger events. A disabled Compo-

nent usually has a slightly lighter font and doesn’t permit the user to select or
interact with it. Initially, ever y Component is enabled.

10 July 2002 22:19

public synchronized void enable ()
The enable() method allows the user to interact with the component. Compo-
nents are enabled by default but can be disabled by a call to disabled() or
setEnabled(false).

In Java 1.1, you should use setEnabled() instead.

public synchronized void disable ()
The disable() method disables the component so that it is unresponsive to
user interactions.

In Java 1.1, you should use setEnabled() instead.

public void setEnabled (boolean condition) �

public void enable (boolean condition) ✩

The setEnabled() method calls either enable() or disable() based on the
value of condition. If condition is true, enable() is called. When condition

is false, disable() is called. Enabling and disabling lets you create compo-
nents that can be operated only under certain conditions—for example, a
Button that can be pressed only after the user has typed into a TextArea.

enable() is the Java 1.0 name for this method.

Focus

Although there was some support for managing input focus in version 1.0, 1.1
improved on this greatly by including support for Tab and Shift+Tab to move input
focus to the next or previous component, and by being more consistent across dif-
ferent platforms. This support is provided by the package-private class FocusMan-
ager.

public boolean isFocusTraversable() �

The isFocusTraversable() method is the support method that tells you
whether or not a component is capable of receiving the input focus. Every
component asks its peer whether or not it is traversable. If there is no peer,
this method returns false.

If you are creating a component by subclassing Component or Canvas and you
want it to be traversable, you should override this method; a Canvas is not
traversable by default.

public void requestFocus ()
The requestFocus() method allows you to request that a component get the
input focus. If it can’t (isFocusTraversable() returns false), it won’t.

5.1 COMPONENT 175

10 July 2002 22:19

176 CHAPTER 5: COMPONENTS

public void transferFocus () �

public void nextFocus () ✩

The transferFocus() method moves the focus from the current component
to the next one.

nextFocus() is the Java 1.0 name for this method.

Miscellaneous methods

public final Object getTreeLock () �

The getTreeLock() method retrieves the synchronization lock for all AWT
components. Instead of using synchronized methods in Java 1.1, previously
synchronized methods lock the tree within a synchronized (component.get-

TreeLock()) {} code block. This results in a more efficient locking mecha-
nism to improve performance.

public String getName () �

The getName() method retrieves the current name of the component. The
component’s name is useful for object serialization. Components are given a
name by default; you can change the name by calling setName().

public void setName (String name) �

The setName() method changes the name of the component to name.

public Container getParent ()
The getParent() method returns the component’s Container. The container
for anything added to an applet is the applet itself, since it subclasses Panel.
The container for the applet is the browser. In the case of Netscape Navigator
versions 2.0 and 3.0, the return value would be a specific instance of
the netscape.applet.EmbeddedAppletFrame class. If the applet is running
within the appletviewer, the return value would be an instance of
sun.applet.AppletViewerPanel.

public synchronized void add(PopupMenu popup) �

The add() method introduced in Java 1.1 provides the ability to associate a
PopupMenu with a Component. The pop-up menu can be used to provide con-
text-sensitive menus for specific components. (On some platforms for some
components, pop-up menus exist already and cannot be overridden.) Interac-
tion with the menu is discussed in Chapter 10, Would You Like to Choose from the
Menu?

Multiple pop-up menus can be associated with a component. To display the
appropriate pop-up menu, call the pop-up menu’s show()method.

10 July 2002 22:19

public synchronized void remove(MenuComponent popup) �

The remove() method is the MenuContainer inter face method to disassociate
the popup from the component. (PopupMenu is a subclass of MenuComponent.) If
popup is not associated with the Component, nothing happens.

protected String paramString ()
The paramString() method is a protected method that helps build a String

listing the different parameters of the Component. When the toString()

method is called for a specific Component, paramString() is called for the low-
est level and works its way up the inheritance hierarchy to build a complete
parameter string to display. At the Component level, potentially seven (Java1.0)
or eight (1.1) items are added. The first five items added are the component’s
name (if non-null and using Java 1.1), x and y coordinates (as returned by
getLocation()), along with its width and height (as returned by getSize()).
If the component is not valid, “invalid” is added next. If the component is not
visible, “hidden” is added next. Finally, if the component is not enabled, “dis-
abled” is added.

public String toString ()
The toString() method returns a String representation of the object’s val-
ues. At the Component level, the class’s name is placed before the results of
paramString(). This method is called automatically by the system if you try to
print an object using System.out.println().

public void list ()
The list() method prints the contents of the Component (as returned by
toString()) to System.out. If c is a type of Component, the two statements
System.out.println(c) and c.list() are equivalent. This method is more
useful at the Container level, because it prints all the components within the
container.

public void list (PrintWriter out) �

public void list (PrintStream out)
This version of list() prints the contents of the Component (as returned by
toString()) to a different PrintStream, out.

public void list (PrintWriter out, int indentation) �

public void list (PrintStream out, int indentation)
These versions of list() are called by the other two. They print the compo-
nent’s contents (as returned by toString()) with the given indentation. This
allows you to prepare nicely formatted lists of a container’s contents for debug-
ging; you could use the indentation to reflect how deeply the component is
nested within the container.

5.1 COMPONENT 177

10 July 2002 22:19

178 CHAPTER 5: COMPONENTS

5.1.2 Component Events
Chapter 4, Events covers event handling in detail. This section summarizes what
Component does for the different event-related methods.

With the Java 1.0 event model, many methods return true to indicate that the pro-
gram has handled the event and false to indicate that the event was not handled
(or only partially handled); when false is returned, the system passes the event up
to the parent container. Thus, it is good form to return true only when you have
fully handled the event, and no further processing is necessary.

With the Java 1.1 event model, you register a listener for a specific event type.
When that type of event happens, the listener is notified. Unlike the 1.0 model,
you do not need to override any methods of Component to handle the event.

Controllers

The Java 1.0 event model controllers are deliverEvent(), postEvent(), and
handleEvent(). With 1.1, the controller is a method named dispatchEvent().

public void deliverEvent (Event e) ✩

The deliverEvent() method delivers the 1.0 Event e to the Component in
which an event occurred. Internally, this method calls postEvent(). The
deliverEvent() method is an important enhancement to postEvent() for
Container objects since they have to determine which component in the
Container gets the event.

public boolean postEvent (Event e) ✩

The postEvent() method tells the Component to deal with 1.0 Event e. It calls
handleEvent(), which returns true if some other object handled e and false

if no one handles it. If handleEvent() returns false, postEvent() posts the
Event to the component’s parent. You can use postEvent() to hand any events
you generate yourself to some other component for processing. (Creating
your own events is a useful technique that few developers take advantage of.)
You can also use postEvent() to reflect an event from one component into
another.

public boolean handleEvent (Event e) ✩

The handleEvent() method determines the type of event e and passes it along
to an appropriate method to deal with it. For example, when a mouse motion
event is delivered to postEvent(), it is passed off to handleEvent(), which calls
mouseMove(). As shown in the following listing, handleEvent() can be imple-
mented as one big switch statement. Since not all event types have default
event handlers, you may need to override this method. If you do, remember to

10 July 2002 22:19

call the overridden method to ensure that the default behavior still takes
place. To do so, call super.handleEvent(event) for any event your method
does not deal with.

public boolean handleEvent(Event event) {
switch (event.id) {
case Event.MOUSE_ENTER:
return mouseEnter (event, event.x, event.y);

case Event.MOUSE_EXIT:
return mouseExit (event, event.x, event.y);

case Event.MOUSE_MOVE:
return mouseMove (event, event.x, event.y);

case Event.MOUSE_DOWN:
return mouseDown (event, event.x, event.y);

case Event.MOUSE_DRAG:
return mouseDrag (event, event.x, event.y);

case Event.MOUSE_UP:
return mouseUp (event, event.x, event.y);

case Event.KEY_PRESS:
case Event.KEY_ACTION:
return keyDown (event, event.key);

case Event.KEY_RELEASE:
case Event.KEY_ACTION_RELEASE:
return keyUp (event, event.key);

case Event.ACTION_EVENT:
return action (event, event.arg);

case Event.GOT_FOCUS:
return gotFocus (event, event.arg);

case Event.LOST_FOCUS:
return lostFocus (event, event.arg);

}
return false;

}

public final void dispatchEvent(AWTEvent e) �

The dispatchEvent() method allows you to post new AWT events to this com-
ponent’s listeners. dispatchEvent() tells the Component to deal with the
AWTEvent e by calling its processEvent() method. This method is similar to
Java 1.0’s postEvent() method. Events delivered in this way bypass the system’s
event queue. It’s not clear why you would want to bypass the event queue,
except possibly to deliver some kind of high priority event.

Action

public boolean action (Event e, Object o) ✩

The action() method is called when the user performs some action in the
Component. e is the 1.0 Event instance for the specific event, while the content
of o varies depending upon the specific Component. The particular action that

5.1 COMPONENT 179

10 July 2002 22:19

180 CHAPTER 5: COMPONENTS

triggers a call to action() depends on the Component. For example, with a
TextField, action() is called when the user presses the carriage return. This
method should not be called directly; to deliver any event you generate, call
postEvent(), and let it decide how the event should propagate.

The default implementation of the action() method does nothing and
returns false. When you override this method, return true only if you fully
handle the event. Your method should always have a default case that returns
false or calls super.action(e, o) to ensure that the event propagates to the
component’s container or component’s superclass, respectively.

Keyboard

public boolean keyDown (Event e, int key) �

The keyDown() method is called whenever the user presses a key. e is the 1.0
Event instance for the specific event, while key is the integer representation of
the character pressed. The identifier for the event (e.id) could be either
Event.KEY_PRESS for a regular key or Event.KEY_ACTION for an action-oriented
key (e.g., arrow or function key). The default keyDown() method does nothing
and returns false. If you are doing input validation, return true if the charac-
ter is invalid; this keeps the event from propagating to a higher component. If
you wish to alter the input (i.e., convert to uppercase), return false, but
change e.key to the new character.

public boolean keyUp (Event e, int key)
The keyUp() method is called whenever the user releases a key. e is the Event
instance for the specific event, while key is the integer representation of the
character pressed. The identifier for the event (e.id) could be either
Event.KEY_RELEASE for a regular key or Event.KEY_ACTION_RELEASE for an
action-oriented key (e.g., arrow or function key). keyUp() may be used to
determine how long key has been pressed. The default keyUp() method does
nothing and returns false.

Mouse

NOTE Early releases of Java (1.0.2 and earlier) propagated only mouse
events from Canvas and Container objects. However, Netscape Navi-
gator seems to have jumped the gun and corrected the situation with
their 3.0 release, which is based on Java release 1.0.2.1. Until other
Java releases catch up, use these events with care. For more informa-
tion on platform dependencies, see Appendix C, Platform-Specific
Event Handling.

10 July 2002 22:19

public boolean mouseDown (Event e, int x, int y) ✩

The mouseDown() method is called when the user presses a mouse button over
the Component. e is the Event instance for the specific event, while x and y are
the coordinates where the cursor was located when the event was initiated. It is
necessar y to examine the modifiers field of e to determine which mouse but-
ton the user pressed. The default mouseDown() method does nothing and
returns false. When you override this method, return true only if you fully
handle the event. Your method should always have a default case that returns
false or calls super.mouseDown(e, x, y) to ensure that the event propagates
to the component’s container or component’s superclass, respectively.

public boolean mouseDrag (Event e, int x, int y) ✩

The mouseDrag() method is called when the user is pressing a mouse button
and moves the mouse. e is the Event instance for the specific event, while x

and y are the coordinates where the cursor was located when the event was ini-
tiated. mouseDrag() could be called multiple times as the mouse is moved. The
default mouseDrag() method does nothing and returns false. When you over-
ride this method, return true only if you fully handle the event. Your method
should always have a default case that returns false or calls super.mouse-

Drag(e, x, y) to ensure that the event propagates to the component’s
container or component’s superclass, respectively.

public boolean mouseEnter (Event e, int x, int y) ✩

The mouseEnter() method is called when the mouse enters the Component. e

is the Event instance for the specific event, while x and y are the coordinates
where the cursor was located when the event was initiated. The default
mouseEnter() method does nothing and returns false. mouseEnter() can be
used for implementing balloon help. When you override this method, return
true only if you fully handle the event. Your method should always have a
default case that returns false or calls super.mouseEnter(e, x, y) to ensure
that the event propagates to the component’s container or component’s
superclass, respectively.

public boolean mouseExit (Event e, int x, int y) ✩

The mouseExit() method is called when the mouse exits the Component. e is
the Event instance for the specific event, while x and y are the coordinates
where the cursor was located when the event was initiated. The default
method mouseExit() does nothing and returns false. When you override this
method, return true only if you fully handle the event. Your method should
always have a default case that returns false or calls super.mouseExit(e, x,
y) to ensure that the event propagates to the component’s container or com-
ponent’s superclass, respectively.

5.1 COMPONENT 181

10 July 2002 22:19

182 CHAPTER 5: COMPONENTS

public boolean mouseMove (Event e, int x, int y) ✩

The mouseMove() method is called when the user moves the mouse without
pressing a mouse button. e is the Event instance for the specific event, while x
and y are the coordinates where the cursor was located when the event was ini-
tiated. mouseMove() will be called numerous times as the mouse is moved. The
default mouseMove() method does nothing and returns false. When you over-
ride this method, return true only if you fully handle the event. Your method
should always have a default case that returns false or calls super.mouse-

Move(e, x, y) to ensure that the event propagates to the component’s
container or component’s superclass, respectively.

public boolean mouseUp (Event e, int x, int y) ✩

The mouseUp() method is called when the user releases a mouse button over
the Component. e is the Event instance for the specific event, while x and y are
the coordinates where the cursor was located when the event was initiated.
The default mouseUp() method does nothing and returns false. When you
override this method, return true only if you fully handle the event. Your
method should always have a default case that returns false or calls
super.mouseUp(e, x, y) to ensure that the event propagates to the compo-
nent’s container or component’s superclass, respectively.

Focus

Focus events indicate whether a component can get keyboard input. Not all com-
ponents can get focus (e.g., Label cannot). Precisely which components can get
the focus is platform specific.

Ordinarily, the item with the focus has a light gray rectangle around it, though the
actual display depends on the platform and the component. Figure 5-1 displays the
effect of focus for buttons in Windows 95.

Figure 5–1: Focused and UnFocused buttons

10 July 2002 22:19

NOTE Early releases of Java (1.0.2 and earlier) do not propagate all focus
events on all platforms. Java 1.1 seems to propagate them properly.
For more information on platform dependencies, see Appendix C.

public boolean gotFocus (Event e, Object o) ✩

The gotFocus() method is triggered when the Component gets the input focus.
e is the 1.0 Event instance for the specific event, while the content of o varies
depending upon the specific Component. The default gotFocus() method
does nothing and returns false. For a TextField, when the cursor becomes
active, it has the focus. When you override this method, return true to indi-
cate that you have handled the event completely or false if you want the event
to propagate to the component’s container.

public boolean lostFocus (Event e, Object o) ✩

The lostFocus() method is triggered when the input focus leaves the Compo-

nent. e is the Event instance for the specific event, while the content of o
varies depending upon the specific Component. The default lostFocus()

method does nothing and returns false. When you override this method,
return true to indicate that you have handled the event completely or false if
you want the event to propagate to the component’s container.

Listeners and 1.1 Event Handling

With the 1.1 event model, you receive events by registering event listeners, which
are told when the event happens. Components don’t have to receive and handle
their own events; you can cleanly separate the event-handling code from the user
inter face itself. This section covers the methods used to add and remove event lis-
teners, which are part of the Component class. There is a pair of methods to add
and remove listeners for each event type that is appropriate for a Component:
ComponentEvent, FocusEvent, KeyEvent, MouseEvent, and MouseMotionEvent. Sub-
classes of Component may have additional event types and therefore will have addi-
tional methods for adding and removing listeners. For example, Button, List,
MenuItem, and TextField each generate action events and therefore have methods
to add and remove action listeners. These additional listeners are covered with
their respective components.

public void addComponentListener(ComponentListener listener) �

The addComponentListener() method registers listener as an object inter-
ested in being notified when a ComponentEvent passes through the EventQueue
with this Component as its target. When such an event occurs, a method in the
ComponentListener inter face is called. Multiple listeners can be registered.

5.1 COMPONENT 183

10 July 2002 22:19

184 CHAPTER 5: COMPONENTS

public void removeComponentListener(ComponentListener listener) �

The removeComponentListener() method removes listener as a interested
listener. If listener is not registered, nothing happens.

public void addFocusListener(FocusListener listener) �

The addFocusListener() method registers listener as an object interested in
being notified when a FocusEvent passes through the EventQueue with this
Component as its target. When such an event occurs, a method in the Focus-

Listener inter face is called. Multiple listeners can be registered.

public void removeFocusListener(FocusListener listener) �

The removeFocusListener() method removes listener as a interested lis-
tener. If listener is not registered, nothing happens.

public void addKeyListener(KeyListener listener) �

The addKeyListener() method registers listener as an object interested in
being notified when a KeyEvent passes through the EventQueue with this Com-
ponent as its target. When such an event occurs, a method in the KeyListener
inter face is called. Multiple listeners can be registered.

public void removeKeyListener(KeyListener listener) �

The removeKeyListener() method removes listener as a interested listener.
If listener is not registered, nothing happens.

public void addMouseListener(MouseListener listener) �

The addMouseListener() method registers listener as an object interested in
being notified when a nonmotion-oriented MouseEvent passes through the
EventQueue with this Component as its target. When such an event occurs, a
method in the MouseListener inter face is called. Multiple listeners can be reg-
istered.

public void removeMouseListener(MouseListener listener) �

The removeMouseListener() method removes listener as a interested lis-
tener. If listener is not registered, nothing happens.

public void addMouseMotionListener(MouseMotionListener listener) �

The addMouseMotionListener() method registers listener as an object inter-
ested in being notified when a motion-oriented MouseEvent passes through
the EventQueue with this Component as its target. When such an event occurs, a
method in the MouseMotionListener inter face is called. Multiple listeners can
be registered.

The mouse motion–oriented events are separate from the other mouse events
because of their frequency of generation. If they do not have to propagate
around, resources can be saved.

10 July 2002 22:19

public void removeMouseMotionListener(MouseMotionListener listener) �

The removeMouseMotionListener() method removes listener as a interested
listener. If listener is not registered, nothing happens.

Handling your own events

Under the 1.1 event model, it is still possible for components to receive their own
events, simulating the old event mechanism. If you want to write components that
process their own events but are also compatible with the new model, you can
override processEvent() or one of its related methods. processEvent() is logically
similar to handleEvent() in the old model; it receives all the component’s events
and sees that they are forwarded to the appropriate listeners. Therefore, by over-
riding processEvent(), you get access to every event the component generates. If
you want only a specific type of event, you can override processComponentEvent(),
processKeyEvent(), or one of the other event-specific methods.

However, there is one problem. In Java 1.1, events aren’t normally generated if
there are no listeners. Therefore, if you want to receive your own events without
registering a listener, you should first enable event processing (by a call to
enableEvent()) to make sure that the events you are interested in are generated.

protected final void enableEvents(long eventsToEnable) �

The enableEvents() method allows you to configure a component to listen
for events without having any active listeners. Under normal circumstances
(i.e., if you are not subclassing a component), it is not necessary to call this
method.

The eventsToEnable parameter contains a mask specifying which event types
you want to enable. The AWTEvent class (covered in Chapter 4) contains con-
stants for the following types of events:

COMPONENT_EVENT_MASK
CONTAINER_EVENT_MASK
FOCUS_EVENT_MASK
KEY_EVENT_MASK
MOUSE_EVENT_MASK
MOUSE_MOTION_EVENT_MASK
WINDOW_EVENT_MASK
ACTION_EVENT_MASK
ADJUSTMENT_EVENT_MASK
ITEM_EVENT_MASK
TEXT_EVENT_MASK

5.1 COMPONENT 185

10 July 2002 22:19

186 CHAPTER 5: COMPONENTS

OR the masks for the events you want; for example, call
enableEvents(MOUSE_EVENT_MASK | MOUSE_MOTION_EVENT_MASK) to enable all
mouse events. Any previous event mask settings are retained.

protected final void disableEvents(long eventsToDisable) �

The disableEvents() method allows you to stop the delivery of events when
they are no longer needed. eventsToDisable is similar to the eventsToEnable
parameter but instead contains a mask specifying which event types to stop. A
disabled event would still be delivered if someone were listening.

protected void processEvent(AWTEvent e) �

The processEvent() method receives all AWTEvent with this Component as its
target. processEvent() then passes them along to one of the event-specific
processing methods (e.g., processKeyEvent()). When you subclass Compo-

nent, overriding processEvent() allows you to process all events without pro-
viding listeners. Remember to call super.processEvent(e) last to ensure that
normal event processing still occurs; if you don’t, events won’t get distributed
to any registered listeners. Overriding processEvent() is like overriding the
handleEvent() method using the 1.0 event model.

protected void processComponentEvent(ComponentEvent e) �

The processComponentEvent() method receives ComponentEvent with this
Component as its target. If any listeners are registered, they are then notified.
When you subclass Component, overriding processComponentEvent() allows
you to process component events without providing listeners. Remember to
call super.processComponentEvent(e) last to ensure that normal event pro-
cessing still occurs; if you don’t, events won’t get distributed to any registered
listeners. Overriding processComponentEvent() is roughly similar to overrid-
ing resize(), move(), show(), and hide() to add additional functionality
when those methods are called.

protected void processFocusEvent(FocusEvent e) �

The processFocusEvent() method receives FocusEvent with this Component as
its target. If any listeners are registered, they are then notified. When you sub-
class Component, overriding processFocusEvent() allows you to process the
focus event without providing listeners. Remember to call super.processFo-
cusEvent(e) last to ensure that normal event processing still occurs; if you
don’t, events won’t get distributed to any registered listeners. Overriding pro-

cessFocusEvent() is like overriding the methods gotFocus() and lostFo-

cus() using the 1.0 event model.

10 July 2002 22:19

protected void processKeyEvent(KeyEvent e) �

The processKeyEvent() method receives KeyEvent with this Component as its
target. If any listeners are registered, they are then notified. When you sub-
class Component, overriding processKeyEvent() allows you to process key
events without providing listeners. Be sure to remember to call super.pro-
cessKeyEvent(e) last to ensure that normal event processing still occurs; if you
don’t, events won’t get distributed to any registered listeners. Overriding pro-

cessKeyEvent() is roughly similar to overriding keyDown() and keyUp() with
one method using the 1.0 event model.

protected void processMouseEvent(MouseEvent e) �

This processMouseEvent() method receives all nonmotion-oriented
MouseEvents with this Component as its target. If any listeners are registered,
they are then notified. When you subclass Component, overriding the method
processMouseEvent() allows you to process mouse events without providing
listeners. Remember to call super.processMouseEvent(e) last to ensure that
normal event processing still occurs; if you don’t, events won’t get distributed
to any registered listeners. Overriding the method processMouseEvent() is
roughly similar to overriding mouseDown(), mouseUp(), mouseEnter(), and
mouseExit() with one method using the 1.0 event model.

protected void processMouseMotionEvent(MouseEvent e) �

The processMouseMotionEvent() method receives all motion-oriented
MouseEvents with this Component as its target. If there are any listeners regis-
tered, they are then notified. When you subclass Component, overriding pro-

cessMouseMotionEvent() allows you to process mouse motion events without
providing listeners. Remember to call super.processMouseMotionEvent(e)
last to ensure that normal event processing still occurs; if you don’t, events
won’t get distributed to any registered listeners. Overriding the method
processMouseMotionEvent() is roughly similar to overriding mouseMove() and
mouseDrag() with one method using the 1.0 event model.

5.2 Labels
Having covered the features of the Component class, we can now look at some of
the simplest components. The first component introduced here is a Label. A label
is a Component that displays a single line of static text.* It is useful for putting a title
or message next to another component. The text can be centered or justified to
the left or right. Labels react to all events they receive. However, they do not get
any events from their peers.

* Java in A Nutshell (from O’Reilly & Associates) includes a multiline Label component.

5.2 LABELS 187

10 July 2002 22:19

188 CHAPTER 5: COMPONENTS

5.2.1 Label Methods
Constants

There are three alignment specifiers for labels. The alignment tells the Label

where to position its text within the space allotted. Setting an alignment for a
Label might not do anything noticeable if the LayoutManager being used does not
resize the Label to give it more space. With FlowLayout, the alignment is barely
noticeable. See Chapter 7, Layouts, for more information.

public final static int LEFT
LEFT is the constant for left alignment. If no alignment is specified in the con-
structor, left alignment is the default.

public final static int CENTER
CENTER is the constant for center alignment.

public final static int RIGHT
RIGHT is the constant for right alignment.

Constructors

public Label ()
This constructor creates an empty Label. By default, the label’s text is left jus-
tified.

public Label (String label)
This constructor creates a Label whose initial text is label. By default, the
label’s text is left justified.

public Label (String label, int alignment)
This constructor creates a Label whose initial text is label. The alignment of
the label is alignment. If alignment is invalid (not LEFT, RIGHT, or CENTER),
the constructor throws the run-time exception IllegalArgumentException.

Te xt

public String getText ()
The getText() method returns the current value of Label.

public void setText (String label)
The setText() method changes the text of the Label to label. If the new
label is a different size from the old one, you should revalidate the display to
ensure the label’s entire contents will be seen.

10 July 2002 22:19

Alignment

public int getAlignment ()
The getAlignment() method returns the current alignment of the Label.

public void setAlignment (int alignment)
The setAlignment() method changes the alignment of the Label to align-

ment. If alignment is invalid (not LEFT, RIGHT, or CENTER), setAlignment()
throws the run-time exception IllegalArgumentException. Figure 5-2 shows
all three alignments.

Figure 5–2: Labels with different alignments

Miscellaneous methods

public synchronized void addNotify ()
The addNotify() method creates the Label peer. If you override this method,
first call super.addNotify(), then put in your customizations. Then you will
be able to do everything you need with the information about the newly cre-
ated peer.

protected String paramString ()
The paramString() method overrides Component’s paramString() method. It
is a protected method that calls the overridden paramString() to build a
String from the different parameters of the Component. When the method
paramString() is called for a Label, the alignment and label’s text are added.
Thus, for the Label created by the constructor new Label ("ZapfDingbats",
Label.RIGHT), the results displayed from a call to toString() would be:

java.awt.Label[0,0,0x0,invalid,align=right,label=ZapfDingbats]

5.2 LABELS 189

10 July 2002 22:19

190 CHAPTER 5: COMPONENTS

5.2.2 Label Events
The Label component can react to any event it receives, though the Label peer
normally does not send any. However, there is nothing to stop you from posting an
event yourself.

5.3 Buttons
The Button component provides one of the most frequently used objects in graph-
ical applications. When the user selects a button, it signals the program that some-
thing needs to be done by sending an action event. The program responds in its
handleEvent() method (for Java 1.0) or its actionPerformed() method (defined
by Java 1.1’s ActionListener inter face). Next to Label, which does nothing, But-
ton is the simplest component to understand. Because it is so simple, we will use a
lot of buttons in our examples for the next few chapters.

5.3.1 Button Methods
Constructors

public Button ()
This constructor creates an empty Button. You can set the label later with
setLabel().

public Button (String label)
This constructor creates a Button whose initial text is label.

Button Labels

public String getLabel ()
The getLabel() method retrieves the current text of the label on the Button

and returns it as a String.

public synchronized void setLabel (String label)
The setLabel() method changes the text of the label on the Button to label.
If the new text is a different size from the old, it is necessary to revalidate the
screen to ensure that the button size is correct.

Action Commands

With Java 1.1, every button can have two names. One is what the user sees (the but-
ton’s label); the other is what the programmer sees and is called the button’s action
command. Distinguishing between the label and the action command is a major
help to internationalization. The label can be localized for the user’s environment.

10 July 2002 22:19

However, this means that labels can vary at run-time and are therefore useless for
comparisons within the program. For example, you can’t test whether the user
pushed the Yes button if that button might read Oui or Ja, depending on some
run-time environment setting. To give the programmer something reliable for
comparisons, Java 1.1 introduces the action command. The action command for
our button might be Yes, regardless of the button’s actual label.

By default, the action command is equivalent to the button’s label. Java 1.0 code,
which only relies on the label, will continue to work. Furthermore, you can con-
tinue to write in the Java 1.0 style as long as you’re sure that your program will
never have to account for other languages. These days, that’s a bad bet. Even if you
aren’t implementing multiple locales now, get in the habit of testing a button’s
action command rather than its label; you will have less work to do when interna-
tionalization does become an issue.

public String getActionCommand () �

The getActionCommand() method returns the button’s current action com-
mand. If no action command was explicitly set, this method returns the label.

public void setActionCommand (String command) �

The setActionCommand() method changes the button’s action command to
command.

Miscellaneous methods

public synchronized void addNotify ()
The addNotify() method creates the Button peer. If you override this
method, first call super.addNotify(), then add your customizations. Then you
can do everything you need with the information about the newly created
peer.

protected String paramString ()
The paramString() method overrides the component’s paramString()

method. It is a protected method that calls the overridden paramString() to
build a String from the different parameters of the Component. When the
method paramString() is called for a Button, the button’s label is added.
Thus, for the Button created by the constructor new Button (“ZapfDing-

bats”), the results displayed from a call to toString() could be:

java.awt.Button[77,5,91x21,label=ZapfDingbats]

5.3 BUTTONS 191

10 July 2002 22:19

192 CHAPTER 5: COMPONENTS

5.3.2 Button Events
With the 1.0 event model, Button components generate an ACTION_EVENT when
the user selects the button.

With the version 1.1 event model, you register an ActionListener with the
method addActionListener(). When the user selects the Button, the method
ActionListener.actionPerformed() is called through the protected
Button.processActionEvent() method. Key, mouse, and focus listeners are regis-
tered through the Component methods of addKeyListener(), addMouseListener(),
or addMouseMotionListener(), and addFocusListener(), respectively.

Action

public boolean action (Event e, Object o)
The action() method for a Button is called when the user presses and
releases the button. e is the Event instance for the specific event, while o is the
button’s label. The default implementation of action() does nothing and
returns false, passing the event to the button’s container for processing. For a
button to do something useful, you should override either this method or the
container’s action() method. Example 5-1 is a simple applet called Button-

Test that demonstrates the first approach; it creates a Button subclass called
TheButton, which overrides action(). This simple subclass doesn’t do much; it
just labels the button and prints a message when the button is pressed. Figure
5-3 shows what ButtonTest looks like.

Example 5–1: Button Event Handling

import java.awt.*;
import java.applet.*;

class TheButton extends Button {
TheButton (String s) {

super (s);
}
public boolean action (Event e, Object o) {

if ("One".equals(o)) {
System.out.println ("Do something for One");

} else if ("Two".equals(o)) {
System.out.println ("Ignore Two");

} else if ("Three".equals(o)) {
System.out.println ("Reverse Three");

} else if ("Four".equals(o)) {
System.out.println ("Four is the one");

} else {
return false;

}
return true;

}

10 July 2002 22:19

Example 5–1: Button Event Handling (continued)

}
public class ButtonTest extends Applet {

public void init () {
add (new TheButton ("One"));
add (new TheButton ("Two"));
add (new TheButton ("Three"));
add (new TheButton ("Four"));

}
}

Figure 5–3: The ButtonTest applet

Keyboard

Buttons are able to capture keyboard-related events once the button has the input
focus. In order to give a Button the input focus without triggering the action
event, call requestFocus(). The button also gets the focus if the user selects it and
drags the mouse off of it without releasing the mouse.

public boolean keyDown (Event e, int key) ✩

The keyDown() method is called whenever the user presses a key while the
Button has the input focus. e is the Event instance for the specific event, while
key is the integer representation of the character pressed. The identifier for
the event (e.id) could be either Event.KEY_PRESS for a regular key or
Event.KEY_ACTION for an action-oriented key (i.e., an arrow or a function key).
There is no visible indication that the user has pressed a key over the button.

public boolean keyUp (Event e, int key) ✩

The keyUp() method is called whenever the user releases a key while the But-
ton has the input focus. e is the Event instance for the specific event, while key
is the integer representation of the character pressed. The identifier for the
event (e.id) could be either Event.KEY_RELEASE for a regular key or
Event.KEY_ACTION_RELEASE for an action-oriented key (i.e., an arrow or a
function key). keyUp() may be used to determine how long key has been
pressed.

5.3 BUTTONS 193

10 July 2002 22:19

194 CHAPTER 5: COMPONENTS

Listeners and 1.1 event handling

With the 1.1 event model, you register listeners, which are told when the event
happens.

public void addActionListener(ActionListener listener) �

The addActionListener() method registers listener as an object interested
in receiving notifications when an ActionEvent passes through the EventQueue
with this Button as its target. The listener.actionPerformed() method is
called when these events occur. Multiple listeners can be registered. The fol-
lowing code demonstrates how to use an ActionListener to handle the events
that occur when the user selects a button. This applet has the same display as
the previous one, shown in Figure 5-3.

// Java 1.1 only
import java.awt.*;
import java.applet.*;
import java.awt.event.*;

public class ButtonTest11 extends Applet implements ActionListener {
Button b;
public void init () {

add (b = new Button ("One"));
b.addActionListener (this);
add (b = new Button ("Two"));
b.addActionListener (this);
add (b = new Button ("Three"));
b.addActionListener (this);
add (b = new Button ("Four"));
b.addActionListener (this);

}
public void actionPerformed (ActionEvent e) {

String s = e.getActionCommand();
if ("One".equals(s)) {

System.out.println ("Do something for One");
} else if ("Two".equals(s)) {

System.out.println ("Ignore Two");
} else if ("Three".equals(s)) {

System.out.println ("Reverse Three");
} else if ("Four".equals(s)) {

System.out.println ("Four is the one");
}

}
}

public void removeActionListener(ActionListener listener) �

The removeActionListener() method removes listener as an interested lis-
tener. If listener is not registered, nothing happens.

10 July 2002 22:19

protected void processEvent(AWTEvent e) �

The processEvent() method receives AWTEvent with this Button as its target.
processEvent() then passes them along to any listeners for processing. When
you subclass Button, overriding processEvent() allows you to process all
events yourself, before sending them to any listeners. In a way, overriding
processEvent() is like overriding handleEvent() using the 1.0 event model.

If you override processEvent(), remember to call super.processEvent(e) last
to ensure that regular event processing can occur. If you want to process your
own events, it’s a good idea to call enableEvents() (inherited from Compo-

nent) to ensure that events are delivered even in the absence of registered lis-
teners.

protected void processActionEvent(ActionEvent e) �

The processActionEvent() method receives ActionEvent with this Button as
its target. processActionEvent() then passes them along to any listeners for
processing. When you subclass Button, overriding processActionEvent()

allows you to process all action events yourself, before sending them to any lis-
teners. In a way, overriding processActionEvent() is like overriding action()

using the 1.0 event model.

If you override the processActionEvent() method, you must remember to call
super.processActionEvent(e) last to ensure that regular event processing
can occur. If you want to process your own events, it’s a good idea to call
enableEvents() (inherited from Component) to ensure that events are deliv-
ered even in the absence of registered listeners.

5.4 A Simple Calculator
It is always helpful to see complete and somewhat useful examples after learning
something new. Example 5-2 shows a working calculator that performs floating
point addition, subtraction, multiplication, and division. Figure 5-4 shows the cal-
culator in operation. The button in the lower left corner is a decimal point. This
applet uses a number of classes that will be discussed later in the book (most
notably, some layout managers and a Panel); try to ignore them for now. Focus on
the action() and compute() methods; action() figures out which button was
pressed, converting it to a digit (0–9 plus the decimal point) or an operator (=, +,
−, *, /). As you build a number, it is displayed in the label lab, which conveniently
ser ves to store the number in string form. The compute() method reads the label’s
text, converts it to a floating point number, does the computation, and displays the
result in the label. The addButtons() method is a helper method to create a group
of Button objects at one time.

5.4 A SIMPLE CALCULATOR 195

10 July 2002 22:19

196 CHAPTER 5: COMPONENTS

Example 5–2: Calculator Source Code

import java.awt.*;
import java.applet.*;

public class JavaCalc extends Applet {
Label lab;
boolean firstDigit = true;
float savedValue = 0.0f; // Initial value
String operator = "="; // Initial operator
public void addButtons (Panel p, String labels) {

int count = labels.length();
for (int i=0;i<count;i++)

p.add (new Button (labels.substring(i,i+1)));
}
public void init () {

setLayout (new BorderLayout());
add ("North", lab = new Label ("0", Label.RIGHT));
Panel p = new Panel();
p.setLayout (new GridLayout (4, 4));
addButtons (p, "789/");
addButtons (p, "456*");
addButtons (p, "123-");
addButtons (p, ".0=+");
add ("Center", p);

}
public boolean action (Event e, Object o) {

if (e.target instanceof Button) {
String s = (String)o;
if ("0123456789.".indexOf (s) != -1) { // isDigit

if (firstDigit) {
firstDigit = false;
lab.setText (s);

} else {
lab.setText (lab.getText() + s);

}
} else { // isOperator

if (!firstDigit) {
compute (lab.getText());
firstDigit = true;

}
operator = s;

}
return true;

}
return false;

}
public void compute (String s) {

float sValue = new Float (s).floatValue();
char c = operator.charAt (0);
switch (c) {

case ’=’: savedValue = sValue;
break;

case ’+’: savedValue += sValue;

10 July 2002 22:19

Example 5–2: Calculator Source Code (continued)

break;
case ’-’: savedValue -= sValue;

break;
case ’*’: savedValue *= sValue;

break;
case ’/’: savedValue /= sValue;

break;
}
lab.setText (String.valueOf(savedValue));

}
}

Figure 5–4: Calculator applet

5.5 Canvas
A Canvas is a class just waiting to be subclassed. Through Canvas, you can create
additional AWT objects that are not provided by the base classes. Canvas is also
useful as a drawing area, particularly when additional components are on the
screen. It is tempting to draw directly onto a Container, but this often isn’t a good
idea. Anything you draw might disappear underneath the components you add to
the container. When you are drawing on a container, you are essentially drawing
on the background. The container’s layout manager doesn’t know anything about
what you have drawn and won’t arrange components with your artwork in mind.
To be safe, do your drawing onto a Canvas and place that Canvas in a Container.

5.5 CANVAS 197

10 July 2002 22:19

198 CHAPTER 5: COMPONENTS

5.5.1 Canvas Methods
Constructors

public Canvas () �

The constructor creates a new Canvas with no default size. If you place the
canvas in a container, the container’s layout manager sizes the canvas for you.
If you aren’t placing the canvas in a container, call setBounds() to specify the
canvas’s size.

Java 1.0 used the default constructor for Canvas; there was no explicit con-
structor.

Miscellaneous methods

public void paint (Graphics g) �

The default implementation of the paint() method colors the entire Canvas

with the current background color. When you subclass this method, your
paint() method needs to draw whatever should be shown on the canvas.

public synchronized void addNotify ()
The addNotify() method creates the Canvas peer. If you override this
method, first call super.addNotify(), then add your customizations. Then you
can do everything you need with the information about the newly created
peer.

5.5.2 Canvas Events
The Canvas peer passes all events to you, which is why it’s well suited to creating
your own components.

5.6 Creating Your Own Component
If you find that no AWT component satisfies your needs, you can create your own.
This is usually done either by extending an existing component or by starting from
scratch. When extending an existing component, you start with the base function-
ality of an existing object and add to it. The users will not see anything new or dif-
ferent about the object until they start to interact with it, since it is not a new
component. For example, a TextField could be subclassed to convert all letters
input to uppercase. On the other hand, if you create a new component from
scratch, it will appear the same on all platforms (regardless of what the platform’s
native components look like), and you have to make sure the user can fairly easily
figure out how to work with it. Example 5-3 shows how to create your own
Component by creating a Label that displays vertically, as opposed to the standard
Label Component that displays horizontally. The whole process is fairly easy.

10 July 2002 22:19

The third possibility for creating your own components involves adding functional-
ity to containers. This is fairly easy to do and can be useful if you are constantly
grouping components together. For example, if you are always adding a TextField
or Label to go with a Scrollbar to display the value, do it once, and call it some-
thing meaningful like LabeledScrollbarPanel. Then whenever you need it again,
reuse your LabeledScrollbarPanel. Think about reusability whenever you can.

With Java 1.1, the colors for these new components should be set to color values
consistent to the user’s platform. This is done through color constants provided in
the SystemColor class introduced in Chapter 2.

5.6.1 VerticalLabel
When you create new components, they must meet three requirements:

• In Java 1.0, you must extend a subclass of Component, usually Canvas. In Java
1.1, you can extend Component itself, creating a lightweight component. In
many cases, this alternative is more efficient.

• You must provide a constructor for the new component so that you can create
new instances of it; if you really don’t need a constructor, you can use the
default constructor that you inherit from Canvas or Component.

• You must provide a way to draw the object on the screen by overriding the
paint() method.

If initializing the component requires information about display characteristics
(for example, you need to know the default Font), you must wait until the object is
displayed on the screen before you initialize it. This is done by overriding the
addNotify() method. First, call super.addNotify() to create the peer; you can
now ask for platform-dependent information and initialize your component
accordingly. Remember to override getPreferredSize() and getMinimumSize()

(the Java 1.0 names are preferredSize() and minimumSize()) to return the
proper dimensions for the new component, so that layout management works
properly. There can be other support methods, depending upon the requirements
of the object. For example, it is helpful, but not required, to provide a toString()
or paramString() method.

Creating a new component sounds a lot harder than it is. Example 5-3 contains the
source for a new component called VerticalLabel. It displays a label that reads
from top to bottom, instead of from left to right, and can be configured to display
its text right or left justified or centered. Figure 5-5 displays the new component
VerticalLabel in action.

5.6 CREATING YOUR OWN COMPONENT 199

10 July 2002 22:19

200 CHAPTER 5: COMPONENTS

Example 5–3: Source for VerticalLabel Component

import java.awt.*;

public class VerticalLabel extends Canvas {
public static final int LEFT = 0;
public static final int CENTER = 1;
public static final int RIGHT = 2;
private String text;
private int vgap;
private int alignment;
Dimension mySize;
int textLength;
char chars[];
// constructors
public VerticalLabel () {

this (null, 0, CENTER);
}
public VerticalLabel (String text) {

this (text, 0, CENTER);
}
public VerticalLabel (String text, int vgap, int alignment) {

this.text = text;
this.vgap = vgap;
this.alignment = alignment;

}
void init () {

textLength = text.length();
chars = new char[textLength];
text.getChars (0, textLength, chars, 0);
Font f = getFont();
FontMetrics fm = getFontMetrics (f);
mySize = new Dimension(0,0);
mySize.height = (fm.getHeight() * textLength) + (vgap * 2);
for (int i=0; i < textLength; i++) {

mySize.width = Math.max (mySize.width, fm.charsWidth(chars, i, 1));
}

}
public int getAlignment () {

return alignment;
}
public void addNotify () {

super.addNotify();
init(); // Component must be visible for init to work

}
public void setText (String text) {this.text = text; init();}
public String getText () {return text; }
public void setVgap (int vgap) {this.vgap = vgap; init();}
public int getVgap () {return vgap; }
public Dimension preferredSize () {return mySize; }
public Dimension minimumSize () {return mySize; }
public void paint (Graphics g) {

int x,y;
int xPositions[];

10 July 2002 22:19

Example 5–3: Source for VerticalLabel Component (continued)

int yPositions[];
// Must redo this each time since font/screen area might change
// Use actual width for alignment

Font f = getFont();
FontMetrics fm = getFontMetrics (f);
xPositions = new int[textLength];
for (int i=0; i < textLength; i++) {

if (alignment == RIGHT) {
xPositions[i] = size().width - fm.charWidth (chars[i]);

} else if (alignment == LEFT) {
xPositions[i] = 0;

} else {// CENTER
xPositions[i] = (size().width - fm.charWidth (chars[i])) / 2;

}
}
yPositions = new int[textLength];
for (int i=0; i < textLength; i++) {

yPositions[i] = (fm.getHeight() * (i+1)) + vgap;
}
for (int i = 0; i < textLength; i++) {

x = xPositions[i];
y = yPositions[i];
g.drawChars (chars, i, 1, x, y);

}
}
protected String paramString () {

String str=",align=";
switch (alignment) {

case LEFT: str += "left"; break;
case CENTER: str += "center"; break;
case RIGHT: str += "right"; break;

}
if (vgap!=0) str+= ",vgap=" + vgap;
return super.paramString() + str + ",label=" + text;

}
}

The following code is a simple applet using the VerticalLabel. It creates five
instances of VerticalLabel within a BorderLayout panel, with gaps (see Chapter 7
for more on BorderLayout). The top and bottom labels are justified to the left and
right, respectively, to demonstrate justification.

import java.awt.*;
import java.applet.*;
public class vlabels extends Applet {

public void init () {
setLayout (new BorderLayout (10, 10));
setFont (new Font ("TimesRoman", Font.BOLD, 12));
add ("North", new VerticalLabel ("One", 10, VerticalLabel.LEFT));
add ("South", new VerticalLabel ("Two", 10, VerticalLabel.RIGHT));
add ("West", new VerticalLabel ("Three"));
add ("East", new VerticalLabel ("Four"));

5.6 CREATING YOUR OWN COMPONENT 201

10 July 2002 22:19

202 CHAPTER 5: COMPONENTS

Figure 5–5: Using VerticalLabel

add ("Center", new VerticalLabel ("Five"));
resize (preferredSize());

}
}

5.6.2 Lightweight VerticalLabel
The VerticalLabel in Example 5-3 works in both Java 1.0 and 1.1 but is relatively
inefficient. When you create one, the system must create a Canvas and the peer of
the Canvas. This work doesn’t gain you anything; since this is a new component, it
doesn’t have to match the native appearance of any other component.

In Java 1.1, there’s a way to avoid the overhead if you are creating a component
that doesn’t have to match a native object. This is called a lightweight component. To
create one, you just subclass Component itself. To make a lightweight version of our
VerticalLabel, we have to change only one line of code.

// Java 1.1 only
public class VerticalLabel extends Component

Ever ything else remains unchanged.

10 July 2002 22:19

5.7 Cursor
Introduced in Java 1.1, the Cursor class provides the different cursors that can be
associated with a Component. Previously, cursors could only be associated with a
whole Frame. Now any component can use fancy cursors when the user is interact-
ing with the system.

To change the cursor, a component calls its setCursor() method; its argument is a
Cursor object, which is defined by this class.

NOTE There is still no way to assign a user-defined cursor to a Component.
You are restricted to the 14 predefined cursors.

5.7.1 Cursor Constants
The following is a list of Cursor constants. The cursors corresponding to the con-
stants are shown in Figure 5-6.

public final static int DEFAULT_CURSOR
public final static int CROSSHAIR_CURSOR
public final static int TEXT_CURSOR
public final static int WAIT_CURSOR
public final static int HAND_CURSOR
public final static int MOVE_CURSOR
public final static int N_RESIZE_CURSOR
public final static int S_RESIZE_CURSOR
public final static int E_RESIZE_CURSOR
public final static int W_RESIZE_CURSOR
public final static int NE_RESIZE_CURSOR
public final static int NW_RESIZE_CURSOR
public final static int SE_RESIZE_CURSOR
public final static int SW_RESIZE_CURSOR

5.7.2 Cursor Methods
public Cursor (int type) �

The sole constructor creates a Cursor of the specified type. type must be one
of the Cursor class constants. If type is not one of the class constants, the con-
structor throws the run-time exception IllegalArgumentException.

This constructor exists primarily to support object serialization; you don’t
need to call it in your code. It is more efficient to call getPredefinedCursor(),
discussed later in this section.

5.7 CURSOR 203

10 July 2002 22:19

204 CHAPTER 5: COMPONENTS

Cursor.DEFAULT_CURSOR

Cursor.CROSSHAIR_CURSOR

Cursor.TEXT_CURSOR

Cursor.WAIT_CURSOR

Cursor.HAND_CURSOR

Cursor.MOVE_CURSOR

Cursor.N_RESIZE_CURSOR

Cursor.S_RESIZE_CURSOR

Cursor.E_RESIZE_CURSOR

Cursor.W_RESIZE_CURSOR

Cursor.NE_RESIZE_CURSOR

Cursor.NW_RESIZE_CURSOR

Cursor.SE_RESIZE_CURSOR

Cursor.SW_RESIZE_CURSOR

Figure 5–6: Standard Java cursors

Miscellaneous methods

public int getType() �

The getType() method returns the cursor type. The value returned is one of
the class constants.

static public Cursor getPredefinedCursor(int type) �

The getPredefinedCursor() method returns the predefined Cursor of the
given type. If type is not one of the class constants, this method throws the
run-time exception IllegalArgumentException. This method checks what
Cursor objects already exist and gives you a reference to a preexisting Cursor

if it can find one with the appropriate type. Otherwise, it creates a new Cursor

for you. This is more efficient than calling the Cursor constructor whenever
you need one.

static public Cursor getDefaultCursor() �

The getDefaultCursor() method returns the predefined Cursor for the
DEFAULT_CURSOR type.

10 July 2002 22:19

6

Containers

In this chapter:
• Container
• Panel
• Insets
• Window
• Frames
• Dialogs
• FileDialog

This chapter covers a special type of Component called Container. A Container is a
subclass of Component that can contain other components, including other con-
tainers. Container allows you to create groupings of objects on the screen. This
chapter covers the methods in the Container class and its subclasses: Panel, Win-
dow, Frame, Dialog, and FileDialog. It also covers the Insets class, which provides
an internal border area for the Container classes.

Ever y container has a layout associated with it that controls how the container
organizes the components in it. The layouts are described in Chapter 7, Layouts.

Java 1.1 introduces a special Container called ScrollPane. Because of the similari-
ties between scrolling and ScrollPane, the new ScrollPane container is covered
with the Scrollbar class in Chapter 11, Scrolling.

6.1 Container
Container is an abstract class that serves as a general purpose holder of other Com-
ponent objects. The Container class holds the methods for grouping the compo-
nents together, laying out the components inside it, and dealing with events
occurring within it. Because Container is an abstract class, you never see a pure
Container object; you only see subclasses that add specific behaviors to a generic
container.

205

10 July 2002 22:19

206 CHAPTER 6: CONTAINERS

6.1.1 Container Methods
Constructors

The abstract Container class contains a single constructor to be called by its chil-
dren. Prior to Java 1.1, the constructor was package private.

protected Container() �

The constructor for Container creates a new component without a native peer.
Since you no longer have a native peer, you must rely on your container to
provide a display area. This allows you to create containers that require fewer
system resources. For example, if you are creating panels purely for layout
management, you might consider creating a LightweightPanel class to let you
assign a layout manager to a component group. Using LightweightPanel will
speed things up since events do not have to propagate through the panel and
you do not have to get a peer from the native environment. The following
code creates the LightweightPanel class:

import java.awt.*;
public class LightweightPanel extends Container {

LightweightPanel () {}
LightweightPanel (LayoutManager lm) {

setLayout(lm);
}

}

Grouping

A Container holds a set of objects within itself. This set of methods describes how
to examine and add components to the set.

public int getComponentCount () �

public int countComponents () ✩

The getComponentCount() method returns the number of components within
the container at this level. getComponentCount() does not count components
in any child Container (i.e., containers within the current container).

countComponents() is the Java 1.0 name for this method.

public Component getComponent (int position)
The getComponent() method returns the component at the specific position
within it. If position is invalid, this method throws the run-time exception
ArrayIndexOutOfBoundsException.

10 July 2002 22:19

public Component[] getComponents ()
getComponents() returns an array of all the components held within the con-
tainer. Since these are references to the actual objects on the screen, any
changes made to the components returned will be reflected on the display.

public Component add (Component component, int position)
The add() method adds component to the container at position. If position
is -1, add() inserts component as the last object within the container. What the
container does with position depends upon the LayoutManager of the con-
tainer. If position is invalid, the add() method throws the run-time exception
IllegalArgumentException. If you try to add component’s container to itself
(anywhere in the containment tree), this method throws an IllegalArgu-

mentException. In Java 1.1, if you try to add a Window to a container, add()
throws the run-time exception IllegalArgumentException. If you try to add
component to a container that already contains it, the container is removed
and re-added, probably at a different position.

Assuming that nothing goes wrong, the parent of component is set to the con-
tainer, and the container is invalidated. add() returns the component just
added.

Calling this method generates a ContainerEvent with the id COMPONENT_ADDED.

public Component add (Component component)
The add() method adds component to the container as the last object within
the container. This is done by calling the earlier version of add() with a posi-
tion of -1. If you try to add component’s container to itself (anywhere in the
containment tree), this method throws the run-time exception IllegalArgu-

mentException. In Java 1.1, if you try to add a Window to a container, add()
throws the run-time exception IllegalArgumentException.

Calling this method generates a ContainerEvent with the id COMPONENT_ADDED.

public void add (Component component, Object constraints) �

public Component add (String name, Component component)
This next version of add() is necessary for layouts that require additional infor-
mation in order to place components. The additional information is provided
by the constraints parameter. This version of the add() method calls the
addLayoutComponent() method of the LayoutManager. What the container
does with constraints depends upon the actual LayoutManager. It can be
used for naming containers within a CardLayout, specifying a screen area for
BorderLayout, or providing a set of GridBagConstraints for a GridBagLayout.
In the event that this add() is called and the current LayoutManager does not
take advantage of constraints, component is added at the end with a position

6.1 CONTAINER 207

10 July 2002 22:19

208 CHAPTER 6: CONTAINERS

of -1. If you try to add component’s container to itself (anywhere in the contain-
ment tree), this method throws the run-time exception IllegalArgumentEx-

ception. In Java 1.1, if you try to add a Window to a container, add() throws
the run-time exception IllegalArgumentException.

The add(String, Component) method was changed to add(component,

object) in Java 1.1 to accommodate the LayoutManager2 inter face (discussed
in Chapter 7) and to provide greater flexibility. In all cases, you can just flip
the parameters to bring the code up to 1.1 specs. The string used as an identi-
fier in Java 1.0 is just treated as a particular kind of constraint.

Calling this method generates a ContainerEvent with the id COMPONENT_ADDED.

public void add (Component component, Object constraints, int index) �

This final version of add() is necessary for layouts that require an index and
need additional information to place components. The additional information
is provided by the constraints parameter. This version of add() also calls the
addLayoutComponent() method of the LayoutManager. component is added
with a position of index. If you try to add component’s container to itself (any-
where in the containment tree), this method throws the run-time exception
IllegalArgumentException. In Java 1.1, if you try to add a Window to a Con-

tainer, add() throws the run-time exception IllegalArgumentException.

Some layout managers ignore any index. For example, if you call add(aBut-
ton, BorderLayout.NORTH, 3) to add a Button to a BorderLayout panel, the
Button appears in the north region of the layout, no matter what the index.

Calling this method generates a ContainerEvent with the id COMPONENT_ADDED.

protected void addImpl(Component comp, Object constraints, int index) �

The protected addImpl() method is the helper method that all the others call.
It deals with synchronization and enforces all the restrictions on adding com-
ponents to containers.

The addImpl() method tracks the container’s components in an internal list.
The index with which each component is added determines its position in the
list. The lower the component’s index, the higher it appears in the stacking
order. In turn, the stacking order determines how components are displayed
when sufficient space isn’t available to display all of them. Components that
are added without indices are placed at the end of the list (i.e., at the end of
the stacking order) and therefore displayed behind other components. If all
components are added without indices, the first component added to the con-
tainer is first in the stacking order and therefore displayed in front.

10 July 2002 22:19

You could override addImpl() to track when components are added to a con-
tainer. However, the proper way to find out when components are added is to
register a ContainerListener and watch for the COMPONENT_ADDED and the
COMPONENT_REMOVED events.

public void remove (int index) �

The remove() method deletes the component at position index from the con-
tainer. If index is invalid, the remove() method throws the run-time exception
IllegalArgumentException. This method calls the removeLayoutComponent()
method of the container’s LayoutManager.

removeAll() generates a ContainerEvent with the id COMPONENT_REMOVED.

public void remove (Component component)
The remove() method deletes component from the container, if the container
directly contains component. remove() does not look through nested contain-
ers trying to find component. This method calls the removeLayoutComponent()
method of the container’s LayoutManager.

When you call this method, it generates a ContainerEvent with the id COMPO-

NENT_REMOVED.

public void removeAll ()
The removeAll() method removes all components from the container. This is
done by looping through all the components, setting each component’s par-
ent to null, setting the container’s reference to the component to null, and
invalidating the container.

When you call this method, it generates a ContainerEvent with the id COMPO-

NENT_REMOVED for each component removed.

public boolean isAncestorOf(Component component) �

The isAncestorOf() method checks to see if component is a parent (or grand-
parent or great grandparent) of this container. It could be used as a helper
method for addImpl() but is not. If component is an ancestor of the container,
isAncestorOf() returns true; other wise, it returns false.

Layout and sizing

Ever y container has a LayoutManager. The LayoutManager is responsible for posi-
tioning the components inside the container. The Container methods listed here
are used in sizing the objects within the container and specifying a layout.

public LayoutManager getLayout ()
The getLayout() method returns the container’s current LayoutManager.

6.1 CONTAINER 209

10 July 2002 22:19

210 CHAPTER 6: CONTAINERS

public void setLayout (LayoutManager manager)
The setLayout() method changes the container’s LayoutManager to manager

and invalidates the container. This causes the components contained inside to
be repositioned based upon manager’s rules. If manager is null, there is no lay-
out manager, and you are responsible for controlling the size and position of
all the components within the container yourself.

public Dimension getPreferredSize () �

public Dimension preferredSize () ✩

The getPreferredSize() method returns the Dimension (width and height)
for the preferred size of the components within the container. The container
determines its preferred size by calling the preferredLayoutSize() method of
the current LayoutManager, which says how much space the layout manager
needs to arrange the components. If you override this method, you are over-
riding the default preferred size.

preferredSize() is the Java 1.0 name for this method.

public Dimension getMinimumSize () �

public Dimension minimumSize () ✩

The getMinimumSize() method returns the minimum Dimension (width and
height) for the size of the components within the container. This container
determines its minimum size by calling the minimumLayoutSize() method of
the current LayoutManager, which computes the minimum amount of space
the layout manager needs to arrange the components. It is possible for get-
MinimumSize() and getPreferredSize() to return the same dimensions.
There is no guarantee that you will get this amount of space for the layout.

minimumSize() is the Java 1.0 name for this method.

public Dimension getMaximumSize () �

The getMaximumSize() method returns the maximum Dimension (width and
height) for the size of the components within the container. This container
determines its maximum size by calling the maximumLayoutSize() method of
the current LayoutManager2, which computes the maximum amount of space
the layout manager needs to arrange the components. If the layout manager is
not an instance of LayoutManager2, this method calls the getMaximumSize()

method of the Component, which returns Integer.MAX_VALUE for both dimen-
sions. None of the java.awt layout managers use the concept of maximum
size yet.

10 July 2002 22:19

public float getAlignmentX () �

The getAlignmentX() method returns the alignment of the components
within the container along the x axis. This container determines its alignment
by calling the current LayoutManager2’s getLayoutAlignmentX() method,
which computes it based upon its children. The return value is between 0.0
and 1.0. Values nearer 0 indicate that the component should be placed closer
to the left edge of the area available. Values nearer 1 indicate that the compo-
nent should be placed closer to the right. The value 0.5 means the component
should be centered. If the layout manager is not an instance of LayoutMan-
ager2, this method calls Component’s getAlignmentX() method, which returns
the constant Component.CENTER_ALIGNMENT. None of the java.awt layout
managers use the concept of alignment yet.

public float getAlignmentY () �

The getAlignmentY() method returns the alignment of the components
within the container along the y axis. This container determines its alignment
by calling the current LayoutManager2’s getLayoutAlignmentY() method,
which computes it based upon its children. The return value is between 0.0
and 1.0. Values nearer 0 indicate that the component should be placed closer
to the top of the area available. Values nearer 1 indicate that the component
should be placed closer to the bottom. The value 0.5 means the component
should be centered. If the layout manager is not an instance of LayoutMan-
ager2, this method calls Component’s getAlignmentY() method, which returns
the constant Component.CENTER_ALIGNMENT. None of the java.awt layout
managers use the concept of alignment yet.

public void doLayout () �

public void layout () ✩

The doLayout() method of Container instructs the LayoutManager to lay out
the container. This is done by calling the layoutContainer() method of the
current LayoutManager.

layout()is the Java 1.0 name for this method.

public void validate ()
The validate() method sets the container’s valid state to true and recursively
validates all of its children. If a child is a Container, its children are in turn val-
idated. Some components are not completely initialized until they are vali-
dated. For example, you cannot ask a Button for its display dimensions or posi-
tion until it is validated.

6.1 CONTAINER 211

10 July 2002 22:19

212 CHAPTER 6: CONTAINERS

protected void validateTree () �

The validateTree() method is a helper for validate() that does all the work.

public void invalidate () �

The invalidate() method invalidates the container and recursively invali-
dates the children. If the layout manager is an instance of LayoutManager2, its
invalidateLayout() method is called to invalidate any cached values.

Event delivery

The event model for Java is described in Chapter 4, Events. These methods help in
the handling of the various system events at the container level.

public void deliverEvent (Event e) ✩

The deliverEvent() method is called by the system when the Java 1.0 Event e

happens. deliverEvent() tries to locate a component contained in the con-
tainer that should receive it. If one is found, the x and y coordinates of e are
translated for the new target, and Event e is delivered to this by calling its
deliverEvent(). If getComponentAt() fails to find an appropriate target, the
event is just posted to the container with postEvent().

public Component getComponentAt (int x, int y) �

public Component locate (int x, int y) ✩

The container’s getComponentAt() method calls each component’s con-

tains() method to see if the x and y coordinates are within it. If they are, that
component is returned. If the coordinates are not in any child component of
this container, the container is returned. It is possible for getComponentAt() to
return null if the x and y coordinates are not within the container. The
method getComponentAt() can return another Container or a lightweight
component.

locate()is the Java 1.0 name for this method.

public Component getComponentAt (Point p) �

This getComponentAt() method is identical to the previous method, with the
exception that the location is passed as a single point, rather than as separate x
and y coordinates.

Listeners and 1.1 event handling

With the 1.1 event model, you register listeners, which are told when events occur.
Container events occur when a component is added or removed.

public synchronized void addContainerListener(ContainerListener listener) �

The addContainerListener() method registers listener as an object

10 July 2002 22:19

interested in receiving notifications when an ContainerEvent passes through
the EventQueue with this Container as its target. The listener.componen-

tAdded() or listener.componentRemoved() method is called when these
events occur. Multiple listeners can be registered. The following code demon-
strates how to use a ContainerListener to register action listeners for all but-
tons added to an applet. It is similar to the ButtonTest11 example in Section
5.3.2. The trick that makes this code work is the call to enableEvents() in
init(). This method makes sure that container events are delivered in the
absence of listeners. In this applet, we know there won’t be any container lis-
teners, so we must enable container events explicitly before adding any com-
ponents.

// Java 1.1 only
import java.awt.*;
import java.applet.*;
import java.awt.event.*;
public class NewButtonTest11 extends Applet implements ActionListener {

Button b;
public void init () {

enableEvents (AWTEvent.CONTAINER_EVENT_MASK);
add (b = new Button ("One"));
add (b = new Button ("Two"));
add (b = new Button ("Three"));
add (b = new Button ("Four"));

}
protected void processContainerEvent (ContainerEvent e) {

if (e.getID() == ContainerEvent.COMPONENT_ADDED) {
if (e.getChild() instanceof Button) {

Button b = (Button)e.getChild();
b.addActionListener (this);

}
}

}
public void actionPerformed (ActionEvent e) {

System.out.println ("Selected: " + e.getActionCommand());
}

}

public void removeContainerListener(ContainerListener listener) �

The removeContainerListener() method removes listener as an interested
listener. If listener is not registered, nothing happens.

protected void processEvent(AWTEvent e) �

The processEvent() method receives all AWTEvents with this Container as its
target. processEvent() then passes them along to any listeners for processing.
When you subclass Container, overriding processEvent() allows you to pro-
cess all events yourself, before sending them to any listeners. There is no
equivalent under the 1.0 event model.

6.1 CONTAINER 213

10 July 2002 22:19

214 CHAPTER 6: CONTAINERS

If you override processEvent(), remember to call super.processEvent(e) last
to ensure that regular event processing can occur. If you want to process your
own events, it’s a good idea to call enableEvents() (inherited from Compo-

nent) to ensure that events are delivered even in the absence of registered lis-
teners.

protected void processContainerEvent(ContainerEvent e) �

The processContainerEvent() method receives all ContainerEvents with this
Container as its target. processContainerEvent() then passes them along to
any listeners for processing. When you subclass Container, overriding the pro-
cessContainerEvent() method allows you to process all container events your-
self, before sending them to any listeners. There is no equivalent under the 1.0
event model.

If you override the processContainerEvent() method, remember to call
super.processContainerEvent(e) last to ensure that regular event processing
can occur. If you want to process your own events, it’s a good idea to call
enableEvents() (inherited from Component) to ensure that events are deliv-
ered even in the absence of registered listeners.

Painting

The following methods are early vestiges of an approach to painting and printing.
They are not responsible for anything that couldn’t be done with a call to
paintAll() or printAll(). However, they are available if you wish to call them.

public void paintComponents (Graphics g)
The paintComponents() method of Container paints the different compo-
nents it contains. It calls each component’s paintAll() method with a clipped
graphics context g, which is eventually passed to paint().

public void printComponents (Graphics g)
The printComponents() method of Container prints the different compo-
nents it contains. It calls each component’s printAll() method with a clipped
graphics context g, which is passed to print(), and eventually works its way to
paint().

Since it is the container’s responsibility to deal with painting lightweight peers, the
paint() and print() methods are overridden in Java 1.1.

public void paint(Graphics g) �

The paint() method of Container paints the different lightweight compo-
nents it contains.

10 July 2002 22:19

public void print(Graphics g) �

The print() method of Container prints the different lightweight compo-
nents it contains.

NOTE If you override paint() or print() in your containers (especially
applets), call super.paint(g) or super.print(g), respectively, to
make sure that lightweight components are rendered. This is a good
practice even if you don’t currently use any lightweight components;
you don’t want your code to break mysteriously if you add a
lightweight component later.

Peers

The container is responsible for creating and destroying all the peers of the com-
ponents within it.

public void addNotify ()
The addNotify() method of Container creates the peer of all the components
within it. After addNotify() is called, the Container is invalid. It is useful for
top-level containers to call this method explicitly before calling the method
setVisible(true) to guarantee that the container is laid out before it is dis-
played.

public void removeNotify ()
The removeNotify() method destroys the peer of all the top-level objects con-
tained within it. This in effect destroys the peers of all the components within
the container.

Miscellaneous methods

protected String paramString ()
When you call the toString() method of a container, the default toString()
method of Component is called. This in turn calls paramString() which builds
up the string to display. At the Container level, paramString() appends the
layout manager name, like layout=java.awt.BorderLayout, to the output.

public Insets getInsets () �

public Insets insets () ✩

The getInsets() method gets the container’s current insets. An inset is the
amount of space reserved for the container to use between its edge and the
area actually available to hold components. For example, in a Frame, the inset
for the top would be the space required for the title bar and menu bar. Insets
exist for top, bottom, right, and left. When you override this method, you are
providing an area within the container that is reserved for free space. If the
container has insets, they would be the default. If not, the default values are

6.1 CONTAINER 215

10 July 2002 22:19

216 CHAPTER 6: CONTAINERS

all zeroes.

The following code shows how to override insets() to provide values other
than the default. The top and bottom have 20 pixels of inset. The left and
right have 50. Section 6.3 describes the Insets class in more detail.

public Insets insets () { // getInsets() for Java 1.1
return new Insets (20, 50, 20, 50);

}

To find out the current value, just call the method and look at the results. For
instance, for a Frame the results could be the following in the format used by
toString():

java.awt.Insets[top=42,left=4,right=4,bottom=4]

The 42 is the space required for the title and menu bar, while the 4 around the
edges are for the window decorations. These results are platform specific and
allow you to position items based upon the user’s run-time environment.

When drawing directly onto the graphics context of a container with a large
inset such as Frame, remember to work around the insets. If you do something
like g.drawString(“Hello World”, 5, 5) onto a Frame, the user won’t see the
text. It will be under the title bar and menu bar.

insets() is the Java 1.0 name for this method.

public void list (PrintWriter output, int indentation) �

public void list (PrintStream output, int indentation)
The list() method is very helpful if you need to find out what is inside a con-
tainer. It recursively calls itself for each container level of objects inside it,
increasing the indentation at each level. The results are written to the
PrintStream or PrintWriter output.

6.2 Panel
The Panel class provides a generic container within an existing display area. It is
the simplest of all the containers. When you load an applet into Netscape Naviga-
tor or an appletviewer, you have a Panel to work with at the highest level.

A Panel has no physical appearance. It is just a rectangular display area. The
default LayoutManager of Panel is FlowLayout; FlowLayout is described in Section
7.2.

10 July 2002 22:19

6.2.1 Panel Methods
Constructors

public Panel ()
The first constructor creates a Panel with a LayoutManager of FlowLayout.

public Panel (LayoutManager layout) �

This constructor allows you to set the initial LayoutManager of the new Panel

to layout. If layout is null, there is no LayoutManager, and you must shape
and position the components within the Panel yourself.

Miscellaneous methods

public void addNotify ()
The addNotify() method creates the Panel peer. If you override this method,
first call super.addNotify(), then add your customizations for the new class.
Then you can do everything you need with the information about the newly
created peer.

6.2.2 Panel Events
In Java 1.0, a Panel peer generates all the events that are generated by the Compo-
nent class; it does not generate events that are specific to a particular type of com-
ponent. That is, it generates key events, mouse events, and focus events; it doesn’t
generate action events or list events. If an event happens within a child component
of a Panel, the target of the event is the child component, not the Panel. There’s
one exception to this rule: if a component uses the LightweightPeer (new to Java
1.1), it cannot be the target of an event.

With Java 1.1, events are delivered to whatever listener is associated with a con-
tained component. The fact that the component is within a Panel has no rele-
vance.

6.3 Insets
The Insets class provides a way to encapsulate the layout margins of the four dif-
ferent sides of a container. The class helps in laying out containers. The Container
can retrieve their values through the getInsets() method, then analyze the set-
tings to position components. The different inset values are measured in pixels.
The space reserved by insets can still be used for drawing directly within paint().
Also, if the LayoutManager associated with the container does not look at the
insets, the request will be completely ignored.

6.3 INSETS 217

10 July 2002 22:19

218 CHAPTER 6: CONTAINERS

6.3.1 Insets Methods
Variables

There are four variables for insets, one for each border.

public int top
This variable contains the border width in pixels for the top of a container.

public int bottom
This variable contains the border width in pixels for the bottom of a container.

public int left
This variable contains the border width in pixels for the left edge of a
container.

public int right
This variable contains the border width in pixels for the right edge of a
container.

Constructors

public Insets (int top, int left, int bottom, int right)
The constructor creates an Insets object with top, left, bottom, and right

being the size of the insets in pixels. If this object was the return object from
the getInsets() method of a container, these values represent the size of a
border inside that container.

Miscellaneous methods

public Object clone ()
The clone() method creates a clone of the Insets so the same Insets object
can be associated with multiple containers.

public boolean equals(Object object) �

The equals() method defines equality for insets. Two Insets objects are equal
if the four settings for the different values are equal.

public String toString ()
The toString() method of Insets returns the current settings. Using the new
Insets (10, 20, 30, 40) constructor, the results would be:

java.awt.Insets[top=10,left=20,bottom=30,right=40]

10 July 2002 22:19

6.3.2 Insets Example
The following source code demonstrates the use of insets within an applet’s Panel.
The applet displays a button that takes up the entire area of the Panel, less the
insets, then draws a rectangle around that area. This is shown visually in Figure 6-1.
The example demonstrates that if you add components to a container, the Layout-
Manager deals with the insets for you in positioning them. But if you are drawing
directly to the Panel, you must look at the insets if you want to avoid the requested
area within the container.

import java.awt.*;
import java.applet.*;
public class myInsets extends Applet {

public Insets insets () {
return new Insets (50, 50, 50, 50);

}
public void init () {

setLayout (new BorderLayout ());
add ("Center", new Button ("Insets"));

}
public void paint (Graphics g) {

Insets i = insets();
int width = size().width - i.left - i.right;
int height = size().height - i.top - i.bottom;
g.drawRect (i.left-2, i.top-2, width+4, height+4);
g.drawString ("Insets Example", 25, size().height - 25);

}
}

To change the applet’s insets from the default, we override the insets() method
to return a new Insets object, with the new values.

6.4 Window
A Window is a top-level display area that exists outside the browser or applet area
you are working in. It has no adornments, such as the borders, window title, or
menu bar that a typical window manager might provide. A Frame is a subclass of
Window that adds these parts (borders, window title). Normally you will work with
the children of Window and not Window directly. However, you might use a Window

to create your own pop-up menu or some other GUI component that requires its
own window and isn’t provided by AWT. This technique isn’t as necessar y in Java
1.1, which has a PopupMenu component.

The default LayoutManager for Window is BorderLayout, which is described in Sec-
tion 7.3.

6.4 WINDOW 219

10 July 2002 22:19

220 CHAPTER 6: CONTAINERS

left right

top

bottom

Figure 6–1: Insets

6.4.1 Window Methods
Constructors

public Window (Frame parent)
There is one public constructor for Window. It has one parameter, which speci-
fies the parent of the Window. When the parent is minimized, so is the Window.
In an application, you must therefore create a Frame before you can create a
Window; this isn’t much of an inconvenience since you usually need a Frame in
which to build your user interface. In an applet, you often do not have access
to a Frame to use as the parent, so you can pass null as the argument.

Figure 6-2 shows a simple Window on the left. Notice that there are no borders
or window management adornments present. The Window on the right was
created by an applet loaded over the network. Notice the warning message you
get in the status bar at the bottom of the screen. This is to warn users that the
Window was created by an applet that comes from an untrusted source, and you
can’t necessarily trust it to do what it says. The warning is particularly appropri-
ate for windows, since a user can’t necessarily tell whether a window was cre-
ated by an applet or any other application. It is therefore possible to write
applets that mimic windows from well-known applications, to trick the user
into giving away passwords, credit card numbers, or other sensitive informa-
tion.

In some environments, you can get the browser’s Frame to use with the Win-

dow’s constructor. This is one way to create a Dialog, as we shall see. By

10 July 2002 22:19

Appletviewer Navigator

Figure 6–2: Two windows

repeatedly calling getParent() until there are no more parents, you can dis-
cover an applet’s top-level parent, which should be the browser’s Frame.
Example 6-1 contains the code you would write to do this. You should then
check the return value to see if you got a Frame or null. This code is com-
pletely nonportable, but you may happen to be in an environment where it
works.

Example 6–1: Finding a Parent Frame

import java.awt.*;
public class ComponentUtilities {

public static Frame getTopLevelParent (Component component) {
Component c = component;
while (c.getParent() != null)

c = c.getParent();
if (c instanceof Frame)

return (Frame)c;
else

return null;
}

}

Appearance methods

A handful of methods assist with the appearance of the Window.

public void pack ()
The pack() method resizes the Window to the preferred size of the compo-
nents it contains and validates the Window.

6.4 WINDOW 221

10 July 2002 22:19

222 CHAPTER 6: CONTAINERS

public void show ()
The show() method displays the Window. When a Window is initially created it is
hidden. If the window is already showing when this method is called, it calls
toFront() to bring the window to the foreground. To hide the window, just
call the hide() method of Component. After you show() a window, it is vali-
dated for you.

The first call to show() for any Window generates a WindowEvent with the ID
WINDOW_OPENED.

public void dispose ()
The dispose() method releases the resources of the Window by hiding it and
removing its peer. Calling this method generates a WindowEvent with the ID
WINDOW_CLOSED.

public void toFront ()
The toFront() method brings the Window to the foreground of the display.
This is automatically called if you call show() and the Window is already shown.

public void toBack ()
The toBack() method puts the Window in the background of the display.

public boolean isShowing() �

The isShowing() method returns true if the Window is visible on the screen.

Miscellaneous methods

public Toolkit getToolkit ()
The getToolkit() method returns the current Toolkit of the window. The
Toolkit provides you with information about the native platform. This will
allow you to size the Window based upon the current screen resolution and get
images for an application. See Section 6.5.5 for a usage example.

public Locale getLocale () �

The getLocale() method retrieves the current Locale of the window, if it has
one. Using a Locale allows you to write programs that can adapt themselves to
different languages and different regional variants. If no Locale has been set,
getLocale() returns the default Locale. The default Locale has a user lan-
guage of English and no region. To change the default Locale, set the system
properties user.language and user.region or call Locale.setDefault()

(setDefault() verifies access rights with the security manager).*

* For more on the Locale class, see the Java Fundamental Classes Reference from O’Reilly & Associates.

10 July 2002 22:19

public final String getWarningString ()
The getWarningString() method returns null or a string that is displayed on
the bottom of insecure Window instances. If the SecurityManager says that top-
level windows do not get a warning message, this method returns null. If a
message is required, the default text is “Warning: Applet Window”. However,
Java allows the user to change the warning by setting the system property
awt.appletWarning. (Netscape Navigator and Internet Explorer do not allow
the warning message to be changed. Netscape Navigator’s current (V3.0)
warning string is “Unsigned Java Applet Window.”) The purpose of this string
is to warn users that the Window was created by an untrusted source, as
opposed to a standard application, and should be used with caution.

public Component getFocusOwner () �

The getFocusOwner() method allows you to ask the Window which of its com-
ponents currently has the input focus. This is useful if you are cutting and
pasting from the system clipboard; asking who has the input focus tells you
where to put the data you get from the clipboard. The system clipboard is cov-
ered in Chapter 16, Data Transfer. If no component in the Window has the
focus, getFocusOwner() returns null.

public synchronized void addNotify ()
The addNotify() method creates the Window peer. This is automatically done
when you call the show() method of the Window. If you override this method,
first call super.addNotify(), then add your customizations for the new class.
Then you can do everything you need to with the information about the newly
created peer.

6.4.2 Window Events
In Java 1.0, a Window peer generates all the events that are generated by the Compo-
nent class; it does not generate events that are specific to a particular type of com-
ponent. That is, it generates key events, mouse events, and focus events; it doesn’t
generate action events or list events. If an event occurs within a child component
of a Window, the target of the event is the child component, not the Window.

In addition to the Component events, five events are specific to windows, none of
which are passed on by the window’s peer. These events happen at the Frame and
Dialog level. The events are WINDOW_DESTROY, WINDOW_EXPOSE, WINDOW_ICONIFY,
WINDOW_DEICONIFY, and WINDOW_MOVED. The default event handler, handleEvent(),
doesn’t call a convenience method to handle any of these events. If you want to
work with them, you must override handleEvent(). See Section 6.5.4 for an exam-
ple that catches the WINDOW_DESTROY event.

6.4 WINDOW 223

10 July 2002 22:19

224 CHAPTER 6: CONTAINERS

public boolean postEvent (Event e) ✩

The postEvent() method tells the Window to deal with Event e. It calls the
handleEvent() method, which returns true if somebody handled e and false

if no one handles it. This method, which overrides Component.postEvent(), is
necessar y because a Window is, by definition, an outermost container, and
therefore does not need to post the event to its parent.

Listeners and 1.1 event handling

With the 1.1 event model, you register listeners for different event types; the listen-
ers are told when the event happens. These methods register listeners and let the
Window component inspect its own events.

public void addWindowListener(WindowListener listener) �

The addWindowListener() method registers listener as an object interested
in being notified when an WindowEvent passes through the EventQueue with
this Window as its target. When such an event occurs, one of the methods in
the WindowListener inter face is called. Multiple listeners can be registered.

public void removeWindowListener(WindowListener listener) �

The removeWindowListener() method removes listener as an interested lis-
tener. If listener is not registered, nothing happens.

protected void processEvent(AWTEvent e) �

The processEvent() method receives every AWTEvent with this Window as its
target. processEvent() then passes them along to any listeners for processing.
When you subclass Window, overriding processEvent() allows you to process
all events yourself, before sending them to any listeners. In a way, overriding
processEvent() is like overriding handleEvent() using the 1.0 event model.

If you override processEvent(), remember to call super.processEvent(e) last
to ensure that regular event processing can occur. If you want to process your
own events, it’s a good idea to call enableEvents() (inherited from Compo-

nent) to ensure that events are delivered even in the absence of registered lis-
teners.

protected void processWindowEvent(WindowEvent e) �

The processWindowEvent() method receives every WindowEvent with this Win-
dow as its target. processWindowEvent() then passes them along to any listen-
ers for processing. When you subclass Window, overriding processWindow-

Event() allows you to process all events yourself, before sending them to any
listeners. In a way, overriding processWindowEvent() is like overriding han-

dleEvent() using the 1.0 event model.

10 July 2002 22:19

If you override processWindowEvent(), you must remember to call super.pro-
cessWindowEvent(e) last to ensure that regular event processing can occur. If
you want to process your own events, it’s a good idea to call enableEvents()
(inherited from Component) to ensure that events are delivered even in the
absence of registered listeners.

6.5 Frames
The Frame is a special type of Window that looks like other high level programs in
your windowing environment. It adds a MenuBar, window title, and window gadgets
(like resize, maximize, minimize, window menu) to the basic Window object. All the
menu-related pieces are discussed in Chapter 10, Would You Like to Choose from the
Menu?

The default layout manager for a Frame is BorderLayout.

6.5.1 Frame Constants
The Frame class includes a number of constants used to specify cursors. These con-
stants are left over from Java 1.0 and maintained for compatibility. In Java 1.1, you
should use the new Cursor class, introduced in the previous chapter, and the Com-
ponent.setCursor() method to change the cursor over a frame. Avoid using the
Frame constants for new code. To see these cursors, refer to Figure 5-6.

public final static int DEFAULT_CURSOR
public final static int CROSSHAIR_CURSOR
public final static int TEXT_CURSOR
public final static int WAIT_CURSOR
public final static int SW_RESIZE_CURSOR
public final static int SE_RESIZE_CURSOR
public final static int NW_RESIZE_CURSOR
public final static int NE_RESIZE_CURSOR
public final static int N_RESIZE_CURSOR
public final static int S_RESIZE_CURSOR
public final static int W_RESIZE_CURSOR
public final static int E_RESIZE_CURSOR
public final static int HAND_CURSOR
public final static int MOVE_CURSOR

NOTE HAND_CURSOR and MOVE_CURSOR are not available on Windows plat-
forms with Java 1.0. If you ask to use these and they are not available,
you get DEFAULT_CURSOR.

6.5 FRAMES 225

10 July 2002 22:19

226 CHAPTER 6: CONTAINERS

6.5.2 Frame Constructors
public Frame ()

The constructor for Frame creates a hidden window with a window title of
“Untitled” (Java1.0) or an empty string (Java1.1). Like Window, the default
LayoutManager of a Frame is BorderLayout. DEFAULT_CURSOR is the initial cur-
sor. To position the Frame on the screen, call Component.move(). Since the
Frame is initially hidden, you need to call the show() method before the user
sees the Frame.

public Frame (String title)
This version of Frame’s constructor is identical to the first but sets the window
title to title. Figure 6-3 shows the results of a call to new Frame(“My Frame”)

followed by resize() and show().

Figure 6–3: A typical Frame

6.5.3 Frame Methods
public String getTitle ()

The getTitle() method returns the current title for the Frame. If there is no
title, this method returns null.

public void setTitle (String title)
The setTitle() method changes the Frame’s title to title.

public Image getIconImage ()
The getIconImage() method returns the image used as the icon. Initially, this
returns null. For some platforms, the method should not be used because the
platform does not support the concept.

10 July 2002 22:19

public void setIconImage (Image image)
The setIconImage() method changes the image to display when the Frame is
iconified to image. Not all platforms utilize this resource.

public MenuBar getMenuBar ()
The getMenuBar() method retrieves the Frame’s current menu bar.

public synchronized void setMenuBar (MenuBar bar)
The setMenuBar() method changes the menu bar of the Frame to bar. If bar is
null, it removes the menu bar so that none is available. It is possible to have
multiple menu bars based upon the context of the application. However, the
same menu bar cannot appear on multiple frames and only one can appear at
a time. The MenuBar class, and everything to do with menus, is covered in
Chapter 10.

public synchronized void remove (MenuComponent component)
The remove() method removes component from Frame if component is the
frame’s menu bar. This is equivalent to calling setMenuBar() with a parameter
of null and in actuality is what remove() calls.

public synchronized void dispose ()
The dispose() method frees up the system resources used by the Frame. If
any Dialogs or Windows are associated with this Frame, their resources are
freed, too. Some people like to call Component.hide() before calling the dis-
pose() method so users do not see the frame decomposing.

public boolean isResizable ()
The isResizable() method will tell you if the current Frame is resizable.

public void setResizable (boolean resizable)
The setResizable() method changes the resize state of the Frame. A resiz-

able value of true means the user can resize the Frame, false means the user
cannot. This must be set before the Frame is shown or the peer created.

public void setCursor (int cursorType)
The setCursor() method changes the cursor of the Frame to cursorType.
cursorType must be one of the cursor constants provided with the Frame class.
You cannot create your own cursor image yet. When changing from the
DEFAULT_CURSOR to another cursor, the mouse must be moved for the cursor
icon to change to the new cursor. If cursorType is not one of the predefined
cursor types, setCursor() throws the IllegalArgumentException run-time
exception.

This method has been replaced by the Component.setCursor() method. Both
function equivalently, but this method is being phased out.

6.5 FRAMES 227

10 July 2002 22:19

228 CHAPTER 6: CONTAINERS

public int getCursorType ()
The getCursorType() method retrieves the current cursor.

This method has been replaced by the Component.getCursor() method. Both
function equivalently, but this method is being phased out.

Miscellaneous methods

public synchronized void addNotify ()
The addNotify() method creates the Frame peer. This is automatically done
when you call the show() method of the Frame. If you override this method,
first call super.addNotify(), then add your customizations for the new class.
Then you can do everything you need to do with the information about the
newly created peer.

protected String paramString ()
When you call the toString() method of Frame, the default toString()

method of Component is called. This in turn calls paramString(), which builds
up the string to display. At the Frame level, paramString() appends resizable
(if true) and the title (if present). Using the default Frame constructor, the
results would be:

java.awt.Frame[0,0,0x0,invalid,hidden,layout=java.awt.BorderLayout,
resizable,title=]

Until the Frame is shown, via show(), the position and size are not known and
therefore appear as zeros. After showing the Frame, you might see:

java.awt.Frame[44,44,300x300,layout=java.awt.BorderLayout,
resizable,title=]

6.5.4 Frame Events
In Java 1.0, a Frame peer generates all the events that are generated by the Compo-
nent class; it does not generate events that are specific to a particular type of com-
ponent. That is, it generates key events, mouse events, and focus events; it doesn’t
generate action events or list events. If an event happens within a child component
of a Frame, the target of the event is the child component, not the Frame.

Window

In addition to the Component events, Frame generates the WINDOW events. These
events are WINDOW_DESTROY, WINDOW_EXPOSE, WINDOW_ICONIFY, WINDOW_DEICONIFY,
and WINDOW_MOVED.

10 July 2002 22:19

One common event, WINDOW_DESTROY, is generated when the user tries to close the
Frame by selecting Quit, Close, or Exit (depending on your windowing environ-
ment) from the window manager’s menu. By default, this event does nothing. You
must provide an event handler that explicitly closes the Frame. If you do not, your
Frame will close only when the Java Virtual Machine exits—for example, when you
quit Netscape Navigator. The handleEvent() method in the following example, or
one like it, should therefore be included in all classes that extend Frame. If a WIN-
DOW_DESTROY event occurs, it gets rid of the Frame and exits the program. Make
sure your method calls super.handleEvent() to process the other events.

public boolean handleEvent (Event e) {
if (e.id == Event.WINDOW_DESTROY) {

hide();
dispose();
System.exit(0);
return true; // boolean method, must return something

} else {
// handle other events we find interesting

}
// make sure normal event processing happens

return super.handleEvent (e);
}

Listeners and 1.1 event handling

With the 1.1 event model, you register listeners for different event types; the listen-
ers are told when the event happens. The Frame class inherits all its listener han-
dling from Window.

Here’s the Java 1.1 code necessary to handle WINDOW_CLOSING events; it is equiva-
lent to the handleEvent() method in the previous example. First, you must add
the following line to the Frame’s constructor:

enableEvents (AWTEvent.WINDOW_EVENT_MASK);

This line guarantees that we will receive window events, even if there is no listener.
The processWindowEvent() method in the following code does the actual work of
closing things down:

// Java 1.1 only
protected void processWindowEvent(WindowEvent e) {

if (e.getID() == WindowEvent.WINDOW_CLOSING) {
// Notify others we are closing
if (windowListener != null)

windowListener.windowClosing(e);
System.exit(0);

} else {
super.processEvent(e);

}
}

6.5 FRAMES 229

10 July 2002 22:19

230 CHAPTER 6: CONTAINERS

If you forget to enable events, processWindowEvent() may never be called, and
your windows will not shut down until the Java Virtual Machine exits. All subclasses
of Frame should include code like this to make sure they terminate gracefully.

6.5.5 Building a New Component from a Window
Now that we have discussed the Frame and Window objects, we can briefly investi-
gate some ways to use them together. Previously I said that you can use a Window to
build your own pop-up menu. That’s no longer necessary in Java 1.1, but the same
techniques apply to plenty of other objects. In the following example, we build a
set of pop-up buttons; it also uses the Toolkit of a Frame to load images within an
application. The pop-up button set appears when the user presses the right mouse
button over the image. It is positioned at the coordinates of the mouseDown()

event; to do so, we add the current location() of the Frame to the mouse’s x and y

coordinates. Figure 6-4 shows what this application looks like when the pop-up but-
ton set is on the screen.

import java.awt.*;
public class PopupButtonFrame extends Frame {

Image im;
Window w = new PopupWindow (this);
PopupButtonFrame () {

super ("PopupButton Example");
resize (250, 100);
show();
im = getToolkit().getImage ("rosey.jpg");
MediaTracker mt = new MediaTracker (this);
mt.addImage (im, 0);
try {

mt.waitForAll();
} catch (Exception e) {e.printStackTrace(); }

}
public static void main (String args[]) {

Frame f = new PopupMenuFrame ();
}
public void paint (Graphics g) {

if (im != null)
g.drawImage (im, 20, 20, this);

}
public boolean mouseDown (Event e, int x, int y) {

if (e.modifiers == Event.META_MASK) {
w.move (location().x+x, location().y+y);
w.show();
return true;

}
return false;

}
}
class PopupWindow extends Window {

PopupWindow (Frame f) {

10 July 2002 22:19

super (f);
Panel p = new Panel ();
p.add (new Button ("About"));
p.add (new Button ("Save"));
p.add (new Button ("Quit"));
add ("North", p);
setBackground (Color.gray);
pack();

}
public boolean action (Event e, Object o) {

if ("About".equals (o))
System.out.println ("About");

else if ("Save".equals (o))
System.out.println ("Save Me");

else if ("Quit".equals (o))
System.exit (0);

hide();
return true;

}
}

Figure 6–4: Pop-up buttons

The most interesting method in this application is mouseDown(). When the user
clicks on the mouse, mouseDown() checks whether the META_MASK is set in the event
modifiers; this indicates that the user pressed the right mouse button, or pressed
the left button while pressing the Meta key. If this is true, mouseDown() moves the
window to the location of the mouse click, calls show() to display the window, and
returns true to indicate that the event was handled completely. If mouseDown were
called with any other kind of mouse event, we return false to let the event propa-
gate to any other object that might be interested. Remember that the coordinates
passed with the mouse event are the coordinates of the mouse click relative to the
Frame; to find out where to position the pop-up window, we need an absolute loca-
tion and therefore ask the Frame for its location.

PopupWindow itself is a simple class. Its constructor simply creates a display with
three buttons. The call to pack() sizes the window so that it provides a nice border
around the buttons but isn’t excessively large; you can change the border by

6.5 FRAMES 231

10 July 2002 22:19

232 CHAPTER 6: CONTAINERS

playing with the window’s insets if you want, but that usually isn’t necessar y. The
class PopupWindow has an action() method that is called when the user clicks one
of the buttons. When the user clicks on a button, action() prints a message and
hides the window.

6.6 Dialogs
The Dialog class provides a special type of display window that is normally used for
pop-up messages or input from the user. It should be associated with a Frame (a
required parameter for the constructor), and whenever anything happens to this
Frame, the same thing will happen to the Dialog. For instance, if the parent Frame
is iconified, the Dialog disappears until the Frame is de-iconified. If the Frame is
destroyed, so are all the associated dialogs. Figure 6-5 and Figure 6-6 show typical
dialog boxes.

In addition to being associated with a Frame, Dialog is either modeless or modal. A
modeless Dialog means a user can interact with both the Frame and the Dialog at
the same time. A modal Dialog is one that blocks input to the remainder of the
application, including the Frame, until the Dialog box is acted upon. Note that the
parent Frame is still executing; unlike some windowing systems, Java does not sus-
pend the entire application for a modal Dialog. Normally, blocking access would
be done to get input from the user or to show a warning message. Example 6-2
shows how to create and use a modal Dialog box, as we will see later in the chap-
ter.

Since Dialog subclasses Window, its default LayoutManager is BorderLayout.

In applets, when you create a Dialog, you need to provide a reference to the
browser’s Frame, not the applet. In order to get this, you can try to go up the
container hierarchy of the Applet with getParent() until it returns null. (You can-
not specify a null parent as you can with a Window.) See Example 6-1 for a utility
method to do this. Simple include a line like the following in your applet:

Frame top = ComponentUtilities.getTopLevelParent (this);

Then pass top to the Dialog constructor. Another alternative is to create a new
Frame to associate with your dialog.

10 July 2002 22:19

6.6.1 Dialog Constructors and Methods
Constructors

If any constructor is passed a null parent, the constructor throws the run-time
exception IllegalArgumentException.

public Dialog (Frame parent) �

This constructor creates an instance of Dialog with no title and with parent as
the Frame owning it. It is not modal and is initially resizable.

public Dialog (Frame parent, boolean modal) ✩

This constructor creates an instance of Dialog with no title and with parent as
the Frame owning it. If modal is true, the Dialog grabs all the user input of the
program until it is closed. If modal is false, there is no special behavior associ-
ated with the Dialog. Initially, the Dialog will be resizable. This constructor is
comment-flagged as deprecated.

public Dialog (Frame parent, String title) �

This version of the constructor creates an instance of Dialog with parent as
the Frame owning it and a window title of title. It is not modal and is initially
resizable.

public Dialog (Frame parent, String title, boolean modal)
This version of the constructor creates an instance of Dialog with parent as
the Frame owning it and a window title of title. If mode is true, the Dialog

grabs all the user input of the program until it is closed. If modal is false,
there is no special behavior associated with the Dialog. Initially, the Dialog

will be resizable.

NOTE In some 1.0 versions of Java, modal dialogs were not supported prop-
erly. You needed to create some multithreaded contraption that sim-
ulated modality. Modal dialogs work properly in 1.1.

Appearance methods

public String getTitle ()
The getTitle() method returns the current title for the Dialog. If there is no
title for the Dialog, getTitle() returns null.

public void setTitle (String title)
The setTitle() method changes the current title of the Dialog to title. To
turn off any title for the Dialog, use null for title.

6.6 DIALOGS 233

10 July 2002 22:19

234 CHAPTER 6: CONTAINERS

Figure 6–5: A Dialog in an application or local applet

Figure 6–6: The same Dialog in an applet that came across the network

public boolean isResizable ()
The isResizable() method tells you if the current Dialog is resizable.

public void setResizable (boolean resizable)
The setResizable() method changes the resize state of the Dialog. A resiz-

able value of true means the user can resize the Dialog, while false means
the user cannot. This must be set before the Dialog is shown or the peer cre-
ated.

Modal methods

public boolean isModal ()
The isModal() method returns the current mode of the Dialog. true indi-
cates the dialog traps all user input.

10 July 2002 22:19

public void setModal (boolean mode) �

The setModal() method changes the current mode of the Dialog to mode. The
next time the dialog is displayed via show(), it will be modal. If the dialog is
currently displayed, setModal() has no immediate effect. The change will take
place the next time show() is called.

public void show () �

The show() method brings the Dialog to the front and displays it. If the dialog
is modal, show() takes care of blocking events so that they don’t reach the par-
ent Frame.

Miscellaneous methods

public synchronized void addNotify ()
The addNotify() method creates the Dialog peer. The peer is created auto-
matically when you call the dialog’s show() method. If you override the
method addNotify(), first call super.addNotify(), then add your customiza-
tions for the new class. You will then be able to do everything you need with
the information about the newly created peer.

protected String paramString ()
When you call the toString() method of Dialog, the default toString()

method of Component is called. This in turn calls paramString() which builds
up the string to display. At the Dialog level, paramString() appends the cur-
rent mode (modal/modeless) and title (if present). Using the constructor
Dialog (top, "Help", true), the results would be as follows:

java.awt.Dialog[0,0,0x0,invalid,hidden,layout=java.awt.BorderLayout,
modal,title=Help]

6.6.2 Dialog Events
In Java 1.0, a Dialog peer generates all the events that are generated by the Compo-
nent class; it does not generate events that are specific to a particular type of com-
ponent. That is, it generates key events, mouse events, and focus events; it doesn’t
generate action events or list events. If an event happens within a child component
of a Dialog, the target of the event is the child component, not the Dialog.

Window

In addition to the Component events, Dialog generates the WINDOW events. These
events are WINDOW_DESTROY, WINDOW_EXPOSE, WINDOW_ICONIFY, WINDOW_DEICONIFY,
and WINDOW_MOVED.

6.6 DIALOGS 235

10 July 2002 22:19

236 CHAPTER 6: CONTAINERS

Listeners and 1.1 event handling

With the 1.1 event model, you register listeners for different event types; the listen-
ers are told when the event happens. The Dialog class inherits all its listener han-
dling from Window.

6.6.3 Dialog Example
Example 6-2 demonstrates how a modal Dialog tries to work in Java 1.0. In some
windowing systems, “modal” means that the calling application, and sometimes the
entire system stops, and input to anything other than the Dialog is blocked. With
Java 1.0, a modal Dialog acts only on the parent frame and simply prevents it from
getting screen-oriented input by disabling all components within the frame. The
Java program as a whole continues to execute.

Example 6-2 displays a Dialog window with username and password fields, and an
Okay button. When the user selects the Okay button, a realistic application would
validate the username and password; in this case, they are just displayed on a
Frame. Since the Frame must wait for the Dialog to finish before looking at the val-
ues of the two fields, the Dialog must tell the Frame when it can look. This is done
through a custom interface implemented by the parent Frame and invoked by the
Dialog in its action method.

Figure 6-7 is the initial Dialog; Figure 6-8 shows the result after you click Okay.
Example 6-2 contains the source code.

Figure 6–7: Username and password Dialog

Notice the use of the newly created DialogHandler inter face when the user selects
the Okay button. Also, see how the pre– and post–event-handling methods are sep-
arated. All the pre-event processing takes place before the Dialog is shown. The
post-event processing is called by the Dialog through the new DialogHandler

inter face method, dialogDoer(). The interface provides a common method name
for all your Dialog boxes to call.

10 July 2002 22:19

Figure 6–8: Resulting Frame

Example 6–2: Modal Dialog Usage

import java.awt.*;
interface DialogHandler {

void dialogDoer (Object o);
}
class modeTest extends Dialog {

TextField user;
TextField pass;
modeTest (DialogHandler parent) {

super ((Frame)parent, "Mode Test", true);
add ("North", new Label ("Please enter username/password"));
Panel left = new Panel ();
left.setLayout (new BorderLayout ());
left.add ("North", new Label ("Username"));
left.add ("South", new Label ("Password"));
add ("West", left);
Panel right = new Panel ();
right.setLayout (new BorderLayout ());
user = new TextField (15);
pass = new TextField (15);
pass.setEchoCharacter (’*’);
right.add ("North", user);
right.add ("South", pass);
add ("East", right);
add ("South", new Button ("Okay"));
resize (250, 125);

}
public boolean handleEvent (Event e) {

if (e.id == Event.WINDOW_DESTROY) {
dispose();
return true;

} else if ((e.target instanceof Button) &&
(e.id == Event.ACTION_EVENT)) {
((DialogHandler)getParent ()).dialogDoer(e.arg);

}
return super.handleEvent (e);

}
}

public class modeFrame extends Frame implements DialogHandler {
modeTest d;
modeFrame (String s) {

super (s);

6.6 DIALOGS 237

10 July 2002 22:19

238 CHAPTER 6: CONTAINERS

Example 6–2: Modal Dialog Usage (continued)

resize (100, 100);
d = new modeTest (this);
d.show ();

}
public static void main (String []args) {

Frame f = new modeFrame ("Frame");
}
public boolean handleEvent (Event e) {

if (e.id == Event.WINDOW_DESTROY) {
hide();
dispose();
System.exit (0);

}
return super.handleEvent (e);

}
public void dialogDoer(Object o) {

d.dispose();
add ("North", new Label (d.user.getText()));
add ("South", new Label (d.pass.getText()));
show ();

}
}

Since the Java 1.1 modal Dialog blocks the calling Frame appropriately, the over-
head of the DialogHandler inter face is not necessary and all the work can be com-
bined into the main() method, as shown in the following:

// only reliable in Java 1.1
import java.awt.*;
class modeTest11 extends Dialog {

TextField user;
TextField pass;
modeTest11 (Frame parent) {

super (parent, "Mode Test", true);
add ("North", new Label ("Please enter username/password"));
Panel left = new Panel ();
left.setLayout (new BorderLayout ());
left.add ("North", new Label ("Username"));
left.add ("South", new Label ("Password"));
add ("West", left);
Panel right = new Panel ();
right.setLayout (new BorderLayout ());
user = new TextField (15);
pass = new TextField (15);
pass.setEchoCharacter (’*’);
right.add ("North", user);
right.add ("South", pass);
add ("East", right);
add ("South", new Button ("Okay"));
resize (250, 125);

}
public boolean handleEvent (Event e) {

10 July 2002 22:19

if (e.id == Event.WINDOW_DESTROY) {
dispose();
return true;

} else if ((e.target instanceof Button) &&
(e.id == Event.ACTION_EVENT)) {
hide();

}
return super.handleEvent (e);

}
}

public class modeFrame11 extends Frame {
modeFrame11 (String s) {

super (s);
resize (100, 100);

}
public static void main (String []args) {

Frame f = new modeFrame11 ("Frame");
modeTest11 d;
d = new modeTest11 (f);
d.show ();
d.dispose();
f.add ("North", new Label (d.user.getText()));
f.add ("South", new Label (d.pass.getText()));
f.show ();

}
public boolean handleEvent (Event e) {

if (e.id == Event.WINDOW_DESTROY) {
hide();
dispose();
System.exit (0);

}
return super.handleEvent (e);

}
}

The remainder of the code is virtually identical. The most significant difference is
that the dialog’s handleEvent()method just hides the dialog, rather than calling
DialogHandler.dialogDoer().

6.7 FileDialog
FileDialog is a subclass of Dialog that lets the user select files for opening or sav-
ing. You must load or save any files yourself. If used in an application or applet-
viewer, the FileDialog always looks like the local system’s file dialog. The
FileDialog is always a modal Dialog, meaning that the calling program is blocked
from continuing (and cannot accept input) until the user responds to the File-

Dialog. Figure 6-9 shows the FileDialog component in Motif, Windows NT/95,
and the Macintosh.

6.7 FILEDIALOG 239

10 July 2002 22:19

240 CHAPTER 6: CONTAINERS

Unlike the other Window subclasses, there is no LayoutManager for FileDialog,
since you are creating the environment’s actual file dialog. This means you cannot
subclass FileDialog to alter its behavior or appearance. However, the class is not
“final.”

NOTE Netscape Navigator throws an AWTError when you try to create a
FileDialog because Navigator does not permit local file system
access.

6.7.1 FileDialog Methods
Constants

A FileDialog has two modes: one for loading a file (input) and one for saving
(output). The following variables provide the mode to the constructor. The File-
Dialog functions the same way in both modes. The only visible difference is
whether a button on the screen is labeled Load or Save. You must load or save the
requested file yourself. On certain platforms there may be functional differences:
in SAVE mode, the FileDialog may ask if you want to replace a file if it already
exists; in LOAD mode, the FileDialog may not accept a filename that does not
exist.

public final static int LOAD
LOAD is the constant for load mode. It is the default mode.

public final static int SAVE
SAVE is the constant for save mode.

Constructors

public FileDialog (Frame parent) �

The first constructor creates a FileDialog for loading with a parent Frame of
parent. The window title is initially empty.

public FileDialog (Frame parent, String title)
This constructor creates a FileDialog for loading with a parent Frame of par-
ent. The window title is title.

public FileDialog (Frame parent, String title, int mode)
The final constructor creates a FileDialog with an initial mode of mode. If
mode is neither LOAD nor SAVE, the FileDialog is in SAVE mode.

10 July 2002 22:19

Windows

Motif

Macintosh

Figure 6–9: FileDialogs for Motif, Windows NT/95, and the Macintosh

Appearance methods

public String getDirectory ()
getDirectory() returns the current directory for the FileDialog. Normally,
you check this when FileDialog returns after a show() and a call to getFile()

returns something other than null.

public void setDirectory (String directory)
The setDirectory() method changes the initial directory displayed in the
FileDialog to directory. You must call setDirectory() prior to displaying
the FileDialog.

public String getFile ()
The getFile() method returns the current file selection from the FileDialog.
If the user pressed the Cancel button on the FileDialog, getFile() returns
null. This is the only way to determine if the user pressed Cancel.

NOTE On some platforms in Java 1.0 getFile() returns a string that ends
in .*.* (two periods and two asterisks) if the file does not exist. You
need to remove the extra characters before you can create the file.

6.7 FILEDIALOG 241

10 July 2002 22:19

242 CHAPTER 6: CONTAINERS

public void setFile (String file)
The setFile() method changes the default file for the FileDialog to file.
Because the FileDialog is modal, this must be done before you call show().
The string may contain a filename filter like *.java to show a preliminary list of
files to select. This has nothing to do with the use of the FilenameFilter class.

public FilenameFilter getFilenameFilter ()
The getFilenameFilter() method returns the current FilenameFilter. The
FilenameFilter class is part of the java.io package. FilenameFilter is an
inter face that allows you to restrict choices to certain directory and filename
combinations. For example, it can be used to limit the user to selecting .jpg,
.gif, and .xbm files. The class implementing FilenameFilter would not return
other possibilities as choices.

public void setFilenameFilter (FilenameFilter filter)
The setFilenameFilter() method changes the current filename filter to fil-

ter. This needs to be done before you show() the FileDialog.

NOTE The JDK does not support the FilenameFilter with FileDialog
boxes. FilenameFilter works but can’t be used with FileDialog.

Miscellaneous methods

public int getMode ()
The getMode() method returns the current mode of the FileDialog. If an
invalid mode was used in the constructor, this method returns an invalid mode
here. No error checking is performed.

public void setMode (int mode) �

The setMode() method changes the current mode of the FileDialog to mode.
If mode is not one of the class constants LOAD or SAVE, setMode() throws the
run-time exception IllegalArgumentException.

public synchronized void addNotify ()
The addNotify() method creates the FileDialog peer. This is automatically
done when you call the show() method of the FileDialog. If you override this
method, first call super.addNotify(), then add your customizations for the
new class. Then you can do everything you need with the information about
the newly created peer.

10 July 2002 22:19

protected String paramString ()
When you call the toString() method of FileDialog, the default toString()
method of Component is called. This in turn calls paramString(), which builds
up the string to display. At the FileDialog level, paramString() appends the
director y (if not null) and current mode to the return value. Using the con-
structor FileDialog(top, "Load Me"), the results would be as follows:

java.awt.FileDialog[0,0,0x0,invalid,hidden,modal,title=Load Me,load]

6.7.2 A FileDialog Example
To get a better grasp of how the FileDialog works, the following application uses a
FileDialog to select a file for display in a TextArea. You can also use FileDialog

to save the file back to disk. Figure 6-10 shows the application, with a file displayed
in the text area; the FileDialog itself looks like any other file dialog on the run-
time system. Example 6-3 shows the code.

CAUTION This example can overwrite an existing file.

Figure 6–10: FileDialog test program

Example 6–3: Complete FileDialog

import java.awt.*;
import java.io.*;

public class FdTest extends Frame {
TextArea myTextArea;
Label myLabel;

6.7 FILEDIALOG 243

10 July 2002 22:19

244 CHAPTER 6: CONTAINERS

Example 6–3: Complete FileDialog (continued)

Button loadButton;
Button saveButton;
FdTest () {

super ("File Dialog Tester");
Panel p = new Panel ();
p.add (loadButton = new Button ("Load"));
p.add (saveButton = new Button ("Save"));
add ("North", myLabel = new Label ());
add ("South", p);
add ("Center", myTextArea = new TextArea (10, 40));
Menu m = new Menu ("File");
m.add (new MenuItem ("Quit"));
MenuBar mb = new MenuBar();
mb.add (m);
setMenuBar (mb);
pack();

}
public static void main (String args[]) {

FdTest f = new FdTest();
f.show();

}
public boolean handleEvent (Event e) {

if (e.id == Event.WINDOW_DESTROY) {
hide();
dispose ();
System.exit(0);
return true; // never gets here

}
return super.handleEvent (e);

}
public boolean action (Event e, Object o) {

if (e.target instanceof MenuItem) {
hide();
dispose ();
System.exit(0);
return true; // never gets here

} else if (e.target instanceof Button) {
int state;
String msg;
if (e.target == loadButton) {

state = FileDialog.LOAD;
msg = "Load File";

} else {// if (e.target == saveButton)
state = FileDialog.SAVE;
msg = "Save File";

}
FileDialog file = new FileDialog (this, msg, state);
file.setFile ("*.java"); // set initial filename filter
file.show(); // Blocks
String curFile;
if ((curFile = file.getFile()) != null) {

String filename = file.getDirectory() + curFile;

10 July 2002 22:19

Example 6–3: Complete FileDialog (continued)

// curFile ends in .*.* if file does not exist
byte[] data;
setCursor (Frame.WAIT_CURSOR);
if (state == FileDialog.LOAD) {

File f = new File (filename);
try {

FileInputStream fin = new FileInputStream (f);
int filesize = (int)f.length();
data = new byte[filesize];
fin.read (data, 0, filesize);

} catch (FileNotFoundException exc) {
String errorString = "File Not Found: " + filename;
data = new byte[errorString.length()];
errorString.getBytes (0, errorString.length(), data, 0);

} catch (IOException exc) {
String errorString = "IOException: " + filename;
data = new byte[errorString.length()];
errorString.getBytes (0, errorString.length(), data, 0);

}
myLabel.setText ("Load: " + filename);

} else {
// Remove trailing ".*.*" if present - signifies file does not exist

if (filename.indexOf (".*.*") != -1) {
filename = filename.substring (0, filename.length()-4);

}
File f = new File (filename);
try {

FileOutputStream fon = new FileOutputStream (f);
String text = myTextArea.getText();
int textsize = text.length();
data = new byte[textsize];
text.getBytes (0, textsize, data, 0);
fon.write (data);
fon.close ();

} catch (IOException exc) {
String errorString = "IOException: " + filename;
data = new byte[errorString.length()];
errorString.getBytes (0, errorString.length(), data, 0);

}
myLabel.setText ("Save: " + filename);

}
// Note - on successful save, text is redisplayed
myTextArea.setText (new String (data, 0));
setCursor (Frame.DEFAULT_CURSOR);

}
return true;

}
return false;

}
}

6.7 FILEDIALOG 245

10 July 2002 22:19

246 CHAPTER 6: CONTAINERS

Most of this application is one long action() method that handles all the action
events that take place within the Frame. The constructor doesn’t do much besides
arrange the display; it includes code to create a File menu with one item, Quit.
This menu is visible in the upper left corner of the Frame; we’ll see more about
working with menus in Chapter 10 We provide a main() method to display the
Frame and a handleEvent() method to shut the application down if the event WIN-
DOW_DESTROY occurs.

But the heart of this program is clearly its action() method. action() starts by
checking whether the user selected a menu item; if so, it shuts down the applica-
tion because the only item on our menu is Quit. It then checks whether the user
clicked on one of the buttons and sets the FileDialog mode to LOAD or SAVE

accordingly. It then sets a default filename, *.java, which limits the display to file-
names ending in .java. Next, action() shows the dialog. Because file dialogs are
modal, show() blocks until the user selects a file or clicks Cancel.

The next line detects whether or not getFile() returns null. A null return indi-
cates that the user selected Cancel; in this case, the dialog disappears, but nothing
else happens. We then build a complete filename from the directory name and the
name the user selected. If the dialog’s state is LOAD, we read the file and display it
in the text area. Otherwise, the dialog’s state must be SAVE, so we save the contents
of the text area under the given filename. Note that we first check for the string
. and remove it if it is present. In Java 1.1, these two lines are unnecessary, but
they don’t hurt, either.

10 July 2002 22:19

7

Layouts

In this chapter:
• The LayoutManager

Interface
• FlowLayout
• BorderLayout
• GridLayout
• CardLayout
• GridBagLayout
• GridBagConstraints
• Combining Layouts
• Disabling the

LayoutManager
• Designing Your Own

LayoutManager
• The sun.awt Layout

Collection
• Other Layouts

Available on the Net

This chapter expands upon the idea of a layout manager, which was mentioned
briefly in the previous chapter. Ever y container has a LayoutManager that is respon-
sible for positioning the component objects within it, regardless of the platform or
the screen size. Layout managers eliminate the need to compute component
placement on your own, which would be a losing proposition since the size
required for any component depends on the platform on which it is displayed.
Even for a simple layout, the code required to discover component sizes and com-
pute absolute positions could be hundreds of lines, particularly if you concern
yourself with what happens when the user resizes a window. A layout manager
takes care of this for you. It asks each component in the layout how much space it
requires, then arranges the components on the screen as best it can, based on the
component sizes on the platform in use and the space available, resizing the com-
ponents as needed.

To find out how much space a component needs, a layout manager calls the com-
ponent’s getMinimumSize() and getPreferredSize() methods. (Java 1.1 also has
a getMaximumSize() method; the existing layout managers don’t take advantage of
it.) These methods report the minimum space that a component requires to be

247

10 July 2002 22:20

248 CHAPTER 7: LAYOUTS

displayed correctly and the optimal size at which it looks best. Thus, each compo-
nent must know its space requirements; the layout manager uses these to arrange
the screen; and your Java program never has to worry about platform-dependent
positioning.

The java.awt package provides five layout managers: FlowLayout, BorderLayout,
GridLayout, CardLayout, and GridBagLayout. Four additional layouts are provided
in the sun.awt package: HorizBagLayout, VerticalBagLayout, Orientable-

FlowLayout, and VariableGridLayout. OrientableFlowLayout is new to Java 1.1.
Of the 1.0 layouts, all are available in the JDK and Internet Explorer. The Vari-

ableGridLayout is also available with Netscape Navigator. This chapter discusses all
of them, along with the LayoutManager and LayoutManager2 inter faces; we’ll pay
particular attention to how each layout manager computes positions for its compo-
nents. We will also discuss how to combine layouts to generate more complex
screens and how to create your own LayoutManager for special situations.

7.1 The LayoutManager Interface
The LayoutManager inter face defines the responsibilities of something that wants
to lay out Components within a Container. It is the LayoutManager’s duty to deter-
mine the position and size of each component within the Container. You will
never directly call the methods of the LayoutManager inter face; for the most part,
layout managers do their work behind the scenes. Once you have created a Lay-

outManager object and told the container to use it (by calling setLayout()), you’re
finished with it. The system calls the appropriate methods in the layout manager
when necessary.

Therefore, the LayoutManager inter face is most important when you are writing a
new layout manager; we’ll discuss it here because it’s the scaffolding on which all
layout managers are based. Like any interface, LayoutManager specifies the meth-
ods a layout manager must implement but says nothing about how the LayoutMan-
ager does its job. Therefore, we’ll make a few observations before proceeding.
First, a layout manager is free to ignore some of its components; there is no
requirement that a layout manager display everything. For example, a Container

using a BorderLayout might include thirty or forty components. However, the
BorderLayout will display at most five of them (the last component placed in each
of its five named areas). Likewise, a CardLayout may manage many components
but displays only one at a time.

Second, a layout manager can do anything it wants with the components’ mini-
mum and preferred sizes. It is free to ignore either. It makes sense that a layout

10 July 2002 22:20

manager can ignore a preferred size; after all, “preferred” means “give me this if
it’s available.” However, a layout manager can also ignore a minimum size. At
times, there is no reasonable alternative: the container may not have enough room
to display a component at its minimum size. How to handle this situation is left to
the layout manager’s discretion. All layout managers currently ignore a compo-
nent’s maximum size, though this may change in the future.

7.1.1 Methods of the LayoutManager Interface
Five methods make up the LayoutManager inter face. If you create your own class
that implements LayoutManager, you must define all five. As you will see, many of
the methods do not have to do anything, but there must still be a stub with the
appropriate method signature.

public abstract void addLayoutComponent (String name, Component component)
The addLayoutComponent() method is called only when the program assigns a
name to the component when adding it to the layout (i.e., the program calls
add(String, Component) rather than simply calling add(Component) or the
Java 1.1 add(Component, Object)). It is up to the layout manager to decide
what, if anything, to do with the name. For example, BorderLayout uses name
to specify an area on the screen in which to display the component. Most lay-
out managers don’t require a name and will only implement a stub.

public abstract void removeLayoutComponent (Component component)
The removeLayoutComponent() method’s responsibility is to remove component
from any internal storage used by the layout manager. This method will proba-
bly be stubbed out for your own layouts and do nothing. However, it may need
to do something if your layout manager associates components with names.

public abstract Dimension preferredLayoutSize (Container parent)
The preferredLayoutSize() method is called to determine the preferred size
of the components within the Container. It returns a Dimension object that
contains the required height and width. parent is the object whose compo-
nents need to be laid out. Usually, the LayoutManager determines how to size
parent by calculating the sizes of the components within it and calculating the
dimensions required to display them. On other occasions, it may just return
parent.setSize().

public abstract Dimension minimumLayoutSize (Container parent)
The minimumLayoutSize() method is called to determine the minimum size of
the components within the Container. It returns a Dimension object that con-
tains the required height and width. parent is the object whose components
need to be laid out.

7.1 THE LAYOUTMANAGER INTERFACE 249

10 July 2002 22:20

250 CHAPTER 7: LAYOUTS

public abstract void layoutContainer (Container parent)
The layoutContainer() method is where a LayoutManager does most of its
work. The layoutContainer() method is responsible for the positioning of all
the Components of parent. Each specific layout positions the enclosed compo-
nents based upon its own rules.

7.1.2 The LayoutManager2 Interface
Numerous changes were introduced in Java 1.1 to make it conform to various
design patterns. These patterns provide consistency in usage and make Java pro-
gramming easier. The LayoutManager2 inter face was introduced for this reason.
This new interface solves a problem that occurs when working with the Grid-

BagLayout. While the addLayoutComponent(String, Component) method of Lay-
outManager works great for BorderLayout and CardLayout, you can’t use it for a
GridBagLayout. The position of a component in a GridBagLayout is controlled by
a number of constraints, which are encapsulated in a GridBagConstraints object.
To associate constraints with a component, you needed to call a setConstraints()
method. Although this works, it is not consistent with the way you add components
to other layouts. Furthermore, as more and more people create their own layout
managers, the number of ways to associate positioning information with a compo-
nent could grow endlessly. LayoutManager2 defines a version of addLayoutCompo-
nent() that can be used by all constraint-based layout managers, including older
managers like BorderLayout and CardLayout. This method lets you pass an arbi-
trar y object to the layout manager to provide positioning information. Layout
managers that need additional information (like the GridBagConstraints object)
now implement LayoutManager2 instead of LayoutManager.

In addition to swapping the parameters to the addLayoutComponent(Component,

Object), the new LayoutManager2 inter face also defines several methods that
aren’t really needed now but will facilitate the introduction of “peerless compo-
nents” in a later release.

Methods of the LayoutManager2 interface

public abstract void addLayoutComponent(Component comp, Object constraints) �

The addLayoutComponent() method is called when a program assigns con-

straints to the component comp when adding it to the layout. In practice, this
means that the program added the component by calling the new method
add(Component component, Object constraints) rather than the older
methods add(Component component) or add(String name, Component compo-
nent)). It is up to the layout manager to decide what, if anything, to do with
the constraints. For example, GridBagLayout uses constraints to associate a
GridBagConstraints object to the component comp. BorderLayout uses con-
straints to associate a location string (like “Center”) with the component.

10 July 2002 22:20

public abstract Dimension maximumLayoutSize(Container target) �

The maximumLayoutSize() method must return the maximum size of the tar-
get container under this layout manager. Previously, only minimum and pre-
ferred sizes were available. Now a container can have a maximum size. Once
layout managers support the concept of maximum sizes, containers will not
grow without bounds when additional space is available. If there is no actual
maximum, the Dimension should have a width and height of the constant
Integer.MAX_VALUE.

public abstract float getLayoutAlignmentX(Container target) �

The getLayoutAlignmentX() method must return the alignment of target
along the x axis. The return value should be between 0.0 and 1.0. Values
nearer 0 mean that the container will be positioned closer to the left edge of
the area available. Values nearer 1 mean that the container will be positioned
closer to the right. The value 0.5 means the container should be centered.

public abstract float getLayoutAlignmentY(Container target) �

The getLayoutAlignmentY() method must return the alignment of target
along the y axis. The return value should be between 0.0 and 1.0. Values
nearer 0 mean that the container will be positioned closer to the top of the
area available. Values nearer 1 mean that the container will be positioned
closer to the bottom. The value 0.5 means the container should be centered.

public abstract void invalidateLayout(Container target) �

The invalidateLayout() method tells the layout manager that any layout
information it has for target is invalid. This method will usually be imple-
mented as a stub (i.e., {}). However, if the layout manager caches any infor-
mation about target when this method is called, the manager should consider
that information invalid and discard it.

7.2 FlowLayout
FlowLayout is the default LayoutManager for a Panel. A FlowLayout adds compo-
nents to the container in rows, working from left to right. When it can’t fit any
more components in a row, it starts a new row—not unlike a word processor with
word wrap enabled. When the container gets resized, the components within it get
repositioned based on the container’s new size. If sufficient space is available, com-
ponents within FlowLayout containers are given their preferred size. If there is
insufficient space, you do not see the components in their entirety.

7.2 FLOWLAYOUT 251

10 July 2002 22:20

252 CHAPTER 7: LAYOUTS

7.2.1 FlowLayout Methods
Constants

FlowLayout defines three constants, all of which are used to specify alignment.
The alignment tells FlowLayout where to start positioning the components on
each row. Each component is still added from left to right, no matter what the
alignment setting is.

public final static int LEFT
LEFT is the constant for left alignment.

public final static int CENTER
CENTER is the constant for center alignment and is the default.

public final static int RIGHT
RIGHT is the constant for right alignment.

Constructors

public FlowLayout ()
This constructor creates a FlowLayout using default settings: center alignment
with a horizontal and vertical gap of five pixels. The gap is the space between
the different components in the different directions. By default, there will be
five pixels between components. The constructor is usually called within a call
to setLayout(): setLayout (new FlowLayout()). Figure 7-1 shows how the
default FlowLayout behaves with different screen sizes. As the screen C shows,
if the screen is too small, the components will not be shrunk so that they can fit
better.

public FlowLayout (int alignment)
This version of the constructor creates a FlowLayout using the specified
alignment and a horizontal and vertical gap of five pixels. Valid alignments are
the FlowLayout constants, although there is no verification. Figure 7-2 shows
the effect of different alignments: FlowLayout.LEFT (screen A), FlowLay-

out.CENTER (B), and FlowLayout.RIGHT (C).

public FlowLayout (int alignment, int hgap, int vgap)
The final version of the constructor is called by the other two. It requires you
to explicitly specify the alignment, horizontal gap (hgap), and vertical gap
(vgap). This creates a FlowLayout with an alignment of alignment, horizontal
gap of hgap, and vertical gap of vgap. The units for gaps are pixels. It is possi-
ble to have negative gaps if you want components to be placed on top of one
another. Figure 7-3 shows the effect of changing the gap sizes.

10 July 2002 22:20

A

CB

Figure 7–1: FlowLayout with six buttons and three different screen sizes

CBA

Figure 7–2: FlowLayout with three different alignments

Informational methods

public int getAlignment () �

The getAlignment() method retrieves the current alignment of the FlowLay-

out. The return value should equal one of the class constants LEFT, CENTER, or
RIGHT.

public void setAlignment (int alignment) �

The setAlignment() method changes the FlowLayout alignment to align-

ment. The alignment value should equal one of the class constants LEFT,

7.2 FLOWLAYOUT 253

10 July 2002 22:20

254 CHAPTER 7: LAYOUTS

Figure 7–3: FlowLayout with hgap of 0 and vgap of 20

CENTER, or RIGHT, but this method does not check. After changing the align-
ment, you must validate() the Container.

public int getHgap () �

The getHgap() method retrieves the current horizontal gap setting.

public void setHgap (int hgap) �

The setHgap() method changes the current horizontal gap setting to hgap.
After changing the gaps, you must validate() the Container.

public int getVgap () �

The getVgap() method retrieves the current vertical gap setting.

public void setVgap (int hgap) �

The setVgap() method changes the current vertical gap setting to vgap. After
changing the gaps, you must validate() the Container.

LayoutManager methods

public void addLayoutComponent (String name, Component component)
The addLayoutComponent() method of FlowLayout does nothing.

public void removeLayoutComponent (Component component)
The removeLayoutComponent() method of FlowLayout does nothing.

public Dimension preferredLayoutSize (Container target)
The preferredLayoutSize() method of FlowLayout calculates the preferred
dimensions for the target container. The FlowLayout computes the preferred
size by placing all the components in one row and adding their individual pre-
ferred sizes along with gaps and insets.

10 July 2002 22:20

public Dimension minimumLayoutSize (Container target)
The minimumLayoutSize() method of FlowLayout calculates the minimum
dimensions for the container by adding up the sizes of the components. The
FlowLayout computes the minimum size by placing all the components in one
row and adding their individual minimum sizes along with gaps and insets.

public void layoutContainer (Container target)
The layoutContainer() method draws target’s components on the screen,
starting with the first row of the display, going left to right across the screen,
based on the current alignment setting. When it reaches the right margin of
the container, it skips down to the next row, and continues drawing additional
components.

Miscellaneous methods

public String toString ()
The toString() method of FlowLayout returns the current horizontal and ver-
tical gap settings along with the alignment (left, center, right). For a FlowLay-
out that uses all the defaults, toString() produces:

java.awt.FlowLayout[hgap=5,vgap=5,align=center]

7.3 BorderLayout
BorderLayout is the default LayoutManager for a Window. It provides a very flexible
way of positioning components along the edges of the window. The following call
to setLayout() changes the LayoutManager of the current container to the default
BorderLayout: setLayout(new BorderLayout()). Figure 7-4 shows a typical
BorderLayout.

BorderLayout is the only layout provided that requires you to name components
when you add them to the layout; if you’re using a BorderLayout, you must use
add(String name, Component component) in Java 1.0 or add(Component compo-
nent, String name) in Java 1.1 (parameter order switched). (The CardLayout can
use these versions of add(), but does not require it.) The name parameter of add()
specifies the region to which the component should be added. The five different
regions are “North”, “South”, “East”, and “West” for the edges of the window, and
“Center” for any remaining interior space. These names are case sensitive. It is not
necessar y that a container use all five regions. If a region is not used, it relin-
quishes its space to the regions around it. If you add() multiple objects to a single
region, the layout manager only displays the last one. If you want to display multi-
ple objects within a region, group them within a Panel first, then add() the Panel.

7.3 BORDERLAYOUT 255

10 July 2002 22:20

256 CHAPTER 7: LAYOUTS

Figure 7–4: BorderLayout

NOTE In Java 1.1, if you do not provide a name, the component is placed in
the “Center” region.

7.3.1 BorderLayout Methods
Constants

Prior to Java 1.1, you had to use string constants to specify the constraints when
adding a component to a container whose layout is BorderLayout. With Java 1.1,
you can use class constants, instead of a literal string, in the following list.

public static final String CENTER �

The CENTER constant represents the “Center” string and indicates that a com-
ponent should be added to the center region.

public static final String EAST �

The EAST constant represents the “East” string and indicates that a component
should be added to the east region.

public static final String NORTH �

The NORTH constant represents the “North” string and indicates that a compo-
nent should be added to the north region.

10 July 2002 22:20

public static final String SOUTH �

The SOUTH constant represents the “South” string and indicates that a compo-
nent should be added to the south region.

public static final String WEST �

The WEST constant represents the “West” string and indicates that a compo-
nent should be added to the west region.

Constructors

public BorderLayout ()
This constructor creates a BorderLayout using a default setting of zero pixels
for the horizontal and vertical gaps. The gap specifies the space between adja-
cent components. With horizontal and vertical gaps of zero, components in
adjacent regions will touch each other. As Figure 7-4 shows, each component
within a BorderLayout will be resized to fill an entire region.

public BorderLayout (int hgap, int vgap)
This version of the constructor allows you to create a BorderLayout with a hor-
izontal gap of hgap and vertical gap of vgap, putting some space between the
different components. The units for gaps are pixels. It is possible to have neg-
ative gaps if you want components to overlap.

Informational methods

public int getHgap () �

The getHgap() method retrieves the current horizontal gap setting.

public void setHgap (int hgap) �

The setHgap() method changes the current horizontal gap setting to hgap.
After changing the gaps, you must validate() the Container.

public int getVgap () �

The getVgap() method retrieves the current vertical gap setting.

public void setVgap (int hgap) �

The setVgap() method changes the current vertical gap setting to vgap. After
changing the gaps, you must validate() the Container.

LayoutManager methods

public void addLayoutComponent (String name, Component component) ✩

This version of addLayoutComponent() has been deprecated and replaced by
the addLayoutComponent(Component, Object) method of the LayoutManager2
inter face.

7.3 BORDERLAYOUT 257

10 July 2002 22:20

258 CHAPTER 7: LAYOUTS

public void removeLayoutComponent (Component component)
The removeLayoutComponent() method of BorderLayout removes component
from the container, if it is in one of the five regions. If component is not in the
container already, nothing happens.

public Dimension preferredLayoutSize (Container target)
The preferredLayoutSize() method of BorderLayout calculates the preferred
dimensions for the components in target. To compute the preferred height,
a BorderLayout adds the height of the getPreferredSize() of the north and
south components to the maximum getPreferredSize() height of the east,
west, and center components. The vertical gaps are added in for the north and
south components, if present. The top and bottom insets are also added into
the height. To compute the preferred width, a BorderLayout adds the width of
the getPreferredSize() of east, west, and center components, along with the
horizontal gap for the east and west regions. It compares this value to the pre-
ferred widths of the north and south components. The BorderLayout takes the
maximum of these three and then adds the left and right insets, plus twice the
horizontal gap. The result is the preferred width for the container.

public Dimension minimumLayoutSize (Container target)
The minimumLayoutSize() method of BorderLayout calculates the minimum
dimensions for the components in target. To compute the minimum height,
a BorderLayout adds the height of the getMinimumSize() of the north and
south components to the maximum of the minimum heights of the east, west,
and center components. The vertical gaps are added in for the north and
south components, if present, along with the container’s top and bottom
insets. To compute the minimum width, a BorderLayout adds the width of the
getMinimumSize() of east, west, and center components, along with the hori-
zontal gap for the east and west regions. The BorderLayout takes the maxi-
mum of these three and then adds the left and right insets, plus twice the hori-
zontal gap. The result is the minimum width for the container.

public void layoutContainer (Container target)
The layoutContainer() method draws target’s components on the screen in
the appropriate regions. The north region takes up the entire width of the
container along the top. South does the same along the bottom. The heights
of north and south will be the heights of the components they contain. The
east and west regions are given the widths of the components they contain. For
height, east and west are given whatever is left in the container after satisfying
north’s and south’s height requirements. If there is any extra vertical space,
the east and west components are resized accordingly. Any space left in the
middle of the screen is assigned to the center region. If there is insufficient

10 July 2002 22:20

space for all the components, space is allocated according to the following pri-
ority: north, south, west, east, and center. Unlike FlowLayout, BorderLayout
reshapes the internal components of the container to fit within their region.
Figure 7-5 shows what happens if the east and south regions are not present
and the gaps are nonzero.

Figure 7–5: BorderLayout with missing regions

LayoutManager2 methods

public void addLayoutComponent (Component component, Object name) �

This addLayoutComponent() method puts component in the name region of the
container. In Java 1.1, if name is null, component is added to the center. If the
name is not “North”, “South”, “East”, “West”, or “Center”, the component is
added to the container but won’t be displayed. Otherwise, it is displayed in the
appropriate region.

There can only be one component in any region, so any component already in
the named region is removed. To get multiple components in one region of a
BorderLayout, group the components in another container, and add the con-
tainer as a whole to the layout.

If name is not a String, addLayoutComponent() throws the run-time exception
IllegalArgumentException.

public abstract Dimension maximumLayoutSize(Container target) �

The maximumLayoutSize() method returns a Dimension object with a width
and height of Integer.MAX_VALUE. In effect, this means that BorderLayout
does not support the concept of maximum size.

7.3 BORDERLAYOUT 259

10 July 2002 22:20

260 CHAPTER 7: LAYOUTS

public abstract float getLayoutAlignmentX(Container target) �

The getLayoutAlignmentX() method says that BorderLayout containers
should be centered horizontally within the area available.

public abstract float getLayoutAlignmentY(Container target) �

The getLayoutAlignmentY() method says that BorderLayout containers
should centered vertically within the area available.

public abstract void invalidateLayout(Container target) �

The invalidateLayout() method of BorderLayout does nothing.

Miscellaneous methods

public String toString ()
The toString() method of BorderLayout returns a string showing the current
horizontal and vertical gap settings. If both gaps are zero, the result will be:

java.awt.BorderLayout[hgap=0,vgap=0]

7.4 GridLayout
The GridLayout layout manager is ideal for laying out objects in rows and
columns, where each cell in the layout has the same size. Components are added
to the layout from left to right, top to bottom. setLayout(new GridLayout(2,3))
changes the LayoutManager of the current container to a 2 row by 3 column Grid-

Layout. Figure 7-6 shows an applet using this layout.

Figure 7–6: Applet using GridLayout

10 July 2002 22:20

7.4.1 GridLayout Methods
Constructors

public GridLayout () �

This constructor creates a GridLayout initially configured to have one row, an
infinite number of columns, and no gaps. A gap is the space between adjacent
components in the horizontal or vertical direction. With a gap of zero, compo-
nents in adjacent cells will have no space between them.

public GridLayout (int rows, int columns)
This constructor creates a GridLayout initially configured to be rows columns
in size. The default setting for horizontal and vertical gaps is zero pixels. The
gap is the space between adjacent components in the horizontal and vertical
directions. With a gap of zero, components in adjacent cells will have no
space between them.

You can set the number of rows or columns to zero; this means that the layout
will grow without bounds in that direction. If both rows and columns are zero,
the run-time exception IllegalArgumentException will be thrown.

NOTE The rows and columns passed to the GridLayout constructor are
only recommended values. It is possible that the system will pick
other values if the number of objects you add to the layout is suffi-
ciently different from the size you requested; for example, you
placed nine objects in a six-element grid.

public GridLayout (int rows, int columns, int hgap, int vgap)
This version of the constructor is called by the previous one. It creates a Grid-
Layout with an initial configuration of rows columns, with a horizontal gap of
hgap and vertical gap of vgap. The gap is the space between the different com-
ponents in the different directions, measured in pixels. It is possible to have
negative gaps if you want components to overlap.

You can set the number of rows or columns to zero; this means that the layout
will grow without bounds in that direction. If both rows and columns are zero,
the run-time exception IllegalArgumentException will be thrown.

Informational methods

public int getColumns () �

The getColumns() method retrieves the current column setting, which may
differ from the number of columns displayed.

7.4 GRIDLAYOUT 261

10 July 2002 22:20

262 CHAPTER 7: LAYOUTS

public void setColumns (int columns) �

The setColumns() method changes the current column setting to columns.
After changing the setting, you must validate() the Container. If you try to
set the number of rows and the number of columns to zero, this method
throws the run-time exception IllegalArgumentException.

public int getRows () �

The getRows() method retrieves the current row setting; this may differ from
the number of rows displayed.

public void setRows (int rows) �

The setRows() method changes the current row setting to rows. After chang-
ing the setting, you must validate() the Container. If you try to set the num-
ber of rows and the number of columns to zero, this method throws the run-
time exception IllegalArgumentException.

public int getHgap () �

The getHgap() method retrieves the current horizontal gap setting.

public void setHgap (int hgap) �

The setHgap() method changes the current horizontal gap setting to hgap.
After changing the gaps, you must validate() the Container.

public int getVgap () �

The getVgap() method retrieves the current vertical gap setting.

public void setVgap (int hgap) �

The setVgap() method changes the current vertical gap setting to vgap. After
changing the gaps, you must validate() the Container.

LayoutManager methods

public void addLayoutComponent (String name, Component component)
The addLayoutComponent() method of GridLayout does nothing.

public void removeLayoutComponent (Component component)
The removeLayoutComponent() method of GridLayout does nothing.

public Dimension preferredLayoutSize (Container target)
The preferredLayoutSize() method of GridLayout calculates the preferred
dimensions for the components in target. The preferred size depends on the
size of the grid, which may not be the size requested by the constructor; the
GridLayout treats the constructor’s arguments as recommendations and may
ignore them if appropriate.

The actual number of rows and columns is based upon the number of compo-
nents within the Container. The GridLayout tries to observe the number of

10 July 2002 22:20

rows requested first, calculating the number of columns. If the requested num-
ber of rows is nonzero, the number of columns is determined by (# compo-
nents + rows – 1) / rows. If request is for zero rows, the number of rows to use
is determined by a similar formula: (# components + columns – 1) / columns.
Table 7-1 demonstrates this calculation. The last entry in this table is of special
interest: if you request a 33 grid but only place four components in the layout,
you get a 22 layout as a result. If you do not want to be surprised, size the
GridLayout based on the number of objects you plan to put into the display.

Table 7–1: GridLayout Row/Column Calculation

Rows Columns # Components Display Rows Display Columns

0 1 10 10 1

0 2 10 5 2

1 0 10 1 10

2 0 10 2 5

2 3 10 2 5

2 3 20 2 10

3 2 10 3 4

3 3 3 3 1

3 3 4 2 2

Once we know the dimensions of the grid, it’s easy to compute the preferred
size for the layout. The GridLayout takes the maximum height and maximum
width of the preferred sizes for all the components in the layout. (Note that
the maximum width and maximum height aren’t necessarily from the same
component.) This becomes the preferred size of each cell within the layout.
The preferred size of the layout as a whole is computed using the preferred
size of a cell and adding gaps and insets as appropriate.

public Dimension minimumLayoutSize (Container target)
The minimumLayoutSize() method of GridLayout calculates the minimum
dimensions for the components in target. First it determines the actual num-
ber of rows and columns in the final layout, using the method described previ-
ously. The minimumLayoutSize() method then determines the widest and
tallest getMinimumSize() of a component, and this becomes the minimum size
of a cell within the layout. The minimum size of the layout as a whole is com-
puted using the minimum size of a cell and adding gaps and insets as appro-
priate.

7.4 GRIDLAYOUT 263

10 July 2002 22:20

264 CHAPTER 7: LAYOUTS

public void layoutContainer (Container target)
The layoutContainer() method draws target’s components on the screen in
a series of rows and columns. Each component within a GridLayout will be the
same size, if it is possible. If there is insufficient space for all the components,
the size of each is reduced proportionally.

Miscellaneous methods

public String toString ()
The toString() method of GridLayout returns a string including the current
horizontal and vertical gap settings, along with the rows and columns settings.
For a GridLayout created with 2 rows and 3 columns, the result would be:

java.awt.GridLayout[hgap=0,vgap=0,rows=2,cols=3]

7.5 CardLayout
The CardLayout layout manager is significantly different from the other layouts.
Whereas the other layout managers attempt to display all the components within
the container at once, a CardLayout displays only one component at a time. (That
component could be a Component or another Container.) The result is similar to
Netscape Navigator’s Property sheets or a tabbed Dialog, without the tabs. You can
flip through the cards (components) in the layout in order or jump to a specific
card if you know its name. The following call to setLayout() changes the Layout-
Manager of the current container to CardLayout:

lm = new CardLayout();
setLayout (lm);

Unlike most other layout managers, CardLayout has a number of instance meth-
ods that programs have to call. Therefore, you usually have to retain a reference to
the layout manager. In addition, you usually have some other component to con-
trol the CardLayout (i.e., select which card to view). Most simply, you could put
some buttons in a panel and stick this panel in the north region of a
BorderLayout; then make another panel with a CardLayout, and place that in the
center. A more complex task would be to build a set of tabs to control the Card-

Layout.

A CardLayout allows you to assign names to the components it manages. You can
use the name to jump to an arbitrary component by calling the manager’s show()
method. In Java 1.0, naming was optional; you could call add(Component) to put a
component in the layout with a null name. A null name meant only that you
couldn’t flip to the component at will; you could only display the component by

10 July 2002 22:20

calling next() or previous() (or first() or last()), which cycle through all the
components in order. In Java 1.1, all components added to a CardLayout must be
named.

7.5.1 CardLayout Methods
Constructors

public CardLayout ()
This constructor creates a CardLayout using a horizontal and vertical gap of
zero pixels. With CardLayout, there is no space between components because
only one component is visible at a time; think of the gaps as insets.

public CardLayout (int hgap, int vgap)
This version of the constructor allows you to create a CardLayout with a hori-
zontal gap of hgap and vertical gap of vgap to add some space around the out-
side of the component that is displayed. The units for gaps are pixels. Using
negative gaps chops off components at the edges of the container.

Informational methods

public int getHgap () �

The getHgap() method retrieves the current horizontal gap setting.

public void setHgap (int hgap) �

The setHgap() method changes the current horizontal gap setting to hgap.
After changing the gaps, you must validate() the Container.

public int getVgap () �

The getVgap() method retrieves the current vertical gap setting.

public void setVgap (int hgap) �

The setVgap() method changes the current vertical gap setting to vgap. After
changing the gaps, you must validate() the Container.

LayoutManager methods

public void addLayoutComponent (String name, Component component) ✩

This version of addLayoutComponent() has been deprecated and replaced by
the addLayoutComponent(Component, Object) method of the LayoutManager2
inter face.

public void removeLayoutComponent (Component component)
The removeLayoutComponent() method of CardLayout removes component

from the container. If component is not in the container already, nothing hap-
pens.

7.5 CARDLAYOUT 265

10 July 2002 22:20

266 CHAPTER 7: LAYOUTS

public Dimension preferredLayoutSize (Container target)
The preferredLayoutSize() method of CardLayout retrieves the preferred
size for all the components within it. The preferredLayoutSize() method
then determines the widest and tallest size of all components (not necessarily
from the same one), adds the appropriate insets and gaps, and uses that as the
preferred size for the layout.

public Dimension minimumLayoutSize (Container target)
The minimumLayoutSize() method of CardLayout calculates the minimum size
for all the components within it. The minimumLayoutSize() method then
determines the widest and tallest minimum size of all components (not neces-
sarily from the same one), adds the appropriate insets and gaps, and uses that
as the minimum size for the layout.

public void layoutContainer (Container target)
The layoutContainer() method draws target’s visible components one on
top of another. Initially, all components are visible. Components do not
become invisible until you select one for display, by calling the first(),
last(), next(), previous(), or show() methods. Where possible, CardLayout
reshapes all components to fit the target container.

LayoutManager2 methods

public void addLayoutComponent (Component component, Object name) �

This addLayoutComponent() method of CardLayout puts component into an
internal table with a key of name. The name comes from the version of add()
that has a constraints object as a parameter. The name allows you to refer to
the component when you call other card layout methods, like show(). If you
call the version of add() that only takes a Component parameter, you cannot
call the show() method to flip to the specific component.

If name is not a String, the run-time exception IllegalArgumentException is
thrown.

public abstract Dimension maximumLayoutSize(Container target) �

The maximumLayoutSize() method returns a Dimension object with a width
and height of Integer.MAX_VALUE. In practice, this means that CardLayout
doesn’t support the concept of maximum size.

public abstract float getLayoutAlignmentX(Container target) �

The getLayoutAlignmentX() method says that CardLayout containers should
be centered horizontally within the area available.

10 July 2002 22:20

public abstract float getLayoutAlignmentY(Container target) �

The getLayoutAlignmentY() method says that CardLayout containers should
be centered vertically within the area available.

public abstract void invalidateLayout(Container target) �

The invalidateLayout() method of CardLayout does nothing.

CardLayout methods

This group of methods controls which component the CardLayout displays. The
show() is only usable if you assigned components names when adding them to the
container. The others can be used even if the components are unnamed; they
cycle through the components in the order in which they were added. All of these
methods require the parent Container (i.e., the container being managed by this
layout manager) as an argument. If the layout manager of the parent parameter is
anything other than the container using this instance of the CardLayout, the
method throws the run-time exception IllegalArgumentException.

public void first (Container parent)
The first() method flips to the initial component in parent.

public void next (Container parent)
The next() method flips to the following component in parent, wrapping
back to the beginning if the current component is the last.

public void previous (Container parent)
The previous() method flips to the prior component in parent, wrapping to
the end if the current component is the first.

public void last (Container parent)
The last() method flips to the final component in parent.

public void show (Container parent, String name)
The show() method displays the component in parent that was assigned the
given name when it was added to the container. If there is no component with
name contained within parent, nothing happens.

Miscellaneous methods

public String toString ()
The toString() method of CardLayout returns the a string showing the cur-
rent horizontal and vertical gap settings. The result for a typical CardLayout
would be:

java.awt.CardLayout[hgap=0,vgap=0]

7.5 CARDLAYOUT 267

10 July 2002 22:20

268 CHAPTER 7: LAYOUTS

7.5.2 CardLayout Example
Figure 7-7 shows a simple CardLayout. This layout has three cards that cycle when
you make a selection. The first card (A) contains some Checkbox items within a
Panel, the second card (B) contains a single Button, and the third (C) contains a
List and a Choice within another Panel.

B CA

Figure 7–7: Different views of CardLayout

Example 7-1 is the code that generated Figure 7-7.

Example 7–1: The CardExample Class

import java.awt.*;
import java.applet.*;
public class CardExample extends Applet {

CardLayout cl = new CardLayout();
public void init () {

String fonts[] = Toolkit.getDefaultToolkit().getFontList();
setLayout (cl);
Panel pA = new Panel();
Panel pC = new Panel ();
p1.setLayout (new GridLayout (3, 2));
List l = new List(4, false);
Choice c = new Choice ();
for (int i=0;i<fonts.length;i++) {

pA.add (new Checkbox (fonts[i]));
l.addItem (fonts[i]);
c.addItem (fonts[i]);

}
pC.add (l);
pC.add (c);
add ("One", pA);
add ("Two", new Button ("Click Here"));
add ("Three", pC);

}

10 July 2002 22:20

Example 7–1: The CardExample Class (continued)

public boolean action (Event e, Object o) {
cl.next(this);
return true;

}
}

Each panel within the CardLayout has its own layout manager. Panel A uses a
GridLayout; panel C uses its default layout manager, which is a FlowLayout. When
the user takes any action (i.e., clicking on a checkbox or button, or selecting an
item from the List or Choice components), the system generates a call to
action(), which calls the CardLayout’s next() method, thus displaying the next
card in the sequence.

7.6 GridBagLayout
The GridBagLayout is the most complex and flexible of the standard layout man-
agers. Although it sounds like it should be a subclass of GridLayout, it’s a different
animal entirely. With GridLayout, elements are arranged in a rectangular grid, and
each element in the container is sized identically (where possible). With Grid-

BagLayout, elements can have different sizes and can occupy multiple rows or
columns. The position and behavior of each element is specified by an instance of
the GridBagConstraints class. By properly constraining the elements, you can
specify the number of rows and columns an element occupies, which element
grows when additional screen real estate is available, and various other restrictions.
The actual grid size is based upon the number of components within the Grid-

BagLayout and the GridBagConstraints of those objects. For example, Figure 7-8
shows a GridBagLayout with seven components, arranged on a 33 grid. The maxi-
mum capacity of a screen using GridBagLayout in Java 1.0 is 128 128 cells; in Java
1.1, the maximum size is 512 512 cells.

Figure 7–8: GridBagLayout with seven components on a 33 grid

With the other layout managers, adding a component to the container requires

7.6 GRIDBAGLAYOUT 269

10 July 2002 22:20

270 CHAPTER 7: LAYOUTS

only a call to add(). In Java 1.0, the GridBagLayout also requires you to call set-
Constraints() to tell the layout manager how to position the component. With
Java 1.1, you use the new add() method that permits you to pass the component
and its constraints in a single method call (add(Component, Object)). If no com-
ponents are added with constraints (thus all using the defaults), the GridBagLay-

out places the components in a single row at the center of the screen and sizes
them to their getPreferredSize(). This is a nice way to place a single object in the
center of the screen without stretching it to take up the available space, as
BorderLayout does. Figure 7-9 compares the default GridBagLayout with a
BorderLayout displaying the same object in the center region.

BA

Figure 7–9: Centering a component: GridBagLayout vs. BorderLayout

When designing a container that will use GridBagLayout, it is easiest to plan what
you want on graph paper, and then determine how the constraints should be set.
The alternative, adding the components to the layout and then tweaking the con-
straints until you have something you like, could lead to premature baldness. Seri-
ously, a trial-and-error approach to getting the constraints right will certainly be
frustrating and will probably fail. Figure 7-10, using the same GridBagLayout used
in Figure 7-8, indicates how the layout manager counts cells. The partial code used
to create the screen follows in Example 7-2.

Example 7–2: Creating a GridBagLayout

public void init() {
Button b;
GridBagLayout gb = new GridBagLayout();
GridBagConstraints gbc = new GridBagConstraints();
setLayout(gb);
try {

/* Row One - Three button */
b = new Button ("One");
addComponent (this, b, 0, 0, 1, 1,

GridBagConstraints.NONE, GridBagConstraints.CENTER);
b = new Button ("Two");
addComponent (this, b, 1, 0, 1, 1,

GridBagConstraints.NONE, GridBagConstraints.CENTER);

10 July 2002 22:20

Example 7–2: Creating a GridBagLayout (continued)

b = new Button ("Three");
addComponent (this, b, 2, 0, 1, 1,

GridBagConstraints.NONE, GridBagConstraints.CENTER);
/* Row Two - Two buttons */

b = new Button ("Four");
addComponent (this, b, 0, 1, 2, 1,

GridBagConstraints.NONE, GridBagConstraints.CENTER);
b = new Button ("Five");
addComponent (this, b, 2, 1, 1, 2,

GridBagConstraints.NONE, GridBagConstraints.CENTER);
/* Row Three - Two buttons */

b = new Button ("Six");
addComponent (this, b, 0, 2, 1, 1,

GridBagConstraints.NONE, GridBagConstraints.CENTER);
b = new Button ("Seven");
addComponent (this, b, 1, 2, 1, 1,

GridBagConstraints.NONE, GridBagConstraints.CENTER);
} catch (Exception e) {

e.printStackTrace();
}

}

rows

columns

0 1 2

0

1

2

Figure 7–10: How GridBagLayout counts rows and columns

Most of the work in Example 7-2 is done by the helper method addComponent(),
which creates a set of constraints, applies them to a component, and adds the com-
ponent to a container. The code for addComponent() appears in Section 7.7; its sig-
nature is:

public static void addComponent (Container container, Component component,
int gridx, int gridy, int gridwidth, int gridheight, int fill,
int anchor) throws AWTException ;

The top left cell in the layout has location (0,0). There’s nothing very surprising

7.6 GRIDBAGLAYOUT 271

10 July 2002 22:20

272 CHAPTER 7: LAYOUTS

about buttons one, two, three, six, and seven. They occupy a 11 area on the lay-
out’s 33 grid. Button four occupies a 21 area; it is placed at location (0,1), and thus
occupies this cell plus the cell at (1,1). Likewise, button five occupies a 12 area,
and takes up the cells at (2,1) and (2,2). The total size of the layout is determined
entirely by the components that are placed in it and their constraints.

7.6.1 GridBagLayout Methods
Variables

There are a handful of instance variables for GridBagLayout. They are not initial-
ized until the container whose layout is GridBagLayout has been validated.

public int columnWidths[]
The columnWidths[] array contains the widths of the components in the row
with the most elements. The values of this array are returned by the getLay-

outDimensions() method. You can access the array directly, but it is not rec-
ommended.

public int rowHeights[]
The rowHeights[] array contains the heights of the components in the col-
umn with the most elements. The values of this array are returned by the get-
LayoutDimensions() method. You can access the array directly, but it is not
recommended.

public double columnWeights[]
The columnWeights[] array contains the weightx values of the components in
the row with the most elements. The values of this array are returned by the
getLayoutWeights() method. You can access the array directly, but it is not
recommended.

public double rowWeights[]
The row Weights[] array contains the weighty values of the components in the
column with the most elements. The values of this array are returned by the
getLayoutWeights() method. You can access the array directly, but it is not
recommended.

Constructors

public GridBagLayout ()
The constructor for GridBagLayout creates an instance of GridBagLayout with
default GridBagConstraints behavior. An internal table is used to keep track
of the components added to the layout.

10 July 2002 22:20

LayoutManager methods

public void addLayoutComponent (String name, Component component)
The addLayoutComponent() method of GridBagLayout does nothing. This
method is not deprecated, unlike the similarly named methods in the other
layout managers that implement LayoutManager2.

public void removeLayoutComponent (Component component)
The removeLayoutComponent() method of GridBagLayout does nothing.

public Dimension preferredLayoutSize (Container target)
The preferredLayoutSize() method calculates the preferred dimensions of
the components of target. Sizing is based on the constraints of the various
components. This task is definitely better off left to the computer.

public Dimension minimumLayoutSize (Container target)
The minimumLayoutSize() method calculates the minimum dimensions
required to position the components of target. Sizing is based on the con-
straints of the various components.

public void layoutContainer (Container target)
The layoutContainer() method positions the components within target

based upon the constraints of each component. If a component’s anchor con-
straints are invalid, layoutContainer() throws the run-time exception Ille-

galArgumentException. The process of arranging the components is very
complicated and beyond the scope of this book.

LayoutManager2 methods

public void addLayoutComponent (Component component, Object constraints) �

This addLayoutComponent() method of GridBagLayout associates the compo-

nent with the given constraints object. It calls the setConstaints() method.

If name is not a GridBagConstraints, addLayoutComponent() throws the run-
time exception IllegalArgumentException.

public abstract Dimension maximumLayoutSize(Container target) �

The maximumLayoutSize() method returns a Dimension object with a width
and height of Integer.MAX_VALUE. In practice, this means that GridBagLayout
doesn’t support the concept of maximum size.

public abstract float getLayoutAlignmentX(Container target) �

The getLayoutAlignmentX() method says that GridBagLayout containers
should be centered horizontally within the area available.

7.6 GRIDBAGLAYOUT 273

10 July 2002 22:20

274 CHAPTER 7: LAYOUTS

public abstract float getLayoutAlignmentY(Container target) �

The getLayoutAlignmentY() method says that GridBagLayout containers
should be centered vertically within the area available.

public abstract void invalidateLayout(Container target) �

The invalidateLayout() method of GridBagLayout does nothing.

Constraints

public GridBagConstraints getConstraints (Component component)
The getConstraints() method returns a clone of the current constraints for
component. This makes it easier to generate constraints for a component
based on another component.

public void setConstraints (Component component, GridBagConstraints constraints)
The setConstraints() method changes the constraints on component to a
clone of constraints. The system creates a clone() of constraints so you
can change the original constraints without affecting component.

Layout

public Point getLayoutOrigin ()
The getLayoutOrigin() method returns the origin for the GridBagLayout.
The origin is the top left point within the container at which the components
are drawn. Before the container is validated, getLayoutOrigin() returns the
Point (0,0). After validation, getLayoutOrigin() returns the actual origin of
the layout. The space used by the components within a GridBagLayout may
not fill the entire container. You can use the results of getLayoutOrigin() and
getLayoutDimensions() to find the layout’s actual size and draw a Rectangle

around the objects.

public int[][] getLayoutDimensions ()
The getLayoutDimensions() method returns two one-dimensional arrays as a
single two-dimensional array. Index 0 is an array of widths (columnWidths
instance variable), while index 1 is an array of heights (rowHeights instance
variable). Until the layout is validated, these will be empty. After validation,
the first array contains the widths of the components in the row with the most
elements. The second contains the heights of the components in the column
with the most elements. For Figure 7-10, the results would be (38, 51, 48) for
widths since the first row has three elements and (21, 21, 21) for the heights
since the first (and second) column has three elements in it.

10 July 2002 22:20

public double[][] getLayoutWeights ()
The getLayoutWeights() method returns two one-dimensional arrays as a sin-
gle two-dimensional array. Index 0 is an array of column weights (column-
Weights instance variable), while index 1 is an array of row weights
(rowWeights instance variable). Until the layout is validated, these will be
empty. After validation, the first dimension contains all the weightx values of
the components in the row with the most elements. The second dimension
contains all the weighty values of the components in the column with the
most elements. For Figure 7-10, the results would be (0, 0, 0) for weightx since
the first row has three elements and (0, 0, 0) for weighty since the first col-
umn has three elements in it.

Miscellaneous methods

public Point location (int x, int y)
The location() method returns the Point (0,0) until the container is vali-
dated. After validation, this method returns the grid element under the loca-
tion (x, y), where x and y are in pixels. The results could be used as the gridx
and gridy constraints when adding another component.

public String toString ()
The toString() method of GridBagLayout returns the name of the class:

java.awt.GridBagLayout

7.7 GridBagConstraints
GridBagConstraints are the meat behind the GridBagLayout; they specify how to
display components. Unlike other layout managers, which have a built-in idea
about what to do with their display, the GridBagLayout is a blank slate. The con-
straints attached to each component tell the layout manager how to build its dis-
play.

Ever y Component added to a GridBagLayout has a GridBagConstraints object asso-
ciated with it. When an object is first added to the layout, it is given a default set of
constraints (described later in this section). Calling setConstraints() (or
add(Component, GridBagConstraints)) applies a new set of constraints to the
object. Most people create a helper method to make the setConstraints() calls,
passing constraint information as parameters. The helper method used in Exam-
ple 7-2 follows:

public static void addComponent (Container container, Component component,
int gridx, int gridy, int gridwidth, int gridheight, int fill,
int anchor) throws AWTException {
LayoutManager lm = container.getLayout();
if (!(lm instanceof GridBagLayout)) {

7.7 GRIDBAGCONSTRAINTS 275

10 July 2002 22:20

276 CHAPTER 7: LAYOUTS

throw new AWTException ("Invalid layout" + lm);
} else {

GridBagConstraints gbc = new GridBagConstraints ();
gbc.gridx = gridx;
gbc.gridy = gridy;
gbc.gridwidth = gridwidth;
gbc.gridheight = gridheight;
gbc.fill = fill;
gbc.anchor = anchor;
((GridBagLayout)lm).setConstraints(component, gbc);
container.add (component);

}
}

In Java 1.1, you can make this method slightly cleaner by adding the component
and applying the constraints in the same call to add(). To do so, replace the lines
calling setConstraints() and add() with this line:

// Java 1.1 only
container.add(component, gbc);

7.7.1 GridBagConstraints Methods
Constants and variables

public int anchor
The anchor specifies the direction in which the component will drift in the
event that it is smaller than the space available for it. CENTER is the default.
Others available are NORTH, SOUTH, EAST, WEST, NORTHEAST, NORTHWEST, SOUTH-
EAST, and SOUTHWEST.

public final static int CENTER
public final static int EAST
public final static int NORTH
public final static int NORTHEAST
public final static int NORTHWEST
public final static int SOUTH
public final static int SOUTHEAST
public final static int SOUTHWEST
public final static int WEST

Constants used to set the anchor.

public int fill
The value of fill controls the component’s resize policy. If fill is NONE (the
default), the layout manager tries to give the component its preferred size. If
fill is VERTICAL, it resizes in height if additional space is available. If fill is
HORIZONTAL, it resizes in width. If fill is BOTH, the layout manager takes

10 July 2002 22:20

advantage of all the space available in either direction. Figure 7-11 demon-
strates VERTICAL (A), HORIZONTAL (B), and NONE (C) values; Figure 7-8 demon-
strated the use of BOTH.

public final static int NONE
public final static int BOTH
public final static int HORIZONTAL
public final static int VERTICAL

Constants used to set fill.

A B C

Figure 7–11: GridBagLayout with fill values of VERTICAL, HORIZONTAL, and NONE

public int gridx
public int gridy

The gridx and gridy variables specify the grid position where this component
will be placed. (0,0) specifies the cell at the origin of the screen. Table 7-2
shows the gridx and gridy values for the screen in Figure 7-8.

It isn’t necessar y to set gridx and gridy to a specific location; if you set these
fields to RELATIVE (the default), the system calculates the location for you.
According to the comments in the source code, if gridx is RELATIVE, the com-
ponent appears to the right of the last component added to the layout. If
gridy is RELATIVE, the component appears below the last component added to
the layout. However, this is misleadingly simple. RELATIVE placement works
best if you are adding components along a row or a column. In this case,
there are four possibilities to consider:

• gridx and gridy RELATIVE: components are placed in one row.

• gridx RELATIVE, gridy constant: components are placed in one row, each to
the right of the previous component.

• gridx constant, gridy RELATIVE: components are placed in one column, each
below the previous component.

7.7 GRIDBAGCONSTRAINTS 277

10 July 2002 22:20

278 CHAPTER 7: LAYOUTS

• Var ying gridx or gridy while setting the other field to RELATIVE appears to
start a new row, placing the component as the first element in the row.

public int gridwidth
public int gridheight

gridwidth and gridheight set the number of rows (gridwidth) and columns
(gridheight) a particular component occupies. If gridwidth or gridheight is
set to REMAINDER, the component will be the last element of the row or column
occupying any space that’s remaining. Table 7-2 shows the gridwidth and
gridheight values for the screen in Figure 7-8. For the components in the last
column, the gridwidth values could be REMAINDER. Likewise, gridheight

could be set to REMAINDER for the components in the last row.

gridwidth and gridheight may also have the value RELATIVE, which forces the
component to be the next to last component in the row or column. Looking
back to Figure 7-8: if button six has a gridwidth of RELATIVE, button seven
won’t appear because button five is the last item in the row, and six is already
next to last. If button five has a gridheight of RELATIVE, the layout manager
will reserve space below it, so the button can be the next to last item in the
column.

public final static int RELATIVE
Constant used for gridx and gridy to request relative placement, and by
gridheight and gridwidth to specify the next to last component in a column
or row. The behavior of RELATIVE placement can be very counter intuitive; in
most cases, you will be better off specifying gridx, gridy, gridheight, and
gridwidth explicitly.

public final static int REMAINDER
Constant used for gridwidth and gridheight, to specify that a component
should fill the rest of the row or column.

Table 7–2: Demonstrating gridx/gridy/gridwidth/gridheight

Component gridx gridy gridwidth gridheight

One 0 0 1 1

Two 1 0 1 1

Three 2 0 1 1

Four 0 1 2 1

Five 2 1 1 2

Six 0 2 1 1

Seven 1 2 1 3

10 July 2002 22:20

public Insets insets
The insets field specifies the external padding in pixels around the compo-
nent (i.e., between the component and the edge of the cell, or cells, allotted
to it). An Insets object can specify different padding for the top, bottom, left,
and right sides of the component.

public int ipadx
public int ipady

ipadx and ipady specify the internal padding within the component. ipadx
specifies the extra space to the right and left of the component (so the mini-
mum width increases by 2*ipadx pixels). ipady specifies the extra space above
and below the component (so the minimum height increases by 2*ipady

pixels).

The difference between insets (external padding) and the ipadx, ipady vari-
ables (internal padding) is confusing. The insets don’t add space to the com-
ponent itself; they are external to the component. ipadx and ipady change
the component’s minimum size, so they do add space to the component itself.

public double weightx
public double weighty

The weightx and weighty variables describe how to distribute any additional
space within the container. They allow you to control how components grow
(or shrink) when the user resizes the container. If weightx is 0, the compo-
nent won’t get any additional space available in its row. If one or more compo-
nents in a row have weightx values greater than 0, any extra space is dis-
tributed proportionally between them. For example, if one component has a
weightx value of 1 and the others are all 0, that one component will get all the
additional space. If four components in a row each have weightx values of 1
and the other components have weightx values of 0, the four components
each get one quarter of the additional space. weighty behaves similarly.
Because weightx and weighty control the distribution of extra space in any
row or column, setting either for one component may affect the position of
other components.

7.7 GRIDBAGCONSTRAINTS 279

10 July 2002 22:20

280 CHAPTER 7: LAYOUTS

Constructors

public GridBagConstraints ()
The constructor creates a GridBagConstraints object in which all the fields
have their default values. These defaults are shown in the Table 7-3.

Table 7–3: GridBagConstraints Defaults.

Variable Value Description

anchor CENTER If the component is smaller than the space available, it will
be centered within its region.

fill NONE The component should not resize itself if extra space is
available within its region.

gridx RELATIVE The component associated with this constraint will be
positioned relative to the last item added. If all components
have gridx and gridy RELATIVE, they will be placed in a
single row.

gridy RELATIVE The component associated with this constraint will be
positioned relative to the last item added.

gridwidth 1 The component will occupy a single cell within the layout.

gridheight 1 The component will occupy a single cell within the layout.

insets 0×0×0×0 No extra space is added around the edges of the
component.

ipadx 0 There is no internal padding for the component.

ipady 0 There is no internal padding for the component.

weightx 0 The component will not get any extra space, if it is
available.

weighty 0 The component will not get any extra space, if it is
available.

Miscellaneous methods

public Object clone ()
The clone() method creates a clone of the GridBagConstraints so the same
GridBagConstraints object can be associated with multiple components.

7.8 Combining Layouts
If you can’t create the display you want with any of the standard layout managers,
or you are unable to figure out GridBagLayout, you may want to try combining sev-
eral different layouts. This technique can often help you build the display you
want. Figure 7-12 shows a display that uses three panels and three different layouts.

10 July 2002 22:20

Here’s the source code to generate the display in Figure 7-12:

import java.awt.*;
public class multi extends java.applet.Applet {

public void init() {
Panel s = new Panel();
Panel e = new Panel();
setLayout (new BorderLayout ());
add ("North", new Label ("Enter text", Label.CENTER));
add ("Center", new TextArea ());
e.setLayout (new GridLayout (0,1));
e.add (new Button ("Reformat"));
e.add (new Button ("Spell Check"));
e.add (new Button ("Options"));
add ("East", e);
s.setLayout (new FlowLayout ());
s.add (new Button ("Save"));
s.add (new Button ("Cancel"));
s.add (new Button ("Help"));
add ("South", s);

}
}

Figure 7–12: Multipanel screen using several layouts

The display in Figure 7-12 is created by adding four sections to a single
BorderLayout. The north region contains a panel with a single Label in it. The
panel uses its default LayoutManager, which is a FlowLayout. Why bother with this
panel? Why not just add a label at the north position in the BorderLayout? Our
strategy gives the label the position and size we want: the label is centered and dis-
played at its preferred size. If we had added the label directly to the BorderLayout,
it would have been left justified and resized to fill the region.

7.8 COMBINING LAYOUTS 281

10 July 2002 22:20

282 CHAPTER 7: LAYOUTS

The TextArea has no special requirements, so we added it directly to the center of
the BorderLayout.

The three buttons on the right of the screen were arranged in a panel with a Grid-
Layout; then this panel was placed in the east region of the BorderLayout.

To create the buttons at the bottom of the screen, we used another Panel with a
FlowLayout. It centers the three buttons and displays them at their preferred size,
with a gap between them.

With a little work, we could have created this display using a single Panel with a
GridBagLayout. The result would have been more efficient; placing panels within
panels has performance implications. Each container in the display has its own
peer object, which uses up system resources. Furthermore, in the 1.0 version of
AWT, nesting containers complicates event handling. However, using a Grid-

BagLayout would have required much more work: figuring out the right GridBag-
Constraints for each component would be time consuming and result in code
that is harder to understand. Sometimes, it’s best to settle for the easy solution: a
hybrid layout composed of several simple panels, rather than a single very complex
panel.

In Java 1.1, you can make this program even more efficient in its resource usage by
using a lightweight component instead of panels. This is particularly easy because
the panels in the multipanel screen exist strictly to help with layout and not for
partitioning event handling. Therefore, you can define a LightweightPanel that
extends Container, with no methods. Use this class instead of Panel. The
LightweightPanel allows you to lay out areas without creating unnecessary peers.
Here’s all the code for the LightweightPanel:

// Java 1.1 only
import java.awt.*;
public class LightweightPanel extends Container {
}

7.9 Disabling the LayoutManager
To create a container with no layout manager, use null as the argument to set-

Layout(). If you do this, you must size and position every component individually.
In most cases, disabling the LayoutManager is a bad idea because what might look
great on one platform could look really bad on another, due to differences in
fonts, native components, and other display characteristics. Figure 7-13 displays a
container with a disabled LayoutManager; both buttons were positioned by specify-
ing their size and location explicitly.

Here’s the code that produces Figure 7-13:

10 July 2002 22:20

Figure 7–13: Applet with disabled layout manager

import java.awt.Button;
import java.applet.Applet;
public class noLayout extends Applet {

public void init () {
setLayout (null);
Button x = new Button ("Hello");
add (x);
x.reshape (50, 60, 50, 70);
Button y = new Button ("World");
add (y);
y.reshape (100, 120, 50, 70);

}
}

7.10 Designing Your Own
LayoutManager

What if you can’t find a LayoutManager that fits your requirements, or you find
yourself repeatedly building the same multipanel display? In cases like these, you
can build your own layout manager. It’s really not that difficult; you only need to
implement the five methods of the LayoutManager inter face, plus a constructor
and any additional methods your design requires. In this section, we’ll review the
LayoutManager inter face and then construct a custom LayoutManager called Cor-

nerLayout.

7.10 DESIGNING YOUR OWN LAYOUTMANAGER 283

10 July 2002 22:20

284 CHAPTER 7: LAYOUTS

7.10.1 LayoutManager Methods
A custom LayoutManager must implement the following five methods (ten meth-
ods if you implement LayoutManager2). For many layout managers, several of
these methods can be stubs that don’t do anything.

public void addLayoutComponent (String name, Component component)
The addLayoutComponent() method is called by the add(name, component)

method of Container. If your new LayoutManager does not have named com-
ponent areas or does not pass generic positioning information via name, this
method will be a stub with no code; you can let the container keep track of the
components for you. Otherwise, this method must keep track of the compo-
nent added, along with the information in name.

How would you implement this method? For layouts that have named compo-
nent areas (like BorderLayout), you could use a private instance variable to
hold the component for each area. For layouts like CardLayout, which lets you
refer to individual components by name, you might want to store the compo-
nents and their names in an internal Hashtable.

public void removeLayoutComponent (Component component)
This method is called by the remove() and removeAll() methods of Con-

tainer. If you are storing information in internal instance variables or tables,
you can remove the information about the given Component from the tables at
this point. If you’re not keeping track of the components yourself, this method
can be a stub that does nothing.

public Dimension preferredLayoutSize (Container target)
This method is called by preferredSize() to calculate the desired size of
target.* Obviously, the preferred size of the container depends on the layout
strategy that you implement. To compute the preferred size, you usually need
to call the preferredSize() method of every component in the container.

Computing the preferred size can be messy. However, some layout strategies
let you take a shortcut. If your layout policy is “I’m going to cram all the com-
ponents into the space given to me, whether they fit or not,” you can compute
the preferred size of your layout simply by calling target.size() or (in Java
1.1) target.getSize().

public Dimension minimumLayoutSize (Container target)
This method is called by minimumSize() to calculate the minimum size of tar-
get. The minimum size of the container depends on the layout strategy that
you implement. To compute the minimum size, you usually need to call the

* This is still true in Java 1.1; the new method, getPreferredSize(), just calls the deprecated method,
preferredSize().

10 July 2002 22:20

minimumSize() method of every component in the container.

As with preferredLayoutSize(), you can sometimes save a lot of work by
returning target.size().

public void layoutContainer (Container target)
This method is called when target is first displayed and whenever it is resized.
It is responsible for arranging the components within the container. Depend-
ing upon the type of LayoutManager you are creating, you will either loop
through all the components in the container with the getComponent() method
or use the named components that you saved in the addLayoutComponent()

method. To position and size the components, call their reshape() or set-
Bounds() methods.

7.10.2 A New LayoutManager: CornerLayout
CornerLayout is a simple but useful layout manager that is similar in many respects
to BorderLayout. Like BorderLayout, it positions components in five named
regions: “Northeast”, “Northwest”, “Southeast”, “Southwest”, and “Center”. These
regions correspond to the four corners of the container, plus the center. The
“Center” region has three modes. NORMAL, the default mode, places the “Center”
component in the center of the container, with its corners at the inner corner of
the other four regions. FULL_WIDTH lets the center region occupy the full width of
the container. FULL_HEIGHT lets the center region occupy the full height of the
container. You cannot specify both FULL_HEIGHT and FULL_WIDTH; if you did, the
“Center” component would overlap the corner components and take over the con-
tainer. Figure 7-14 shows a CornerLayout in each of these modes.

Not all regions are required. If a complete side is missing, the required space for
the container decreases. Ordinarily, the other components would grow to fill this
vacated space. However, if the container is sized to its preferred size, so are the
components. Figure 7-15 shows this behavior.

Figure 7–14: CornerLayout

Example 7-3 is the code for the CornerLayout. It shows the Java 1.0 version of the
layout manager. At the end of this section, I show the simple change needed to
adapt this manager to Java 1.1.

7.10 DESIGNING YOUR OWN LAYOUTMANAGER 285

10 July 2002 22:20

286 CHAPTER 7: LAYOUTS

Figure 7–15: CornerLayout with missing regions

Example 7–3: The CornerLayout LayoutManager

import java.awt.*;
/**
* An ’educational’ layout. CornerLayout will layout a container
* using members named "Northeast", "Northwest", "Southeast",
* "Southwest", and "Center".
*
* The "Northeast", "Northwest", "Southeast" and "Southwest" components
* get sized relative to the adjacent corner’s components and
* the constraints of the container’s size. The "Center" component will
* get any space left over.
*/

public class CornerLayout implements LayoutManager {
int hgap;
int vgap;
int mode;
public final static int NORMAL = 0;
public final static int FULL_WIDTH = 1;
public final static int FULL_HEIGHT = 2;
Component northwest;
Component southwest;
Component northeast;
Component southeast;
Component center;

The CornerLayout class starts by defining instance variables to hold the gaps and
mode and the components for each corner of the screen. It also defines three con-
stants that control the behavior of the center region: NORMAL, FULL_WIDTH, and
FULL_HEIGHT.

/**
* Constructs a new CornerLayout.
*/
public CornerLayout() {

this (0, 0, CornerLayout.NORMAL);
}
public CornerLayout(int mode) {

this (0, 0, mode);
}
public CornerLayout(int hgap, int vgap) {

10 July 2002 22:20

this (hgap, vgap, CornerLayout.NORMAL);
}
public CornerLayout(int hgap, int vgap, int mode) {

this.hgap = hgap;
this.vgap = vgap;
this.mode = mode;

}

The constructors for CornerLayout are simple. The default (no arguments) con-
structor creates a CornerLayout with no gaps; the “Center” region is NORMAL mode.
The last constructor, which is called by the other three, stores the gaps and the
mode in instance variables.

public void addLayoutComponent (String name, Component comp) {
if ("Center".equals(name)) {

center = comp;
} else if ("Northwest".equals(name)) {

northwest = comp;
} else if ("Southeast".equals(name)) {

southeast = comp;
} else if ("Northeast".equals(name)) {

northeast = comp;
} else if ("Southwest".equals(name)) {

southwest = comp;
}

}

addLayoutComponent() figures out which region a component has been assigned
to, and saves the component in the corresponding instance variable. If the name
of the component isn’t “Northeast”, “Northwest”, Southeast”, “Southwest”, or
“Center”, the component is ignored.

public void removeLayoutComponent (Component comp) {
if (comp == center) {

center = null;
} else if (comp == northwest) {

northwest = null;
} else if (comp == southeast) {

southeast = null;
} else if (comp == northeast) {

northeast = null;
} else if (comp == southwest) {

southwest = null;
}

}

removeLayoutComponent() searches for a given component in each region; if it
finds the component, removeLayoutComponent() discards it by setting the instance
variable to null.

7.10 DESIGNING YOUR OWN LAYOUTMANAGER 287

10 July 2002 22:20

288 CHAPTER 7: LAYOUTS

public Dimension minimumLayoutSize (Container target) {
Dimension dim = new Dimension(0, 0);
Dimension northeastDim = new Dimension (0,0);
Dimension northwestDim = new Dimension (0,0);
Dimension southeastDim = new Dimension (0,0);
Dimension southwestDim = new Dimension (0,0);
Dimension centerDim = new Dimension (0,0);
if ((northeast != null) && northeast.isVisible ()) {

northeastDim = northeast.minimumSize ();
}
if ((southwest != null) && southwest.isVisible ()) {

southwestDim = southwest.minimumSize ();
}
if ((center != null) && center.isVisible ()) {

centerDim = center.minimumSize ();
}
if ((northwest != null) && northwest.isVisible ()) {

northwestDim = northwest.minimumSize ();
}
if ((southeast != null) && southeast.isVisible ()) {

southeastDim = southeast.minimumSize ();
}
dim.width = Math.max (northwestDim.width, southwestDim.width) +

hgap + centerDim.width + hgap +
Math.max (northeastDim.width, southeastDim.width);

dim.height = Math.max (northwestDim.height, northeastDim.height) +
+ vgap + centerDim.height + vgap +
Math.max (southeastDim.height, southwestDim.height);

Insets insets = target.insets();
dim.width += insets.left + insets.right;
dim.height += insets.top + insets.bottom;
return dim;

}

minimumLayoutSize() computes the minimum size of the layout by finding the
minimum sizes of all components. To compute the minimum width, minimumLay-
outSize() adds the width of the center, plus the greater of the widths of the west-
ern regions (northwest and southwest), plus the greater of the widths of the
eastern regions (northeast and southeast), then adds the appropriate gaps and
insets. The minimum height is computed similarly; the method takes the greater
of the minimum heights of the northern regions, the greater of the minimum
heights of the southern regions, and adds them to the minimum height of the cen-
ter region, together with the appropriate gaps and insets.

public Dimension preferredLayoutSize (Container target) {
Dimension dim = new Dimension(0, 0);
Dimension northeastDim = new Dimension (0,0);
Dimension northwestDim = new Dimension (0,0);
Dimension southeastDim = new Dimension (0,0);
Dimension southwestDim = new Dimension (0,0);
Dimension centerDim = new Dimension (0,0);
if ((northeast != null) && northeast.isVisible ()) {

10 July 2002 22:20

northeastDim = northeast.preferredSize ();
}
if ((southwest != null) && southwest.isVisible ()) {

southwestDim = southwest.preferredSize ();
}
if ((center != null) && center.isVisible ()) {

centerDim = center.preferredSize ();
}
if ((northwest != null) && northwest.isVisible ()) {

northwestDim = northwest.preferredSize ();
}
if ((southeast != null) && southeast.isVisible ()) {

southeastDim = southeast.preferredSize ();
}
dim.width = Math.max (northwestDim.width, southwestDim.width) +

hgap + centerDim.width + hgap +
Math.max (northeastDim.width, southeastDim.width);

dim.height = Math.max (northwestDim.height, northeastDim.height) +
+ vgap + centerDim.height + vgap +
Math.max (southeastDim.height, southwestDim.height);

Insets insets = target.insets();
dim.width += insets.left + insets.right;
dim.height += insets.top + insets.bottom;
return dim;

}

preferredLayoutSize() computes the preferred size of the layout. The method is
almost identical to minimumLayoutSize(), except that it uses the preferred dimen-
sions of each component.

public void layoutContainer (Container target) {
Insets insets = target.insets();
int top = insets.top;
int bottom = target.size ().height - insets.bottom;
int left = insets.left;
int right = target.size ().width - insets.right;
Dimension northeastDim = new Dimension (0,0);
Dimension northwestDim = new Dimension (0,0);
Dimension southeastDim = new Dimension (0,0);
Dimension southwestDim = new Dimension (0,0);
Dimension centerDim = new Dimension (0,0);
Point topLeftCorner, topRightCorner, bottomLeftCorner,

bottomRightCorner;
if ((northeast != null) && northeast.isVisible ()) {

northeastDim = northeast.preferredSize ();
}
if ((southwest != null) && southwest.isVisible ()) {

southwestDim = southwest.preferredSize ();
}
if ((center != null) && center.isVisible ()) {

centerDim = center.preferredSize ();
}
if ((northwest != null) && northwest.isVisible ()) {

northwestDim = northwest.preferredSize ();

7.10 DESIGNING YOUR OWN LAYOUTMANAGER 289

10 July 2002 22:20

290 CHAPTER 7: LAYOUTS

}
if ((southeast != null) && southeast.isVisible ()) {

southeastDim = southeast.preferredSize ();
}
topLeftCorner = new Point (left +

Math.max (northwestDim.width, southwestDim.width),
top +
Math.max (northwestDim.height, northeastDim.height));

topRightCorner = new Point (right -
Math.max (northeastDim.width, southeastDim.width),
top +
Math.max (northwestDim.height, northeastDim.height));

bottomLeftCorner = new Point (left +
Math.max (northwestDim.width, southwestDim.width),
bottom -
Math.max (southwestDim.height, southeastDim.height));

bottomRightCorner = new Point (right -
Math.max (northeastDim.width, southeastDim.width),
bottom -
Math.max (southwestDim.height, southeastDim.height));

if ((northwest != null) && northwest.isVisible ()) {
northwest.reshape (left, top,

left + topLeftCorner.x,
top + topLeftCorner.y);

}
if ((southwest != null) && southwest.isVisible ()) {

southwest.reshape (left, bottomLeftCorner.y,
bottomLeftCorner.x - left,
bottom - bottomLeftCorner.y);

}
if ((southeast != null) && southeast.isVisible ()) {

southeast.reshape (bottomRightCorner.x,
bottomRightCorner.y,
right - bottomRightCorner.x,
bottom - bottomRightCorner.y);

}
if ((northeast != null) && northeast.isVisible ()) {

northeast.reshape (topRightCorner.x, top,
right - topRightCorner.x,
topRightCorner.y);

}
if ((center != null) && center.isVisible ()) {

int x = topLeftCorner.x + hgap;
int y = topLeftCorner.y + vgap;
int width = bottomRightCorner.x - topLeftCorner.x - hgap * 2;
int height = bottomRightCorner.y - topLeftCorner.y - vgap * 2;
if (mode == CornerLayout.FULL_WIDTH) {

x = left;
width = right - left;

} else if (mode == CornerLayout.FULL_HEIGHT) {
y = top;
height = bottom - top;

}
center.reshape (x, y, width, height);

10 July 2002 22:20

}
}

layoutContainer() does the real work: it positions and sizes the components in
our layout. It starts by computing the region of the target container that we have to
work with, which is essentially the size of the container minus the insets. The
boundaries of the working area are stored in the variables top, bottom, left, and
right. Next, we get the preferred sizes of all visible components and use them to
compute the corners of the “Center” region; these are stored in the variables
topLeftCorner, topRightCorner, bottomLeftCorner, and bottomRightCorner.

Once we’ve computed the location of the “Center” region, we can start placing the
components in their respective corners. To do so, we simply check whether the
component is visible; if it is, we call its reshape() method. After dealing with the
corner components, we place the “Center” component, taking into account any
gaps (hgap and vgap) and the layout’s mode. If the mode is NORMAL, the center
component occupies the region between the inner corners of the other compo-
nents. If the mode is FULL_HEIGHT, it occupies the full height of the screen. If it is
FULL_WIDTH, it occupies the full width of the screen.

public String toString() {
Sting str;
switch (mode) {

case FULL_HEIGHT: str = “tall”; break;
case FULL_WIDTH: str = “wide”; break;
default: str = “normal”; break;

}
return getClass().getName () + "[hgap=" + hgap + ",vgap=" + vgap +

“,mode=”+str+"]";
}

}

toString() simply returns a string describing the layout.

Strictly speaking, there’s no reason to update the CornerLayout for Java 1.1. Noth-
ing about Java 1.1 says that new layout managers have to implement the Layout-

Manager2 inter face. However, implementing LayoutManager2 isn’t a bad idea,
particularly since CornerLayout works with constraints; like BorderLayout, it has
named regions. To extend CornerLayout so that it implements LayoutManager2,
add the following code; we’ll create a new CornerLayout2:

// Java 1.1 only
import java.awt.*;
public class CornerLayout2 extends CornerLayout implements LayoutManager2 {

public void addLayoutComponent(Component comp, Object constraints) {
if ((constraints == null) || (constraints instanceof String)) {

addLayoutComponent((String)constraints, comp);
} else {

7.10 DESIGNING YOUR OWN LAYOUTMANAGER 291

10 July 2002 22:20

292 CHAPTER 7: LAYOUTS

throw new IllegalArgumentException(
"cannot add to layout: constraint must be a string (or null)");

}
}
public Dimension maximumLayoutSize(Container target) {

return new Dimension(Integer.MAX_VALUE, Integer.MAX_VALUE);
}
public float getLayoutAlignmentX(Container parent) {

return Component.CENTER_ALIGNMENT;
}
public float getLayoutAlignmentY(Container parent) {

return Component.CENTER_ALIGNMENT;
}
public void invalidateLayout(Container target) {
}

}

7.11 The sun.awt Layout Collection
The sun.awt package defines four additional layouts. The first two, HorizBagLay-
out and VerticalBagLayout, are available only when used with Sun’s JDK or Inter-
net Explorer, since they are not provided with Netscape Navigator and may not be
available from other vendors. Therefore, these layout managers should be used
selectively within applets. The third layout manager, VariableGridLayout, is avail-
able with Netscape Navigator 2.0 or 3.0 and Internet Explorer. Usage of this layout
manager is safer within applets but is still at your own risk. The final layout man-
ager is introduced in Java 1.1, OrientableFlowLayout. Only time will tell where
that one will be available. Any of these layout managers could be moved into a
future version of java.awt if there is enough interest.

7.11.1 HorizBagLayout
In a HorizBagLayout, the components are all arranged in a single row, from left to
right. The height of each component is the height of the container; the width of
each component is its preferred width. Figure 7-16 shows HorizBagLayout in use.

Constructors

public HorizBagLayout ()
This constructor creates a HorizBagLayout with a horizontal gap of zero pixels.
The gap is the space between the different components in the horizontal
direction.

public HorizBagLayout (int hgap)
This constructor creates a HorizBagLayout using a horizontal gap of hgap

pixels.

10 July 2002 22:20

Figure 7–16: HorizBagLayout

LayoutManager methods

public void addLayoutComponent (String name, Component component)
The addLayoutComponent() method of HorizBagLayout does nothing.

public void removeLayoutComponent (Component component)
The removeLayoutComponent() method of HorizBagLayout does nothing.

public Dimension preferredLayoutSize (Container target)
The preferredLayoutSize() method of HorizBagLayout sums up the pre-
ferred widths of all the components in target, along with the hgap and right
and left insets to get the width of the target. The height returned will be the
preferred height of the tallest component.

public Dimension minimumLayoutSize (Container target)
The minimumLayoutSize() method of HorizBagLayout sums up the minimum
widths of all the components in target, along with the hgap and right and left
insets to get the width of the target. The height returned will be the mini-
mum height of the tallest component.

public void layoutContainer (Container target)
The layoutContainer() method draws target’s components on the screen in
one row. The height of each component is the height of the container. Each
component’s width is its preferred width, if enough space is available.

Miscellaneous methods

public String toString ()
The toString() method of HorizBagLayout returns a string with the current
horizontal gap setting—for example:

sun.awt.HorizBagLayout[hgap=0]

7.11 THE SUN.AWT LAYOUT COLLECTION 293

10 July 2002 22:20

294 CHAPTER 7: LAYOUTS

7.11.2 VerticalBagLayout
The VerticalBagLayout places all the components in a single column. The width
of each component is the width of the container; each component is given its pre-
ferred height. Figure 7-17 shows VerticalBagLayout in use.

Figure 7–17: VerticalBagLayout

Constructors

public VerticalBagLayout ()
This constructor creates a VerticalBagLayout with a vertical gap of zero
pixels. The gap is the space between components in the vertical direction.
With a gap of 0, adjacent components will touch each other.

public VerticalBagLayout (int vgap)
This constructor creates a VerticalBagLayout with a vertical gap of vgap

pixels.

LayoutManager methods

public void addLayoutComponent (String name, Component component)
The addLayoutComponent() method of VerticalBagLayout does nothing.

public void removeLayoutComponent (Component component)
The removeLayoutComponent() method of VerticalBagLayout does nothing.

10 July 2002 22:20

public Dimension preferredLayoutSize (Container target)
To get the preferred height of the layout, the preferredLayoutSize() method
sums up the preferred height of all the components in target along with the
vgap and top and bottom insets. For the preferred width, preferredLayout-
Size() returns the preferred width of the widest component.

public Dimension minimumLayoutSize (Container target)
To get the minimum height of the layout, the minimumLayoutSize() method
sums up the minimum height of all the components in target along with the
vgap and top and bottom insets. For the minimum width, minimumLayout-
Size() returns the minimum width of the widest component.

public void layoutContainer (Container target)
The layoutContainer() method draws target’s components on the screen in
one column. The width of each component is the width of the container. Each
component’s height is its preferredSize() height, if available.

Miscellaneous methods

public String toString ()
The toString() method of VerticalBagLayout returns a string with the cur-
rent vertical gap setting. For example:

sun.awt.VerticalBagLayout[vgap=0]

7.11.3 VariableGridLayout
The VariableGridLayout builds upon the GridLayout. It arranges components on
a grid of rows and columns. However, instead of giving all components the same
size, the VariableGridLayout allows you to size rows and columns fractionally.
Another difference between VariableGridLayout and GridBagLayout is that a
VariableGridLayout has a fixed size. If you ask for a 3x3 grid, you will get exactly
that. The layout manager throws the ArrayIndexOutOfBoundsException run-time
exception if you try to add too many components.

Figure 7-18 shows a VariableGridLayout in which row one takes up 50 percent of
the screen, and rows two and three take up 25 percent of the screen each. Column
one takes up 50 percent of the screen; columns two and three take 25 percent
each.

Here is the code that creates Figure 7-18:

import java.awt.*;
java.applet.Applet;
import sun.awt.VariableGridLayout;
public class vargrid extends Applet {

public void init () {
VariableGridLayout vgl;

7.11 THE SUN.AWT LAYOUT COLLECTION 295

10 July 2002 22:20

296 CHAPTER 7: LAYOUTS

Figure 7–18: VariableGridLayout in Netscape Navigator

setLayout (vgl = new VariableGridLayout (3,3));
vgl.setRowFraction (0, 1.0/2.0);
vgl.setRowFraction (1, 1.0/4.0);
vgl.setRowFraction (2, 1.0/4.0);
vgl.setColFraction (0, 1.0/2.0);
vgl.setColFraction (1, 1.0/4.0);
vgl.setColFraction (2, 1.0/4.0);
add (new Button ("One"));
add (new Button ("Two"));
add (new Button ("Three"));
add (new Button ("Four"));
add (new Button ("Five"));
add (new Button ("Six"));
add (new Button ("Seven"));
add (new Button ("Eight"));
add (new Button ("Nine"));

}
}

Constructors

public VariableGridLayout (int rows, int columns)
This constructor creates a VariableGridLayout with the specified number of
rows and columns. You cannot specify zero for one dimension. If either rows
or columns is zero, the constructor throws the NullPointerException run-time
exception. This constructor uses the default values for horizontal and vertical
gaps (zero pixels), which means that components in adjacent cells will touch
each other.

10 July 2002 22:20

public VariableGridLayout (int rows, int columns, int hgap, int vgap)
This version of the constructor is called by the previous one. It creates a Vari-
ableGridLayout with the specified number of rows and columns, a horizontal
gap of hgap, and a vertical gap of vgap. The gaps specify in pixels the space
between adjacent components in the horizontal and vertical directions. It is
possible to have negative gaps if you want components to overlap. You cannot
specify zero for the number of rows or columns. If either rows or columns is
zero, the constructor throws the run-time exception NullPointerException.

Support methods

The distinguishing feature of a VariableGridLayout is that you can tell a particu-
lar row or column to take up a certain fraction of the display. By default, the hori-
zontal space available is split evenly among the grid’s columns; vertical space is
split evenly among the rows. This group of methods lets you find out how much
space is allotted to each row or column and lets you change that allocation. The
sum of the fractional amounts for each direction should add up to one. If greater
than one, part of the display will be drawn offscreen. If less than one, additional
screen real estate will be unused.

public void setRowFraction (int rowNumber, double fraction)
This method sets the percentage of space available for row rowNumber to
fraction.

public void setColFraction (int colNumber, double fraction)
This method sets the percentage of space available for column colNumber to
fraction.

public double getRowFraction (int rowNumber)
This method returns the current fractional setting for row rowNumber.

public double getColFraction (int colNumber)
This method returns the current fractional setting for column colNumber.

LayoutManager methods

The only method from GridLayout that is overridden is the layoutContainer()

method.

public void layoutContainer (Container target)
The layoutContainer() method draws target’s components on the screen in
a series of rows and columns. The size of each component within a Variable-
GridLayout is determined by the RowFraction and ColFraction settings for its
row and column.

7.11 THE SUN.AWT LAYOUT COLLECTION 297

10 July 2002 22:20

298 CHAPTER 7: LAYOUTS

Miscellaneous methods

public String toString ()
The toString() method of VariableGridLayout returns a string with the cur-
rent horizontal and vertical gap settings, the number of rows and columns,
and the row and column fractional amounts. For example, the string pro-
duced by Figure 7-19 would be:

sun.awt.VariableGridLayout[hgap=0,vgap=0,rows=3,cols=3,
rowFracs=[3]<0.50><0.25><0.25>,colFracs=[3]<0.50><0.25><0.25>]

7.11.4 OrientableFlowLayout
The OrientableFlowLayout is available for those who want something like a
FlowLayout that lets you arrange components from top to bottom. Figure 7-19
shows OrientableFlowLayout in use.

Figure 7–19: OrientableFlowLayout

Constants

Since OrientableFlowLayout subclasses FlowLayout, the FlowLayout constants of
LEFT, RIGHT, and CENTER are still available.

public static final int HORIZONTAL �

The HORIZONTAL constant tells the layout manager to arrange components
from left to right, like the FlowLayout manager.

public static final int VERTICAL �

The VERTICAL constant tells the layout manager to arrange components from
top to bottom.

10 July 2002 22:20

public static final int TOP �

The TOP constant tells the layout manager to align the first component at the
top of the screen (top justification).

public static final int BOTTOM �

The BOTTOM constant tells the layout manager to align the first component at
the bottom of the screen (bottom justification).

Constructors

public OrientableFlowLayout () �

This constructor creates a OrientableFlowLayout that acts like the default
FlowLayout. The objects flow from left to right and have an hgap and vgap

of 5.

public OrientableFlowLayout (int direction) �

This constructor creates a OrientableFlowLayout in the given direction.
Valid values are OrientableFlowLayout.HORIZONTAL or OrientableFlowLay-

out.VERTICAL.

public OrientableFlowLayout (int direction, int horizAlignment, int vertAlignment) �

This constructor creates a OrientableFlowLayout in the given direction. Valid
values are OrientableFlowLayout.HORIZONTAL or OrientableFlowLayout.VER-
TICAL. horizAlignment provides the horizontal alignment setting. vertAlign-
ment provides a vertical alignment setting; it may be OrientableFlowLay-

out.TOP, FlowLayout.CENTER, or OrientableFlowLayout.BOTTOM. If direction
is HORIZONTAL, the vertical alignment is ignored. If direction is VERTICAL, the
horizontal alignment is ignored.

public OrientableFlowLayout (int direction, int horizAlignment, int vertAlignment, int
horizHgap, int horizVgap, int vertHgap, int vertVgap) �

The final constructor adds separate horizontal and vertical gaps to the settings
of OrientableFlowLayout. The horizHgap and horizVgap parameters are the
gaps when horizontally aligned. The vertHgap and vertVgap parameters are
the gaps when vertically aligned.

LayoutManager methods

public Dimension preferredLayoutSize (Container target) �

The preferredLayoutSize() method of OrientableFlowLayout calculates the
preferred dimensions for the target container. The OrientableFlowLayout

computes the preferred size by placing all the components in one row or
column, depending upon the current orientation, and adding their individual
preferred sizes along with gaps and insets.

7.11 THE SUN.AWT LAYOUT COLLECTION 299

10 July 2002 22:20

300 CHAPTER 7: LAYOUTS

public Dimension minimumLayoutSize (Container target) �

The minimumLayoutSize() method of OrientableFlowLayout calculates the
minimum dimensions for the container by adding up the sizes of the compo-
nents. The OrientableFlowLayout computes the minimum size by placing all
the components in one row or column, depending upon the current orienta-
tion, and adding their individual minimum sizes along with gaps and insets.

public void layoutContainer (Container target) �

The layoutContainer() method draws target’s Components on the screen,
starting with the first row or column of the display, and going from left to right
across the screen, or from top to bottom, based on the current orientation.
When it reaches the margin of the container, it skips to the next row or
column and continues drawing additional components.

Miscellaneous methods

public void orientHorizontally () �

The orientHorizontally() method allows you to change the orientation of
the LayoutManager to horizontal. The container must be validated before you
see the effect of the change.

public void orientVertically () �

The orientVertically() method allows you to change the orientation of the
LayoutManager to vertical. The container must be validated before you see the
effect of the change.

public String toString () �

The toString() method of OrientableFlowLayout returns a string with the
current orientation setting, along with the entire FlowLayout.toString()

results. For example:

sun.awt.OrientableFlowLayout[orientation=vertical,
sun.awt.OrientableFlowLayout[hgap=5,vgap=5,align=center]]

7.12 Other Layouts Available on the Net
Many custom layout managers are available on the Internet. Many of these dupli-
cate the layout behavior of other environments. For example, the Fractional-

Layout is based on Smalltalk’s positioning mechanism; it is located at
http://www.mcs.net/˜elunt/Java/FractionalLayoutDescription.html. The Rela-

tiveLayout allows you to position components relative to others, similar to an X
Window form; you can find it at http://www-elec.enst.fr/java/RelativeLayout.java.
If you like the way Tcl/Tk arranges widgets, try the PackerLayout; it is available at

10 July 2002 22:20

http://www.geom.umn.edu/˜daeron/apps/ui/pack/gui.html. If none of these
suit you, you can find a collection of links to custom layout managers at
http://www.softbear.com/people/larr y/javalm.htm. Gamelan (http://www.game-
lan.com/) is always a good source for Java classes; try searching for LayoutManager.

7.12 OTHER LAYOUTS AVAILABLE ON THE NET 301

10 July 2002 22:20

8

Input Fields

In this chapter:
• Text Component
• TextField
• TextArea
• Extending TextField

There are two fundamental ways for users to provide input to a program: they can
type on a keyboard, or they can select something (a button, a menu item, etc.)
using a mouse. When you want a user to provide input to your program, you can
display a list of choices to choose from or allow the user to interact with your pro-
gram by typing with the keyboard. Presenting choices to the user is covered in
Chapter 9, Pick Me. As far as keyboard input goes, the java.awt package provides
two options. The TextField class is a single line input field, while the TextArea

class is a multiline one. Both TextField and TextArea are subclasses of the class
TextComponent, which contains all the common functionality of the two. TextCom-
ponent is a subclass of Component, which is a subclass of Object. So you inherit all
of these methods when you work with either TextField or TextArea.

8.1 Text Component
By themselves, the TextField and TextArea classes are fairly robust. However, in
order to reduce duplication between the classes, they both inherit a number of
methods from the TextComponent class. The constructor for TextComponent is
package private, so you cannot create an instance of it yourself. Some of the activi-
ties shared by TextField and TextArea through the TextComponent methods
include setting the text, getting the text, selecting the text, and making it read-
only.

302

10 July 2002 22:21

8.1.1 TextComponent Methods
Contents

Both TextField and TextArea contain a set of characters whose content deter-
mines the current value of the TextComponent. The following methods are usually
called in response to an external event.

public String getText ()
The getText() method returns the current contents of the TextComponent as
a String object.

public void setText (String text)
The setText() method sets the content of the TextComponent to text. If the
TextComponent is a TextArea, you can embed newline characters (\n) in the
text so that it will appear on multiple lines.

Te xt selection

Users can select text in TextComponents by pressing a mouse button at a starting
point and dragging the cursor across the text. The selected text is displayed in
reverse video. Only one block of text can be selected at any given time within a sin-
gle TextComponent. Once selected, this block could be used to provide the user
with some text-related operation such as cut and paste (on a PopupMenu).

Depending on the platform, you might or might not be able to get selected text
when a TextComponent does not have the input focus. In general, the component
with selected text must have input focus in order for you to retrieve any informa-
tion about the selection. However, in some environments, the text remains
selected when the component no longer has the input focus.

public int getSelectionStart ()
The getSelectionStart() method returns the initial position of any selected
text. The position can be considered the number of characters preceding the
first selected character. If there is no selected text, getSelectionStart()
returns the current cursor position. If the start of the selection is at beginning
of the text, the return value is 0.

public int getSelectionEnd ()
The getSelectionEnd() method returns the ending cursor position of any
selected text—that is, the number of characters preceding the end of the
selection. If there is no selected text, getSelectionEnd() returns the current
cursor position.

8.1 TEXT COMPONENT 303

10 July 2002 22:21

304 CHAPTER 8: INPUT FIELDS

public String getSelectedText ()
The getSelectedText() method returns the currently selected text of the
TextComponent as a String. If nothing is selected, getSelectedText() returns
an empty String, not null.

public void setSelectionStart (int position) �

The setSelectionStart() method changes the beginning of the current
selection to position. If position is after getSelectionEnd(), the cursor posi-
tion moves to getSelectionEnd(), and nothing is selected.

public void setSelectionEnd (int position) �

The setSelectionEnd() method changes the end of the current selection to
position. If position is before getSelectionStart(), the cursor position
moves to position, and nothing is selected.

public void select (int selectionStart, int selectionEnd)
The select() method selects the text in the TextComponent from selection-

Start to selectionEnd. If selectionStart is after selectionEnd, the cursor
position moves to selectionEnd. Some platforms allow you to use select() to
ensure that a particular position is visible on the screen.

public void selectAll ()
The selectAll() method selects all the text in the TextComponent. It basically
does a select() call with a selectionStart position of 0 and a selectionEnd
position of the length of the contents.

Carets

Introduced in Java 1.1 is the ability to set and get the current insertion position
within the text object.

public int getCaretPosition () �

The getCaretPosition() method returns the current text insertion position
(often called the “cursor”) of the TextComponent. You can use this position to
paste text from the clipboard with the java.awt.datatransfer package
described in Chapter 16, Data Transfer.

public void setCaretPosition (int position) �

The setCaretPosition() method moves the current text insertion location of
the TextComponent to position. If the TextComponent does not have a peer
yet, setCaretPosition() throws the IllegalComponentStateException run-
time exception. If position < 0, this method throws the run-time exception
IllegalArgumentException. If position is too big, the text insertion point is
positioned at the end.

10 July 2002 22:21

Prior to Java version 1.1, the insertion location was usually set by calling
select(position, position).

Read-only text

By default, a TextComponent is editable. If a user types while the component has
input focus, its contents will change. A TextComponent can also be used in an out-
put-only (read-only) mode.

public void setEditable (boolean state)
The setEditable() method allows you to change the current editable state of
the TextComponent to state. true means the component is editable; false
means read-only.

public boolean isEditable ()
The isEditable() method tells you if the TextComponent is editable (true) or
read-only (false).

The following listing is an applet that toggles the editable status for a TextArea

and sets a label to show the current status. As you can see in Figure 8-1, platforms
can change the display characteristics of the TextComponent to reflect whether the
component is editable. (Windows 95 darkens the background. Motif and Windows
NT do nothing.)

import java.awt.*;
import java.applet.*;
public class readonly extends Applet {

TextArea area;
Label label;
public void init () {

setLayout (new BorderLayout (10, 10));
add ("South", new Button ("toggleState"));
add ("Center", area = new TextArea ("Help Me", 5, 10));
add ("North", label = new Label ("Editable", Label.CENTER));

}
public boolean action (Event e, Object o) {

if (e.target instanceof Button) {
if ("toggleState".equals(o)) {

area.setEditable (!area.isEditable ());
label.setText ((area.isEditable () ? "Editable" : "Read-only"));
return true;

}
}
return false;

}
}

8.1 TEXT COMPONENT 305

10 July 2002 22:21

306 CHAPTER 8: INPUT FIELDS

Read only (darker)Editable

Figure 8–1: Editable and read-only TextAreas

Miscellaneous methods

public synchronized void removeNotifiy ()
The removeNotify() method destroys the peer of the TextComponent and
removes it from the screen. Prior to the TextComponent peer’s destruction, the
current state is saved so that a subsequent call to addNotify() will put it back.
(TextArea and TextField each have their own addNotify() methods.) These
methods deal with the peer object, which hides the native platform’s imple-
mentation of the component. If you override this method for a specific
TextComponent, put in the customizations for your new class first, and call
super.removeNotify() last.

protected String paramString ()
When you call the toString() method of a TextField or TextArea, the default
toString() method of Component is called. This in turn calls paramString(),
which builds up the string to display. The TextComponent level potentially adds
four items. The first is the current contents of the TextComponent (getText()).
If the text is editable, paramString() adds the word editable to the string. The
last two items included are the current selection range (getSelectionStart()
and getSelectionEnd()).

8.1.2 TextComponent Events
With the 1.1 event model, you can register listeners for text events. A text event
occurs when the component’s content changes, either because the user typed
something or because the program called a method like setText(). Listeners are

10 July 2002 22:21

registered with the addTextListener() method. When the content changes, the
TextListener.textValueChanges() method is called through the protected
method processTextEvent(). There is no equivalent to TextEvent in Java 1.0; you
would have to direct keyboard changes and all programmatic changes to a com-
mon method yourself.

In addition to TextEvent listeners, Key, mouse, and focus listeners are registered
through the Component methods addKeyListener(), addMouseListener(),
addMouseMotionListener(), and addFocusListener(), respectively.

Listeners and 1.1 event handling

public synchronized void addTextListener(TextListener listener) �

The addTextListener() method registers listener as an object interested in
receiving notifications when a TextEvent passes through the EventQueue with
this TextComponent as its target. The listener.textValueChanged() method is
called when these events occur. Multiple listeners can be registered.

The following applet, text13, demonstrates how to use a TextListener to han-
dle the events that occur when a TextField is changed. Whenever the user
types into the TextField, a TextEvent is delivered to the textValueChanged()
method, which prints a message on the Java console. The applet includes a
button that, when pressed, modifies the text field tf by calling setText().
These changes also generate a TextEvent.

// Java 1.1 only
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
class TextFieldSetter implements ActionListener {

TextField tf;
TextFieldSetter (TextField tf) {

this.tf = tf;
}
public void actionPerformed(ActionEvent e) {

if (e.getActionCommand().equals ("Set")) {
tf.setText ("Hello");

}
}

}
public class text13 extends Applet implements TextListener {

TextField tf;
int i=0;
public void init () {

Button b;
tf = new TextField ("Help Text", 20);
add (tf);
tf.addTextListener (this);
add (b = new Button ("Set"));
b.addActionListener (new TextFieldSetter (tf));

8.1 TEXT COMPONENT 307

10 July 2002 22:21

308 CHAPTER 8: INPUT FIELDS

}
public void textValueChanged(TextEvent e) {

System.out.println (++i + ": " + e);
}

}

public void removeTextListener(TextListener listener) �

The removeTextListener() method removes listener as an interested lis-
tener. If listener is not registered, nothing happens.

protected void processEvent(AWTEvent e) �

The processEvent() method receives all AWTEvents with this TextComponent as
its target. processEvent() then passes the events along to any listeners for pro-
cessing. When you subclass TextComponent, overriding processEvent() allows
you to process all events yourself, before sending them to any listeners. In a
way, overriding processEvent() is like overriding handleEvent() using the 1.0
event model.

If you override processEvent(), remember to call super.processEvent(e) last
to ensure that regular event processing can occur. If you want to process your
own events, it’s a good idea to call enableEvents() (inherited from Compo-

nent) to ensure that events are delivered even in the absence of registered lis-
teners.

protected void processTextEvent(TextEvent e) �

The processTextEvent() method receives all TextEvents with this TextCompo-
nent as its target. processTextEvent() then passes them along to any listeners
for processing. When you subclass TextField or TextArea, overriding the
processTextEvent() method allows you to process all text events yourself,
before sending them to any listeners. There is no equivalent to processTex-

tEvent() within the 1.0 event model.

If you override processTextEvent(), remember to call the method
super.processTextEvent(e) last to ensure that regular event processing can
occur. If you want to process your own events, it’s a good idea to call
enableEvents() (inherited from Component) to ensure that events are deliv-
ered even in the absence of registered listeners.

8.2 TextField
TextField is the TextComponent for single-line input. Some constructors permit
you to set the width of the TextField on the screen, but the current LayoutMan-
ager may change it. The text in the TextField is left justified, and the justification
is not customizable. To change the font and size of text within the TextField, call
setFont() as shown in Chapter 3, Fonts and Colors.

10 July 2002 22:21

The width of the field does not limit the number of characters that the user can
type into the field. It merely suggests how wide the field should be. To limit the
number of characters, it is necessary to override the keyDown() method for the
Component. Section 8.4 contains an example showing how to do this.

8.2.1 TextField Methods
Constructors

public TextField ()
This constructor creates an empty TextField. The width of the TextField is
zero columns, but it will be made wide enough to display just about one char-
acter, depending on the current font and size.

public TextField (int columns)
This constructor creates an empty TextField. The TextField width is
columns. The TextField will try to be wide enough to display columns charac-
ters in the current font and size. As I mentioned previously, the layout man-
ager may change the size.

public TextField (String text)
This constructor creates a TextField with text as its content. In Java 1.0 sys-
tems, the TextField is 0 columns wide (the getColumns() result), but the sys-
tem will size it to fit the length of text. With Java 1.1, getColumns() actually
returns text.length.

public TextField (String text, int columns)
This constructor creates a TextField with text as its content and a width of
columns.

The following example uses all four constructors; the results are shown in Figure
8-2. With the third constructor, you see that the TextField is not quite wide
enough for our text. The system uses an average width per character to try to
determine how wide the field should be. If you want to be on the safe side, specify
the field’s length explicitly, and add a few extra characters to ensure that there is
enough room on the screen for the entire text.

import java.awt.TextField;
public class texts extends java.applet.Applet {

public void init () {
add (new TextField ()); // A
add (new TextField (15)); // B
add (new TextField ("Empty String")); // C
add (new TextField ("Empty String", 20)); // D

}
}

8.2 TEXTFIELD 309

10 July 2002 22:21

310 CHAPTER 8: INPUT FIELDS

A

D

C

B

Figure 8–2: Using the TextField constructors

Sizing

public int getColumns ()
The getColumns() method returns the number of columns set with the con-
structor or a later call to setColumns(). This could be different from the dis-
played width of the TextField, depending upon the current LayoutManager.

public void setColumns (int columns) �

The setColumns() method changes the preferred number of columns for the
TextField to display to columns. Because the current LayoutManager will do
what it wants, the new setting may be completely ignored. If columns < 0, set-
Columns() throws the run-time exception IllegalArgumentException.

public Dimension getPreferredSize (int columns) �

public Dimension preferredSize (int columns) ✩

The getPreferredSize() method returns the Dimension (width and height)
for the preferred size of a TextField with a width of columns. The columns

specified may be different from the number of columns designated in the con-
structor.

preferredSize() is the Java 1.0 name for this method.

public Dimension getPreferredSize () �

public Dimension preferredSize () ✩

The getPreferredSize() method returns the Dimension (width and height)
for the preferred size of the TextField. Without the columns parameter, this
getPreferredSize() uses the constructor’s number of columns (or the value
from a subsequent call to setColumns()) to calculate the TextField’s pre-
ferred size.

10 July 2002 22:21

preferredSize() is the Java 1.0 name for this method.

public Dimension getMinimumSize (int columns) �

public Dimension minimumSize (int columns) ✩

The getMinimumSize() method returns the minimum Dimension (width and
height) for the size of a TextField with a width of columns. The columns speci-
fied may be different from the columns designated in the constructor.

minimumSize() is the Java 1.0 name for this method.

public Dimension getMinimumSize () �

public Dimension minimumSize ()
The getMinimumSize() method returns the minimum Dimension (width and
height) for the size of the TextField. Without the columns parameter, this
getMinimumSize() uses the constructor’s number of columns (or the value
from a subsequent call to setColumns()) to calculate the TextField’s mini-
mum size.

minimumSize() is the Java 1.0 name for this method.

Echoing character

It is possible to change the character echoed back to the user when he or she
types. This is extremely useful for implementing password entry fields.

public char getEchoChar ()
The getEchoChar() method returns the currently echoed character. If the
TextField is echoing normally, getEchoChar() returns zero.

public void setEchoChar (char c) �

public void setEchoCharacter (char c) ✩

The setEchoChar() method changes the character that is displayed to the user
to c for every character in the TextField. It is possible to change the echo
character on the fly so that existing characters will be replaced. A c of zero,
(char)0, effectively turns off any change and makes the TextField behave nor-
mally.

setEchoCharacter() is the Java 1.0 name for this method.

public boolean echoCharIsSet ()
The echoCharIsSet() method returns true if the echo character is set to a
nonzero value. If the TextField is displaying input normally, this method
returns false.

8.2 TEXTFIELD 311

10 July 2002 22:21

312 CHAPTER 8: INPUT FIELDS

Miscellaneous methods

public synchronized void addNotify ()
The addNotify() method creates the TextField peer. If you override this
method, first call super.addNotify(), then add your customizations for the
new class. Then you will be able to do everything you need with the informa-
tion about the newly created peer.

protected String paramString ()
When you call the toString() method of TextField, the default toString()
method of Component is called. This in turn calls paramString(), which builds
up the string to display. The TextField level can add only one item. If the
echo character is nonzero, the current echo character is added (the method
getEchoChar()). Using new TextField ("Empty String", 20), the results
displayed could be:

java.awt.TextField[0,0,0x0,invalid,text="Empty String",editable,selection=0-0]

8.2.2 TextField Events
With the 1.0 event model, TextField components can generate KEY_PRESS and
KEY_ACTION (which calls keyDown()), KEY_RELEASE and KEY_ACTION_RELEASE

(which calls keyUp()), and ACTION_EVENT (which calls action()).

With the 1.1 event model, you register an ActionListener with the method addAc-

tionListener(). Then when the user presses Return within the TextField the
ActionListener.actionPerformed() method is called through the protected
TextField.processActionEvent() method. Key, mouse, and focus listeners are
registered through the three Component methods of addKeyListener(),
addMouseListener(), and addFocusListener(), respectively.

Action

public boolean action (Event e, Object o)
The action() method for a TextField is called when the input focus is in the
TextField and the user presses the Return key. e is the Event instance for the
specific event, while o is a String representing the current contents (the
getText() method).

Keyboard

public boolean keyDown (Event e, int key)
The keyDown() method is called whenever the user presses a key. keyDown()
may be called many times in succession if the key remains pressed. e is the
Event instance for the specific event, while key is the integer representation of
the character pressed. The identifier for the event (e.id) for keyDown() could

10 July 2002 22:21

be either Event.KEY_PRESS for a regular key or Event.KEY_ACTION for an
action-oriented key (i.e., an arrow or function key). Some of the things you
can do through this method are validate input, convert each character to
uppercase, and limit the number or type of characters entered. The tech-
nique is simple: you just need to remember that the user’s keystroke is actually
displayed by the TextField peer, which receives the event after the TextField
itself. Therefore, a TextField subclass can modify the character displayed by
modifying the key field (e.key) of the Event and returning false, which
passes the Event on down the chain; remember that returning false indicates
that the Event has not been completely processed. The following method uses
this technique to convert all input to uppercase.

public boolean keyDown (Event e, int key) {
e.key = Character.toUppercase (char(key));
return false;

}

If keyDown() returns true, it indicates that the Event has been completely pro-
cessed. In this case, the Event never propagates to the peer, and the keystroke
is never displayed.

public boolean keyUp (Event e, int key)
The keyUp() method is called whenever the user releases a key. e is the Event
instance for the specific event, while key is the integer representation of the
character pressed. The identifier for the event (e.id) for keyUp() could be
either Event.KEY_RELEASE for a regular key or Event.KEY_ACTION_RELEASE for
an action-oriented key (i.e., an arrow or function key). Among other things,
keyUp() may be used to determine how long the key has been pressed.

Mouse

Ordinarily, the TextField component does not trigger any mouse events.

NOTE Mouse events are not generated for TextField with JDK 1.0.2. Your
run-time environment may behave differently. See Appendix C for
more information about platform dependencies.

Focus

The TextField component does not reliably generate focus events.

8.2 TEXTFIELD 313

10 July 2002 22:21

314 CHAPTER 8: INPUT FIELDS

NOTE The GOT_FOCUS and LOST_FOCUS events can be generated by
TextFields, but these events are not reliable across platforms. With
Java 1.0, they are generated on most UNIX platforms but not on Win-
dows NT/95 platforms. They are generated on all platforms under
Java 1.1. See Appendix C for more information about platform
dependencies.

public boolean gotFocus (Event e, Object o)
The gotFocus() method is triggered when the TextField gets the input focus.
e is the Event instance for the specific event, while o is a String representation
of the current contents (getText()).

public boolean lostFocus (Event e, Object o)
The lostFocus() method is triggered when the input focus leaves the
TextField. e is the Event instance for the specific event, while o is a String

representation of the current contents (getText()).

Listeners and 1.1 event handling

With the 1.1 event model, you register event listeners that are told when an event
occurs. You can register text event listeners by calling the method TextCompo-

nent.addTextListener().

public void addActionListener(ActionListener listener) �

The addActionListener() method registers listener as an object interested
in receiving notifications when an ActionEvent passes through the EventQueue
with this TextField as its target. The listener.actionPerformed() method is
called when these events occur. Multiple listeners can be registered. The fol-
lowing code demonstrates how to use an ActionListener to reverse the text in
the TextField.

// Java 1.1 only
import java.applet.*;
import java.awt.*;
import java.awt.event.*;

class MyAL implements ActionListener {
public void actionPerformed(ActionEvent e) {

System.out.println ("The current text is: " +
e.getActionCommand());

if (e.getSource() instanceof TextField) {
TextField tf = (TextField)e.getSource();
StringBuffer sb = new StringBuffer (e.getActionCommand());
tf.setText (sb.reverse().toString());

}
}

}

10 July 2002 22:21

public class text11 extends Applet {
public void init () {

TextField tf = new TextField ("Help Text", 20);
add (tf);
tf.addActionListener (new MyAL());

}
}

public void removeActionListener(ActionListener listener) �

The removeActionListener() method removes listener as a interested lis-
tener. If listener is not registered, nothing happens.

protected void processEvent(AWTEvent e) �

The processEvent() method receives all AWTEvents with this TextField as its
target. processEvent() then passes them along to any listeners for processing.
When you subclass TextField, overriding processEvent() allows you to pro-
cess all events yourself, before sending them to any listeners. In a way, overrid-
ing processEvent() is like overriding handleEvent() using the 1.0 event
model.

If you override processEvent(), remember to call super.processEvent(e) last
to ensure that regular event processing can occur. If you want to process your
own events, it’s a good idea to call enableEvents() (inherited from Compo-

nent) to ensure that events are delivered even in the absence of registered lis-
teners.

protected void processActionEvent(ActionEvent e) �

The processActionEvent() method receives all ActionEvents with this
TextField as its target. processActionEvent() then passes them along to any
listeners for processing. When you subclass TextField, overriding the method
processActionEvent() allows you to process all action events yourself, before
sending them to any listeners. In a way, overriding processActionEvent() is
like overriding action() using the 1.0 event model.

If you override the processActionEvent() method, remember to call
super.processActionEvent(e) last to ensure that regular event processing
can occur. If you want to process your own events, it’s a good idea to call
enableEvents() (inherited from Component) to ensure that events are deliv-
ered even in the absence of registered listeners.

The following applet is equivalent to the previous example, except that it overrides
processActionEvent() to receive events, eliminating the need for an ActionLis-

tener. The constructor calls enableEvents() to make sure that events are deliv-
ered, even if no listeners are registered.

// Java 1.1 only
import java.applet.*;
import java.awt.*;

8.2 TEXTFIELD 315

10 July 2002 22:21

316 CHAPTER 8: INPUT FIELDS

import java.awt.event.*;

class MyTextField extends TextField {
public MyTextField (String s, int len) {

super (s, len);
enableEvents (AWTEvent.ACTION_EVENT_MASK);

}
protected void processActionEvent(ActionEvent e) {

System.out.println ("The current text is: " +
e.getActionCommand());

TextField tf = (TextField)e.getSource();
StringBuffer sb = new StringBuffer (e.getActionCommand());
tf.setText (sb.reverse().toString());
super.processActionEvent(e)

}
}
public class text12 extends Applet {

public void init () {
TextField tf = new MyTextField ("Help Text", 20);
add (tf);

}
}

8.3 TextArea
TextArea is the TextComponent for multiline input. Some constructors permit you
to set the rows and columns of the TextArea on the screen. However, the Layout-
Manager may change your settings. As with TextField, the only way to limit the
number of characters that a user can enter is to override the keyDown() method.
The text in a TextArea appears left justified, and the justification is not customiz-
able.

In Java 1.1, you can control the appearance of a TextArea scrollbar; earlier ver-
sions gave you no control over the scrollbars. When visible, the vertical scrollbar is
on the right of the TextArea, and the horizontal scrollbar is on the bottom. You
can remove either scrollbar with the help of several new TextArea constants; you
can’t move them to another side. When the horizontal scrollbar is not present, the
text wraps automatically when the user reaches the right side of the TextArea.
Prior to Java 1.1, there was no way to enable word wrap.

8.3.1 TextArea Variables
Constants

The constants for TextArea are new to Java 1.1; they allow you to control the visi-
bility and word wrap policy of a TextArea scrollbar. There is no way to listen for the
events when a user scrolls a TextArea.

10 July 2002 22:21

public static final int SCROLLBARS_BOTH �

The SCROLLBARS_BOTH mode is the default for TextArea. It shows both scroll-
bars all the time and does no word wrap.

public static final int SCROLLBARS_HORIZONTAL_ONL Y �

The SCROLLBARS_HORIZONTAL_ONLY mode displays a scrollbar along the bottom
of the TextArea. When this scrollbar is present, word wrap is disabled.

public static final int SCROLLBARS_NONE �

The SCROLLBARS_NONE mode displays no scrollbars around the TextArea and
enables word wrap. If the text is too long, the TextArea displays the lines sur-
rounding the cursor. You can use the cursor to move up and down within the
TextArea, but you cannot use a scrollbar to navigate. Because this mode has
no horizontal scrollbar, word wrap is enabled.

public static final int SCROLLBARS_VERTICAL_ONL Y �

The SCROLLBARS_VERTICAL_ONLY mode displays a scrollbar along the right
edge of the TextArea. If the text is too long to display, you can scroll within
the area. Because this mode has no horizontal scrollbar, word wrap is enabled.

8.3.2 TextArea Methods
Constructors

public TextArea ()
This constructor creates an empty TextArea with both scrollbars. The
TextArea is 0 rows high and 0 columns wide. Depending upon the platform,
the TextArea could be really small (and useless) or rather large. It is a good
idea to use one of the other constructors to control the size of the TextArea.

public TextArea (int rows, int columns)
This constructor creates an empty TextArea with both scrollbars. The
TextArea is rows high and columns wide.

public TextArea (String text)
This constructor creates a TextArea with an initial content of text and both
scrollbars. The TextArea is 0 rows high and 0 columns wide. Depending upon
the platform, the TextArea could be really small (and useless) or rather large.
It is a good idea to use one of the other constructors to control the size of the
TextArea.

public TextArea (String text, int rows, int columns)
This constructor creates a TextArea with an initial content of text. The
TextArea is rows high and columns wide and has both scrollbars.

The following example uses the first four constructors. The results are shown in
Figure 8-3. With the size-less constructors, notice that Windows 95 creates a rather

8.3 TEXTAREA 317

10 July 2002 22:21

318 CHAPTER 8: INPUT FIELDS

large TextArea. UNIX systems create a much smaller area. Depending upon the
LayoutManager, the TextAreas could be resized automatically.

import java.awt.TextArea;
public class textas extends java.applet.Applet {

public void init () {
add (new TextArea ()); // A
add (new TextArea (3, 10)); // B
add (new TextArea ("Empty Area")); // C
add (new TextArea ("Empty Area", 3, 10)); // D

}
}

A

D C

B

Figure 8–3: TextArea constructor

public TextArea (String text, int rows, int columns, int scrollbarPolicy) �

The final constructor creates a TextArea with an initial content of text. The
TextArea is rows high and columns wide. The initial scrollbar display policy is
designated by the scrollbarPolicy parameter and is one of the TextArea con-
stants in the previous example. This constructor is the only way provided to
change the scrollbar visibility; there is no setScrollbarVisibility() method.
Figure 8-4 displays the different settings.

10 July 2002 22:21

SCROLLBARS_BOTH

SCROLLBARS_HORIZONTAL_ONLY

SCROLLBARS_VERTICAL_ONLY

SCROLLBARS_NONE

Figure 8–4: TextArea policies

Setting text

The text-setting methods are usually called in response to an external event. When
you handle the insertion position, you must translate it from the visual row and
column to a one-dimensional position. It is easier to position the insertion point
based upon the beginning, end, or current selection (getSelectionStart() and
getSelectionEnd()).

public void insert (String string, int position) �

public void insertText (String string, int position) ✩

The insert() method inserts string at position into the TextArea. If posi-
tion is beyond the end of the TextArea, string is appended to the end of the
TextArea.

insertText() is the Java 1.0 name for this method.

public void append (String string) �

public void appendText (String string) ✩

The append() method inserts string at the end of the TextArea.

appendText() is the Java 1.0 name for this method.

public void replaceRange (String string, int startPosition, int endPosition) �

public void replaceText (String string, int startPosition, int endPosition) ✩

The replaceRange() method replaces the text in the current TextArea from
startPosition to endPosition with string. If endPosition is before startPo-
sition, it may or may not work as expected. (For instance, on a Windows 95
platform, it works fine when the TextArea is displayed on the screen. However,
when the TextArea is not showing, unexpected results happen. Other plat-
forms may vary.) If startPosition is 0 and endPosition is the length of the
contents, this method functions the same as TextComponent.setText().

8.3 TEXTAREA 319

10 July 2002 22:21

320 CHAPTER 8: INPUT FIELDS

replaceText() is the Java 1.0 name for this method.

Sizing

public int getRows ()
The getRows() method returns the number of rows set by the constructor or a
subsequent call to setRows(). This could be different from the displayed
height of the TextArea.

public void setRows (int rows) �

The setRows() method changes the preferred number of rows to display for
the TextField to rows. Because the current LayoutManager will do what it
wants, the new setting may be ignored. If rows < 0, setRows() throws the run-
time exception IllegalArgumentException.

public int getColumns ()
The getColumns() method returns the number of columns set by the con-
structor or a subsequent call to setColumns(). This could be different from
the displayed width of the TextArea.

public void setColumns (int columns) �

The setColumns() method changes the preferred number of columns to dis-
play for the TextArea to columns. Because the current LayoutManager will do
what it wants, the new setting may be ignored. If columns < 0, setColumns()
throws the run-time exception IllegalArgumentException.

public Dimension getPreferredSize (int rows, int columns) �

public Dimension preferredSize (int rows, int columns) ✩

The getPreferredSize() method returns the Dimension (width and height)
for the preferred size of the TextArea with a preferred height of rows and
width of columns. The rows and columns specified may be different from the
current settings.

preferredSize() is the Java 1.0 name for this method.

public Dimension getPreferredSize (int rows, int columns) �

public Dimension preferredSize () ✩

The getPreferredSize() method returns the Dimension (width and height)
for the preferred size of the TextArea. Without the rows and columns parame-
ters, this getPreferredSize() uses the constructor’s number of rows and
columns to calculate the TextArea’s preferred size.

preferredSize() is the Java 1.0 name for this method.

10 July 2002 22:21

public Dimension getMinimumSize (int rows, int columns) �

public Dimension minimumSize (int rows, int columns) ✩

The getMinimumSize() method returns the minimum Dimension (width and
height) for the size of the TextArea with a height of rows and width of
columns. The rows and columns specified may be different from the current
settings.

minimumSize() is the Java 1.0 name for this method.

public Dimension getMinimumSize () �

public Dimension minimumSize () ✩

The getMinimumSize() method returns the minimum Dimension (width and
height) for the size of the TextArea. Without the rows and columns parame-
ters, this getMinimumSize() uses the current settings for rows and columns to
calculate the TextArea’s minimum size.

minimumSize() is the Java 1.0 name for this method.

Miscellaneous methods

public synchronized void addNotify ()
The addNotify() method creates the TextArea peer. If you override this
method, call super.addNotify() first, then add your customizations for the
new class. You will then be able to do everything you need with the informa-
tion about the newly created peer.

public int getScrollbarVisibility() �

The getScrollbarVisibility() method retrieves the scrollbar visibility set-
ting, which is set by the constructor. There is no setScollbarVisibility()

method to change the setting. The return value is one of the TextArea con-
stants: SCROLLBARS_BOTH, SCROLLBARS_HORIZONTAL_ONLY, SCROLLBARS_NONE, or
SCROLLBARS_VERTICAL_ONLY.

protected String paramString ()
When you call the toString() method of TextArea, the default toString()
method of Component is called. This in turn calls paramString(), which builds
up the string to display. The TextArea level adds the number of rows and
columns for the TextArea, and Java 1.1 adds the scrollbar visibility policy.
Using new TextArea("Empty Area", 3, 10), the results displayed could be:

java.awt.TextArea[text0,0,0,0x0,invalid,text="Empty Area",
editable,selection=0-0, rows=3,columns=10, scrollbarVisibility=both]

8.3 TEXTAREA 321

10 July 2002 22:21

322 CHAPTER 8: INPUT FIELDS

8.3.3 TextArea Events
With the 1.0 event model, the TextArea component can generate KEY_PRESS and
KEY_ACTION (which calls keyDown()) along with KEY_RELEASE and
KEY_ACTION_RELEASE (which called keyUp()). There is no ACTION_EVENT generated
for TextArea.

NOTE The GOT_FOCUS and LOST_FOCUS events can be generated by this com-
ponent but not reliably across platforms. Currently, they are gener-
ated on most UNIX platforms but not on Microsoft Windows NT/95
under Java 1.0. These events are generated under Java 1.1.

Similarly, the mouse events are not generated with JDK 1.0.2. See
Appendix C for more information about platform dependencies.

With the Java 1.1 event model, there are no listeners specific to TextArea. You
can register key, mouse, and focus listeners through the Component methods of
addKeyListener(), addMouseListener(), and addFocusListener(), respectively.
To register listeners for text events, call TextComponent.addTextListener().

Action

The TextArea component has no way to trigger the action event, since carriage
return is a valid character. You would need to put something like a Button on the
screen to cause an action for a TextArea. The following Rot13 program demon-
strates this technique. The user enters text in the TextArea and selects the Rotate
Me button to rotate the text. If the user selects Rotate Me again, it rotates again,
back to the original position. Without the button, there would be no way to trigger
the event. Figure 8-5 shows this example in action.

import java.awt.*;

public class Rot13 extends Frame {
TextArea ta;
Component rotate, done;
public Rot13 () {

super ("Rot-13 Example");
add ("North", new Label ("Enter Text to Rotate:"));
ta = (TextArea)(add ("Center", new TextArea (5, 40)));
Panel p = new Panel ();
rotate = p.add (new Button ("Rotate Me"));
done = p.add (new Button ("Done"));
add ("South", p);

}
public static void main (String args[]) {

Rot13 rot = new Rot13();
rot.pack();

10 July 2002 22:21

rot.show();
}
public boolean handleEvent (Event e) {

if (e.id == Event.WINDOW_DESTROY) {
hide();
dispose();
System.exit (0);
return true;

}
return super.handleEvent (e);

}
public boolean action (Event e, Object o) {

if (e.target == rotate) {
ta.setText (rot13Text (ta.getText()));
return true;

} else if (e.target == done) {
hide();
dispose();
System.exit (0);

}
return false;

}
String rot13Text (String s) {

int len = s.length();
StringBuffer returnString = new StringBuffer (len);
char c;
for (int i=0;i<len;i++) {

c = s.charAt (i);
if (((c >= ’A’) && (c <= ’M’)) ||

((c >= ’a’) && (c <= ’m’)))
c += 13;

else if (((c >= ’N’) && (c <= ’Z’)) ||
((c >= ’n’) && (c <= ’z’)))
c -= 13;

returnString.append (c);
}
return returnString.toString();

}
}

Keyboard

Ordinarily, the TextArea component generates all the key events.

public boolean keyDown (Event e, int key)
The keyDown() method is called whenever the user presses a key. keyDown()
may be called many times in succession if the key remains pressed. e is the
Event instance for the specific event, while key is the integer representation of
the character pressed. The identifier for the event (e.id) for keyDown() could
be either Event.KEY_PRESS for a regular key or Event.KEY_ACTION for an
action-oriented key (i.e., an arrow or function key). Some of the things you
can do through this method are validate input, convert each character to

8.3 TEXTAREA 323

10 July 2002 22:21

324 CHAPTER 8: INPUT FIELDS

Figure 8–5: TextArea with activator button

uppercase, and limit the number or type of characters entered. The tech-
nique is simple: you just need to remember that the user’s keystroke is actually
displayed by the TextArea peer, which receives the event after the TextArea

itself. Therefore, a TextArea subclass can modify the character displayed by
modifying the key field (e.key) of the Event and returning false, which
passes the Event on down the chain; remember that returning false indicates
that the Event has not been completely processed. The following method uses
this technique to convert all alphabetic characters to the opposite case:

public boolean keyDown (Event e, int key) {
if (Character.isUpperCase ((char)key)) {

e.key = Character.toLowerCase ((char)key);
} else if (Character.isLowerCase ((char)key)) {

e.key = Character.toUpperCase ((char)key);
}
return false;

}

If keyDown() returns true, it indicates that the Event has been completely pro-
cessed. In this case, the Event never propagates to the peer, and the keystroke
is never displayed.

public boolean keyUp (Event e, int key)
The keyUp() method is called whenever the user releases a key. e is the Event
instance for the specific event, while key is the integer representation of the
character pressed. The identifier for the event (e.id) for keyUp() could be
either Event.KEY_RELEASE for a regular key, or Event.KEY_ACTION_RELEASE for
an action-oriented key (i.e., an arrow or function key).

Mouse

Ordinarily, the TextArea component does not trigger any mouse events.

10 July 2002 22:21

NOTE Mouse events are not generated for TextArea with JDK 1.0.2. See
Appendix C for more information about platform dependencies.

Focus

The TextArea component does not reliably generate focus events.

NOTE The GOT_FOCUS and LOST_FOCUS events can be generated by this com-
ponent but not reliably across platforms. With the JDK, they are gen-
erated on most UNIX platforms but not on Microsoft Windows
NT/95 under JDK 1.0. These events are generated with JDK 1.1. See
Appendix C for more information about platform dependencies.

public boolean gotFocus (Event e, Object o)
The gotFocus() method is triggered when the TextArea gets the input focus.
e is the Event instance for the specific event, while o is a String representation
of the current contents (getText()).

public boolean lostFocus (Event e, Object o)
The lostFocus() method is triggered when the input focus leaves the
TextArea. e is the Event instance for the specific event, while o is a String rep-
resentation of the current contents (getText()).

Listeners and 1.1 event handling

There are no listeners specific to the TextArea class. You can register Key, mouse,
and focus listeners through the Component methods of addKeyListener(),
addMouseListener(), and addFocusListener(), respectively. Also, you register lis-
teners for text events by calling TextComponent.addTextListener().

8.4 Extending Te xtField
To extend what you learned so far, Example 8-1 creates a sub-class of TextField
that limits the number of characters a user can type into it. Other than the six con-
structors, all the work is in the keyDown() method. The entire class follows.

8.4 EXTENDING TEXTFIELD 325

10 July 2002 22:21

326 CHAPTER 8: INPUT FIELDS

Example 8–1: The SizedTextField Class Limits the Number of Characters a User can Type

import java.awt.*;
public class SizedTextField extends TextField {

private int size; // size = 0 is unlimited
public SizedTextField () {

super ("");
this.size = 0;

}
public SizedTextField (int columns) {

super (columns);
this.size = 0;

}
public SizedTextField (int columns, int size) {

super (columns);
this.size = Math.max (0, size);

}
public SizedTextField (String text) {

super (text);
this.size = 0;

}
public SizedTextField (String text, int columns) {

super (text, columns);
this.size = 0;

}
public SizedTextField (String text, int columns, int size) {

super (text, columns);
this.size = Math.max (0, size);

}
public boolean keyDown (Event e, int key) {

if ((e.id == Event.KEY_PRESS) && (this.size > 0) &&
(((TextField)(e.target)).getText ().length () >= this.size)) {
// Check for backspace / delete / tab—let these pass through
if ((key == 127) || (key == 8) || (key == 9)) {

return false;
}
return true;

}
return false;

}
protected String paramString () {

String str = super.paramString ();
if (size != 0) {

str += ",size=" + size;
}
return str;

}
}

Most of the SizedTextField class consists of constructors; you really don’t need to
provide an equivalent to all the superclass’s constructors, but it’s not a bad idea.

10 July 2002 22:21

The keyDown() method looks at what the user types before it reaches the screen
and acts accordingly. It checks the length of the TextField and compares it to the
maximum length. It then does another check to see if the user typed a Backspace,
Delete, or Tab, all of which we want to allow: if the field has gotten too long, we
want to allow the user to shorten it. We also want to allow tab under all circum-
stances, so that focus traversal works properly. The rest of the logic is simple:

• If the user typed Backspace, Delete, or Tab, return false to propagate the
event.

• If the field is too long, return true to prevent the event from reaching the
peer. This effectively ignores the character.

8.4 EXTENDING TEXTFIELD 327

10 July 2002 22:21

9

Pick Me

In this chapter:
• Choice
• Lists
• Checkbox
• CheckboxGroup
• ItemSelectable

Three AWT components let you present a list of choices to users: Choice, List,
and Checkbox. All three components implement the ItemSelectable inter face
(Java1.1). These components are comparable to selection mechanisms in modern
GUIs so most readers will be able to learn them easily, but I’ll point out some spe-
cial enhancements that they provide.

Choice and List are similar; both offer a list of choices for the user to select.
Choice provides a pull-down list that offers one selection at a time, whereas List is
a scrollable list that allows a user to make one or multiple selections. From a
design standpoint, which you choose depends at least partially on screen real
estate; if you want the user to select from a large group of alternatives, Choice
requires the least space, List requires somewhat more, while Checkbox requires
the most. Choice is the only component in this group that does not allow multiple
selections. A List allows multiple or single selection; because each Checkbox is a
separate component, checkboxes inherently allow multiple selection. In order to
create a list of mutually exclusive checkboxes, in which only one box can be
selected at a time (commonly known as radio buttons), you can put several check-
boxes together into a CheckboxGroup, which is discussed at the end of this chapter.

9.1 Choice
The Choice component provides pop-up/pull-down lists. It is the equivalent of
Motif’s OptionMenu or Windows MFC’s ComboBox. (Java 1.1 departs from the
MFC world.) With the Choice component, you can provide a short list of choices
to the user, while taking up the space of a single item on the screen. When the
component is selected, the complete list of available choices appears on the

328

10 July 2002 22:21

screen. After the user has selected an option, the list is removed from the screen
and the selected item is displayed. Selecting any item automatically deselects the
previous selection.

9.1.1 Component Methods
Constructors

public Choice ()
There is only one constructor for Choice. When you call it, a new instance of
Choice is created. The component is initially empty, with no items to select.
Once you add some items using addItem() (version 1.0) or add() (version 1.1)
and display the Choice on the screen, it will look something like the leftmost
component in Figure 9-1. The center component shows what a Choice looks
like when it is selected, while the one on the right shows what a Choice looks
like before any items have been added to it.

Figure 9–1: How Choices are displayed

Items

public int getItemCount () �

public int countItems () ✩

The getItemCount() method returns the number of selectable items in the
Choice object. In Figure 9-1, getItemCount() would return 6.

countItems() is the Java 1.0 name for this method.

public String getItem (int index)
The getItem() method returns the text for the item at position index in the
Choice. If index is invalid—either index < 0 or index >= getItem-

Count()—the getItem() method throws the ArrayIndexOutOfBoundsExcep-

tion run-time exception.

9.1 CHOICE 329

10 July 2002 22:21

330 CHAPTER 9: PICK ME

public synchronized void add (String item) �

public synchronized void addItem (String item) ✩

add() adds item to the list of available choices. If item is already an option in
the Choice, this method adds it again. If item is null, add() throws the run-
time exception NullPointerException. The first item added to a Choice

becomes the initial (default) selection.

addItem() is the Java 1.0 name for this method.

public synchronized void insert (String item, int index) �

insert() adds item to the list of available choices at position index. An index
of 0 adds the item at the beginning. An index larger than the number of
choices adds the item at the end. If item is null, insert() throws the run-time
exception NullPointerException. If index is negative, insert() throws the
run-time exception IllegalArgumentException.

public synchronized void remove (String item) �

remove() removes item from the list of available choices. If item is present in
Choice multiple times, a call to remove() removes the first instance. If item is
null, remove() throws the run-time exception NullPointerException. If item
is not found in the Choice, remove() throws the IllegalArgumentException

run-time exception.

public synchronized void remove (int position) �

remove() removes the item at position from the list of available choices. If
position is invalid—either position < 0 or position >= getItem-

Count()—remove() throws the run-time exception ArrayIndexOutOfBounds-

Exception.

public synchronized void removeAll () �

The removeAll() method removes every option from the Choice. This allows
you to refresh the list from scratch, rather than creating a new Choice and
repopulating it.

Selection

The Choice has one item selected at a time. Initially, it is the first item that was
added to the Choice.

public String getSelectedItem ()
The getSelectedItem() method returns the currently selected item as a
String. The text returned is the parameter used in the addItem() or add()
call that put the option in the Choice. If Choice is empty, getSelectedItem()
returns null.

10 July 2002 22:21

public Object[] getSelectedObjects () �

The getSelectedObjects() method returns the currently selected item as an
Object array, instead of a String. The array will either be a one-element array,
or null if there are no items. This method is required by the ItemSelectable

inter face and allows you to use the same method to look at the items selected
by a Choice, List, or Checkbox.

public int getSelectedIndex ()
The getSelectedIndex() method returns the position of the currently
selected item. The Choice list uses zero-based indexing, so the position of the
first item is zero. The position of the last item is the value of countItems()-1.
If the list is empty, this method returns -1.

public synchronized void select (int position)
This version of the select() method makes the item at position the selected
item in the Choice. If position is too big, select() throws the run-time
exception IllegalArgumentException. If position is negative, nothing hap-
pens.

public void select (String string)
This version of select() makes the item with the label string the selected
item. If string is in the Choice multiple times, this method selects the first. If
string is not in the Choice, nothing happens.

Miscellaneous methods

public synchronized void addNotify ()
The addNotify() method creates the Choice’s peer. If you override this
method, call super.addNotify() first, then add your customizations for the
new class. You will then be able to do everything you need with the informa-
tion about the newly created peer.

protected String paramString ()
When you call the toString() method of a Choice, the default toString()
method of Component gets called. This in turn calls paramString() which
builds up the string to display. At the Choice level, paramString() appends the
currently selected item (the result of getSelectedItem()) to the output. Using
the first Choice instance in Figure 9-1, the results would be:

java.awt.Choice[139,5,92x27,current=Dialog]

9.1 CHOICE 331

10 July 2002 22:21

332 CHAPTER 9: PICK ME

9.1.2 Choice Events
The primary event for a Choice occurs when the user selects an item in the list.
With the 1.0 event model, selecting an item generates an ACTION_EVENT, which trig-
gers a call to the action() method. Once the Choice has the input focus, the user
can change the selection by using the arrow or keyboard keys. The arrow keys
scroll through the list of choices, triggering the KEY_ACTION, ACTION_EVENT, and
KEY_ACTION_RELEASE event sequence, which in turn invokes the keyDown(),
action(), and keyUp() methods, respectively. If the mouse is used to choose an
item, no mouse events are triggered as you scroll over each item, and an
ACTION_EVENT occurs only when a specific choice is selected.

With the 1.1 event model, you register ItemListener with addItemListener().
Then when the user selects the Choice, the ItemListener.itemStateChanged()

method is called through the protected Choice.processItemEvent() method. Key,
mouse, and focus listeners are registered through the Component methods of add-
KeyListener(), addMouseListener(), and addFocusListener(), respectively.

Action

public boolean action (Event e, Object o)
The action() method for a choice signifies that the user selected an item. e is
the Event instance for the specific event, while o is the String from the call to
addItem() or add() that represents the current selection. Here’s a trivial
implementation of the method:

public boolean action (Event e, Object o) {
if (e.target instanceof Choice) {

System.out.println ("Choice is now set to " + o);
}
return false;

}

Keyboard

The keyboard events for a Choice can be generated once the Choice has the input
focus. In addition to the KEY_ACTION and KEY_ACTION_RELEASE events you get with
the arrow keys, an ACTION_EVENT is generated over each entry.

public boolean keyDown (Event e, int key)
The keyDown() method is called whenever the user presses a key and the
Choice has the input focus. e is the Event instance for the specific event, while
key is the integer representation of the character pressed. The identifier for
the event (e.id) for keyDown() could be either Event.KEY_PRESS for a regular

10 July 2002 22:21

key or Event.KEY_ACTION for an action-oriented key (i.e., arrow or function
key). If you check the current selection in this method through the method
getSelectedItem() or getSelectedIndex(), you will be given the previously
selected item because the Choice’s selection has not changed yet. keyDown() is
not called when the Choice is changed by using the mouse.

public boolean keyUp (Event e, int key)
The keyUp() method is called whenever the user releases a key. e is the Event
instance for the specific event, while key is the integer representation of the
character pressed. The identifier for the event (e.id) for keyUp() could be
either KEY_RELEASE for a regular key or KEY_ACTION_RELEASE for an action ori-
ented key (i.e., arrow or function key).

Mouse

Ordinarily, the Choice component does not trigger any mouse events.

Focus

Ordinarily, the Choice component does not trigger any focus events.

Listeners and 1.1 event handling

With the 1.1 event model, you register listeners for different event types; the listen-
ers are told when the event happens. These methods register listeners, and let the
Choice component inspect its own events.

public void addItemListener(ItemListener listener) �

The addItemListener() method registers listener as an object interested in
being notified when an ItemEvent passes through the EventQueue with this
Choice as its target. The listener.itemStateChanged() method is called
when an event occurs. Multiple listeners can be registered.

public void removeItemListener(ItemListener listener) �

The removeItemListener() method removes listener as a interested listener.
If listener is not registered, nothing happens.

protected void processEvent(AWTEvent e) �

The processEvent() method receives all AWTEvents with this Choice as its tar-
get. processEvent() then passes them along to any listeners for processing.
When you subclass Choice, overriding processEvent() allows you to process
all events yourself, before sending them to any listeners. In a way, overriding
processEvent() is like overriding handleEvent() using the 1.0 event model.

9.1 CHOICE 333

10 July 2002 22:21

334 CHAPTER 9: PICK ME

If you override processEvent(), remember to call super.processEvent(e) last
to ensure that regular event processing can occur. If you want to process your
own events, it’s a good idea to call enableEvents() (inherited from Compo-

nent) to ensure that events are delivered even in the absence of registered lis-
teners.

protected void processItemEvent(ItemEvent e) �

The processItemEvent() method receives all ItemEvents with this Choice as
its target. processItemEvent() then passes them along to any listeners for
processing. When you subclass Choice, overriding processItemEvent() allows
you to process all events yourself, before sending them to any listeners. In a
way, overriding processItemEvent() is like overriding handleEvent() using
the 1.0 event model.

If you override processItemEvent(), remember to call the method
super.processItemEvent(e) last to ensure that regular event processing can
occur. If you want to process your own events, it’s a good idea to call
enableEvents() (inherited from Component) to ensure that events are deliv-
ered even in the absence of registered listeners.

The following simple applet below demonstrates how a component can receive its
own events by overriding processItemEvent(), while still allowing other objects to
register as listeners. MyChoice11 is a subclass of Choice that processes its own item
events. choice11 is an applet that uses the MyChoice11 component and registers
itself as a listener for item events.

// Java 1.1 only
import java.awt.*;
import java.applet.*;
import java.awt.event.*;
class MyChoice11 extends Choice {

MyChoice11 () {
super ();
enableEvents (AWTEvent.ITEM_EVENT_MASK);

}
protected void processItemEvent(ItemEvent e) {

ItemSelectable ie = e.getItemSelectable();
System.out.println ("Item Selected: " + ie.getSelectedObjects()[0]);
// If you do not call super.processItemEvent()
// no listener will be notified
super.processItemEvent (e);

}
}

public class choice11 extends Applet implements ItemListener {
Choice c;
public void init () {

String []fonts;
fonts = Toolkit.getDefaultToolkit().getFontList();

10 July 2002 22:21

c = new MyChoice11();
for (int i = 0; i < fonts.length; i++) {

c.add (fonts[i]);
}
add (c);
c.addItemListener (this);

}
public void itemStateChanged(ItemEvent e) {

ItemSelectable ie = e.getItemSelectable();
System.out.println ("State Change: " + ie.getSelectedObjects()[0]);

}
}

A few things are worth noticing. MyChoice11 calls enableEvents() in its construc-
tor to make sure that item events are delivered, even if nobody registers as a lis-
tener: MyChoice11 needs to make sure that it receives events, even in the absence
of listeners. Its processItemEvent() method ends by calling the superclass’s pro-
cessItemEvent() method, with the original item event. This call ensures that nor-
mal item event processing occurs; super.processItemEvent() is responsible for
distributing the event to any registered listeners. The alternative would be to
implement the whole registration and event distribution mechanism inside
myChoice11, which is precisely what object-oriented programming is supposed to
avoid, or being absolutely sure that you will only use MyChoice11 in situations in
which there won’t be any listeners, drastically limiting the usefulness of this class.

choice11 doesn’t contain many surprises. It implements ItemListener, the listener
inter face for item events; provides the required itemStateChanged() method,
which is called whenever an item event occurs; and calls MyChoice11’s method
addItemListener() to register as a listener for item events. (MyChoice11 inherits
this method from the Choice class.)

9.2 Lists
Like the Choice component, the List provides a way to present your user with a
fixed sequence of choices to select. However, with List, several items can be dis-
played at a time on the screen. A List can also allow multiple selection, so that
more than one choice can be selected.

Normally, a scrollbar is associated with the List to enable the user to move to the
items that do not fit on the screen. On some platforms, the List may not display
the scrollbar if there is enough room to display all choices. A List can be resized
by the LayoutManager according to the space available. Figure 9-2 shows two lists,
one of which has no items to display.

9.2 LISTS 335

10 July 2002 22:21

336 CHAPTER 9: PICK ME

9.2.1 List Methods
Constructors

public List ()
This constructor creates an empty List with four visible lines. You must rely on
the current LayoutManager to resize the List or override the preferredSize()
(version 1.0) or getPreferredSize() (version 1.1) method to affect the size of
the displayed List. A List created with this constructor is in single-selection
mode, so the user can select only one item at a time.

public List (int rows)
This constructor creates a List that has rows visible lines. This is just a
request; the LayoutManager is free to adjust the height of the List to some
other amount based upon available space. A List created with this constructor
is in single-selection mode, so the user will be able to select only one item at a
time.

public List (int rows, boolean multipleSelections)
The final constructor for List creates a List that has rows visible lines. This is
just a request; the LayoutManager is free to adjust the height of the List to
some other amount based upon available space. If multipleSelections is
true, this List permits multiple items to be selected. If false, this is a single-
selection list.

Figure 9–2: Two lists; the list on the right is empty

Content control

public int getItemCount () �

public int countItems () ✩

The getItemCount() method returns the length of the list. The length of the
list is the number of items in the list, not the number of visible rows.

10 July 2002 22:21

countItems() is the Java 1.0 name for this method.

public String getItem (int index)
The getItem() method returns the String representation for the item at posi-
tion index. The String is the parameter passed to the addItem() or add()

method.

public String[] getItems () �

The getItems() method returns a String array that contains all the elements
in the List. This method does not care if an item is selected or not.

public synchronized void add (String item) �

public synchronized void addItem (String item) ✩

The add() method adds item as the last entry in the List. If item already
exists in the list, this method adds it again.

addItem() is the Java 1.0 name for this method.

public synchronized void add (String item, int index) �

public synchronized void addItem (String item, int index) ✩

This version of the add() method has an additional parameter, index, which
specifies where to add item to the List. If index < 0 or index >= getItem-

Count(), item is added to the end of the List. The position count is zero
based, so if index is 0, it will be added as the first item.

addItem() is the Java 1.0 name for this method.

public synchronized void replaceItem (String newItem, int index)
The replaceItem() method replaces the contents at position index with
newItem. If the item at index has been selected, newItem will not be selected.

public synchronized void removeAll () �

public synchronized void clear () ✩

The removeAll() method clears out all the items in the list.

clear() is the Java 1.0 name for this method.

NOTE Early versions (Java1.0) of the clear() method did not work reliably
across platforms. You were better off calling the method list-
Var.delItems(0, listVar.countItems()-1), where listVar is your
List instance.

public synchronized void remove (String item) �

The remove() method removes item from the list of available choices. If item
appears in the List several times, only the first instance is removed. If item is

9.2 LISTS 337

10 July 2002 22:21

338 CHAPTER 9: PICK ME

null, remove() throws the run-time exception NullPointerException. If item
is not found in the List, remove() throws the IllegalArgumentException run-
time exception.

public synchronized void remove (int position) �

public synchronized void delItem (int position) ✩

The remove() method removes the entry at position from the List. If posi-
tion is invalid—either position < 0 or position >= getItem-

Count()—remove() throws the ArrayIndexOutOfBoundsException run-time
exception with a message indicating that position was invalid.

delItem() is the Java 1.0 name for this method.

public synchronized void delItems (int start, int end) ✩

The delItems() method removes entries from position start to position end

from the List. If either parameter is invalid—either start < 0 or end >=
getItemCount()—delItems() throws the ArrayIndexOutOfBoundsException

run-time exception with a message indicating which position was invalid. If
start is greater than end, nothing happens.

Selection and positioning

public synchronized int getSelectedIndex ()
The getSelectedIndex() method returns the position of the selected item. If
nothing is selected in the List, getSelectedIndex() returns -1. The value -1 is
also returned if the List is in multiselect mode and multiple items are
selected. For multiselection lists, use getSelectedIndexes() instead.

public synchronized int[] getSelectedIndexes ()
The getSelectedIndexes() method returns an integer array of the selected
items. If nothing is selected, the array will be empty.

public synchronized String getSelectedItem ()
The getSelectedItem() method returns the label of the selected item. The
label is the string used in the add() or addItem() call. If nothing is selected in
the List, getSelectedItem() returns null. The return value is also null if
List is in multiselect mode and multiple items are selected. For multiselection
lists, use getSelectedItems() instead.

public synchronized String[] getSelectedItems ()
The getSelectedItems() method returns a String array of the selected items.
If nothing is selected, the array is empty.

10 July 2002 22:21

public synchronized Object[] getSelectedObjects ()
The getSelectedObjects() method returns the results of the method getSe-

lectedItems() as an Object array instead of a String array, to conform to the
ItemSelectable inter face. If nothing is selected, the returned array is empty.

public synchronized void select (int index)
The select() method selects the item at position index, which is zero based.
If the List is in single-selection mode, any other selected item is deselected. If
the List is in multiple-selection mode, calling this method has no effect on
the other selections. The item at position index is made visible.

NOTE A negative index seems to select everything within the List. This
seems more like an irregularity than a feature to rely upon.

public synchronized void deselect (int index)
The deselect() method deselects the item at position index, which is zero
based. deselect() does not reposition the visible elements.

public boolean isIndexSelected (int index) �

public boolean isSelected (int index) ✩

The isIndexSelected() method checks whether index is currently selected. If
it is, isIndexSelected() returns true; other wise, it returns false.

isSelected() is the Java 1.0 name for this method.

public boolean isMultipleMode () �

public boolean allowsMultipleSelections () ✩

The isMultipleMode() method returns the current state of the List. If the
List is in multiselection mode, isMultipleMode() returns true; other wise, it
returns false.

allowsMultipleSelections() is the Java 1.0 name for this method.

public void setMultipleMode (boolean value) �

public void setMultipleSelections (boolean value) ✩

The setMultipleMode() method allows you to change the current state of a
List from one selection mode to the other. The currently selected items
change when this happens. If value is true and the List is going from single-
to multiple-selection mode, the selected item gets deselected. If value is false
and the List is going from multiple to single, the last item physically selected
remains selected (the last item clicked on in the list, not the item with the
highest index). If there was no selected item, the first item in the list becomes

9.2 LISTS 339

10 July 2002 22:21

340 CHAPTER 9: PICK ME

selected, or the last item that was deselected becomes selected. If staying
within the same mode, setMultipleMode() has no effect on the selected items.

setMultipleSelections() is the Java 1.0 name for this method.

public void makeVisible (int index)
The makeVisible() method ensures that the item at position index is dis-
played on the screen. This is useful if you want to make sure a certain entry is
displayed when another action happens on the screen.

public int getVisibleIndex ()
The getVisibleIndex() method returns the last index from a call to the
method makeVisible(). If makeVisible() was never called, -1 is returned.

Sizing

public int getRows ()
The getRows() method returns the number of rows passed to the constructor
of the List. It does not return the number of visible rows. To get a rough idea
of the number of visible rows, compare the getSize() of the component with
the results of getPreferredSize(getRows()).

public Dimension getPreferredSize (int rows) �

public Dimension preferredSize (int rows) ✩

The getPreferredSize() method returns the preferable Dimension (width
and height) for the size of a List with a height of rows. The rows specified
may be different from the rows designated in the constructor.

preferredSize() is the Java 1.0 name for this method.

public Dimension getPreferredSize () �

public Dimension preferredSize () ✩

The getPreferredSize() method returns the Dimension (width and height)
for the preferred size of the List. Without the rows parameter, this version of
getPreferredSize() uses the constructor’s number of rows to calculate the
List’s preferred size.

preferredSize() is the Java 1.0 name for this method.

public Dimension getMiminumSize (int rows) �

public Dimension minimumSize (int rows) ✩

The getMinimumSize() method returns the minimum Dimension (width and
height) for the size of a List with a height of rows. The rows specified may be
different from the rows designated in the constructor. For a List, getMinimum-
Size() and getPreferredSize() should return the same dimensions.

minimumSize() is the Java 1.0 name for this method.

10 July 2002 22:21

public Dimension getMiminumSize () �

public Dimension minimumSize () ✩

The getMinimumSize() method returns the minimum Dimension (width and
height) for the size of the List. Without the rows parameter, this getMinimum-
Size() uses the constructor’s number of rows to calculate the List’s minimum
size.

minimumSize() is the Java 1.0 name for this method.

Miscellaneous methods

public synchronized void addNotify ()
The addNotify() method creates the List peer. If you override this method,
call super.addNotify() first, then add your customizations for the new class.
You will then be able to do everything you need with the information about
the newly created peer.

public synchronized void removeNotify ()
The removeNotify() method destroys the peer of the List and removes it
from the screen. Prior to the List peer’s destruction, the last selected entry is
saved. If you override this method for a specific List, issue the particular com-
mands that you need for your new object, then call super.removeNotify()
last.

protected String paramString ()
When you call the toString() method of List, the default toString()

method of Component is called. This in turn calls paramString(), which builds
up the string to display. At the List level, the currently selected item (getSe-
lectedItem()) is appended to the output. Using Figure 9-2 as an example, the
results would be the following:

java.awt.List[0,34,107x54,selected=null]

9.2.2 List Events
The primary event for a List occurs when the user selects an item in the list. With
the 1.0 event model, double-clicking a selection causes an ACTION_EVENT and trig-
gers the action() method, while single-clicking causes a LIST_SELECT or
LIST_DESELECT event. Once the List has the input focus, it is possible to change
the selection by using the arrow or keyboard keys. The arrow keys scroll through
the list of choices, triggering the KEY_ACTION, LIST_SELECT, LIST_DESELECT, and
KEY_ACTION_RELEASE events, and thus the keyDown(), handleEvent(), and keyUp()

methods (no specific method gets called for LIST_SELECT and LIST_DESELECT).
action() is called only when the user double-clicks on an item with the mouse. If
the mouse is used to scroll through the list, no mouse events are triggered;
ACTION_EVENT is generated only when the user double-clicks on an item.

9.2 LISTS 341

10 July 2002 22:21

342 CHAPTER 9: PICK ME

With the 1.1 event model, you register an ItemListener with addItemListener()

or an ActionListener with the addActionListener() method. When the user
selects the List, either the ItemListener.itemStateChanged() method or the
ActionListener.actionPerformed() method is called through the protected
List.processItemEvent() method or List.processActionEvent() method. Key,
mouse, and focus listeners are registered through the three Component methods of
addKeyListener(), addMouseListener(), and addFocusListener(), respectively.

Action

public boolean action (Event e, Object o)
The action() method for a List is called when the user double-clicks on any
item in the List. e is the Event instance for the specific event, while o is the
label for the item selected, from the add() or addItem() call. If List is in mul-
tiple-selection mode, you might not wish to catch this event because it’s not
clear whether the user wanted to choose the item just selected or all of the
items selected. You can solve this problem by putting a multi-selecting list next
to a Button that the user presses when the selection process is finished. Cap-
ture the event generated by the Button. The following example shows how to
set up and handle a list in this manner, with the display shown in Figure 9-3. In
this example, I just print out the selections to prove that I captured them.

import java.awt.*;
import java.applet.*;
public class list3 extends Applet {

List l;
public void init () {

String fonts[];
fonts = Toolkit.getDefaultToolkit().getFontList();
l = new List(4, true);
for (int i = 0; i < fonts.length; i++) {

l.addItem (fonts[i]);
}
setLayout (new BorderLayout (10, 10));
add ("North", new Label ("Pick Font Set"));
add ("Center", l);
add ("South", new Button ("Submit"));
resize (preferredSize());
validate();

}
public boolean action (Event e, Object o) {

if (e.target instanceof Button) {
String chosen[] = l.getSelectedItems();
for (int i=0;i<chosen.length;i++)

System.out.println (chosen[i]);
}
return false;

}
}

10 July 2002 22:21

Figure 9–3: Multiselect List

Keyboard

Ordinarily, List generates all the KEY events once it has the input focus. But the
way it handles keyboard input differs slightly depending upon the selection mode
of the list. Furthermore, each platform offers slightly different behavior, so code
that depends on keyboard events in List is not portable. One strategy is to take
advantage of the keyboard events when they are available but allow for another
way of managing the list in case they are not.

public boolean keyDown (Event e, int key)
The keyDown() method is called whenever the user presses a key while the
List has the input focus. e is the Event instance for the specific event, while
key is the integer representation of the character pressed. The identifier for
the event (e.id) for keyDown() could be either KEY_PRESS for a regular key or
KEY_ACTION for an action-oriented key (i.e., arrow or function key). If you
check the current selection in this method through getSelectedItem() or
getSelectedIndex(), you will actually be told the previously selected item
because the List’s selection has not changed yet. keyDown() is not called when
the user selects items with the mouse.

public boolean keyUp (Event e, int key)
The keyUp() method is called whenever the user releases a key while the List
has the input focus. e is the Event instance for the specific event, while key is
the integer representation of the character pressed. The identifier for the
event (e.id) for keyUp() could be either KEY_RELEASE for a regular key or
KEY_ACTION_RELEASE for an action-oriented key (i.e., arrow or function key).

Mouse

Ordinarily, the List component does not trigger any mouse events. Double-

9.2 LISTS 343

10 July 2002 22:21

344 CHAPTER 9: PICK ME

clicking the mouse over any element in the list generates an ACTION_EVENT. Single-
clicking could result in either a LIST_SELECT or LIST_DESELECT, depending on the
mode of the List and the current state of the item chosen. When the user changes
the selection with the mouse, the ACTION_EVENT is posted only when an item is
double-clicked.

List

There is a special pair of events for lists: LIST_SELECT and LIST_DESELECT. No spe-
cial method is called when these events are triggered. However, you can catch
them in the handleEvent() method. If the List is in single-selection mode, a
LIST_SELECT event is generated whenever the user selects one of the items in the
List. In multiple-selection mode, you will get a LIST_SELECT event when an ele-
ment gets selected and a LIST_DESELECT event when it is deselected. The following
code shows how to use this event type.

public boolean handleEvent (Event e) {
if (e.id == Event.LIST_SELECT) {

System.out.println ("Selected item: " + e.arg);
return true;

} else {
return super.handleEvent (e);

}
}

Focus

Normally, the List component does not reliably trigger any focus events.

Listeners and 1.1 event handling

With the 1.1 event model, you register listeners, and they are told when the event
happens.

public void addItemListener(ItemListener listener) �

The addItemListener() method registers listener as an object interested in
being notified when an ItemEvent passes through the EventQueue with this
List as its target. The listener.itemStateChanged() method is called when
these events occur. Multiple listeners can be registered.

public void removeItemListener(ItemListener listener) �

The removeItemListener() method removes listener as an interested lis-
tener. If listener is not registered, nothing happens.

10 July 2002 22:21

public void addActionListener(ActionListener listener) �

The addActionListener() method registers listener as an object interested
in being notified when an ActionEvent passes through the EventQueue with
this List as its target. The listener.actionPerformed() method is called
when these events occur. Multiple listeners can be registered.

public void removeActionListener(ActionListener listener) �

The removeActionListener() method removes listener as a interested lis-
tener. If listener is not registered, nothing happens.

protected void processEvent(AWTEvent e) �

The processEvent() method receives all AWTEvents with this List as its target.
processEvent() then passes them along to any listeners for processing. When
you subclass List, overriding processEvent() allows you to process all events
yourself, before sending them to any listeners. In a way, overriding the
method processEvent() is like overriding handleEvent() using the 1.0 event
model.

If you override processEvent(), remember to call super.processEvent(e) last
to ensure that regular event processing can occur. If you want to process your
own events, it’s a good idea to call enableEvents() (inherited from Compo-

nent) to ensure that events are delivered even in the absence of registered lis-
teners.

protected void processItemEvent(ItemEvent e) �

The processItemEvent() method receives all ItemEvents with this List as its
target. processItemEvent() then passes them along to any listeners for pro-
cessing. When you subclass List, overriding processItemEvent() allows you to
process all events yourself, before sending them to any listeners. In a way,
overriding processItemEvent() is like overriding handleEvent() to deal with
LIST_SELECT and LIST_DESELECT using the 1.0 event model.

If you override processItemEvent(), remember to call the method
super.processItemEvent(e) last to ensure that regular event processing can
occur. If you want to process your own events, it’s a good idea to call
enableEvents() (inherited from Component) to ensure that events are deliv-
ered even in the absence of registered listeners.

protected void processActionEvent(ActionEvent e) �

The processActionEvent() method receives all ActionEvents with this List as
its target. processActionEvent() then passes them along to any listeners for
processing. When you subclass List, overriding processActionEvent() allows
you to process all action events yourself, before sending them to any listeners.
In a way, overriding processActionEvent() is like overriding action() using
the 1.0 event model.

9.2 LISTS 345

10 July 2002 22:21

346 CHAPTER 9: PICK ME

If you override processActionEvent(), remember to call the method
super.processActionEvent(e) last to ensure that regular event processing
can occur. If you want to process your own events, it’s a good idea to call
enableEvents() (inherited from Component) to ensure that events are deliv-
ered even in the absence of registered listeners.

9.3 Checkbox
The Checkbox is a general purpose way to record a true or false state. When sev-
eral checkboxes are associated in a CheckboxGroup (Section 9.4), only one can be
selected at a time; selecting each Checkbox causes the previous selection to become
deselected. The CheckboxGroup is Java’s way of offering the interface element
known as radio buttons or a radio box. When you create a Checkbox, you decide
whether to place it into a CheckboxGroup by setting the proper argument in its con-
structor.

Ever y Checkbox has both a label and a state, although the label could be empty.
You can change the label based on the state of the Checkbox. Figure 9-4 shows what
several Checkbox components might look like. The two on the left are indepen-
dent, while the five on the right are in a CheckboxGroup. Note that the appearance
of a Checkbox varies quite a bit from platform to platform. However, the appear-
ance of a CheckboxGroup is always different from the appearance of an ungrouped
Checkbox, and the appearance of a checked Checkbox is different from an
unchecked Checkbox.

Figure 9–4: Two separate checkboxes and a CheckboxGroup

10 July 2002 22:21

9.3.1 Checkbox Methods
Constructors

public Checkbox ()
This constructor for Checkbox creates a new instance with no label or group-
ing. The initial state of the item is false. A checkbox doesn’t necessarily need
a label; however, a checkbox without a label might be confusing, unless it is
being used as a column in a table or a spreadsheet.

public Checkbox (String label)
The second constructor creates a new Checkbox with a label of label and no
grouping. The initial state of the item is false. If you want a simple yes/no
choice and plan to make no the default, use this constructor. If the Checkbox

will be in a group or you want its initial value to be true, use the next construc-
tor.

public Checkbox (String label, boolean state) �

This constructor allows you to specify the Checkbox’s initial state. With it you
create a Checkbox with a label of label and an initial state of state.

public Checkbox (String label, boolean state, CheckboxGroup group) �

public Checkbox (String label, CheckboxGroup group, boolean state)
The final constructor for Checkbox is the most flexible. With this constructor
you create a Checkbox with a label of label, a CheckboxGroup of group, and an
initial state of state. If group is null, the Checkbox is independent.

In Java 1.0, you created an independent Checkbox with an initial value of true
by using null as the group:

Checkbox cb = new Checkbox ("Help", null, true)

The shape of the Checkbox reflects whether it’s in a CheckboxGroup or inde-
pendent. On Microsoft Windows, grouped checkboxes are represented as cir-
cles. On a UNIX system, they are diamonds. On both systems, independent
checkboxes are squares.

Label

public String getLabel ()
The getLabel() method retrieves the current label on the Checkbox and
returns it as a String object.

9.3 CHECKBOX 347

10 July 2002 22:21

348 CHAPTER 9: PICK ME

public synchronized void setLabel (String label)
The setLabel() method changes the label of the Checkbox to label. If the
new label is a different size than the old one, you have to validate() the con-
tainer after the change to ensure the entire label will be seen.

State

A state of true means the Checkbox is selected. A state of false means that the
Checkbox is not selected.

public boolean getState ()
The getState() method retrieves the current state of the Checkbox and
returns it as a boolean.

public void setState (boolean state)
The setState() method changes the state of the Checkbox to state. If the
Checkbox is in a CheckboxGroup and state is true, the other items in the group
become false.

ItemSelectable method

public Objects[] getSelectedObjects () �

The getSelectedObjects() method returns the Checkbox label as a one-ele-
ment Object array if it is currently selected, or null if the Checkbox is not
selected. Because this method is part of the ItemSelectable inter face, you
can use it to look at the selected items in a Choice, List, or Checkbox.

CheckboxGroup

This section lists methods that you issue to Checkbox to affect its relationship to a
CheckboxGroup. Methods provided by the CheckboxGroup itself can be found later
in this chapter.

public CheckboxGroup getCheckboxGroup ()
The getCheckboxGroup() method returns the current CheckboxGroup for the
Checkbox. If the Checkbox is not in a group, this method returns null.

public void setCheckboxGroup (CheckboxGroup group)
The setCheckboxGroup() method allows you to insert a Checkbox into a differ-
ent CheckboxGroup. To make the Checkbox independent, pass a group argu-
ment of null. The method sets every Checkbox in the original CheckboxGroup
to false (cb.getCheckboxGroup().setCurrent(null)), then the Checkbox is
added to the new group without changing any values in the new group.

10 July 2002 22:21

Checkbox components take on a different shape when they are in a Checkbox-
Group. If the checkbox was originally not in a CheckboxGroup, the shape of the
checkbox does not change automatically when you put it in one with
setCheckboxGroup(). (This also holds when you remove a Checkbox from a
CheckboxGroup and make it independent or vice versa.) In order for the
Checkbox to look right once added to group, you need to destroy and create
(removeNotify() and addNotify(), respectively) the Checkbox peer to correct
the shape. Also, it is possible to get multiple true Checkbox components in
group this way, since the new CheckboxGroup’s current selection does not get
adjusted. To avoid this problem, make sure it is grouped properly the first
time, or be sure to clear the selections with a call to getCheckbox-

Group().setCurrent(null).

Miscellaneous methods

public synchronized void addNotify ()
The addNotify() method will create the Checkbox peer in the appropriate
shape. If you override this method, call super.addNotify() first, then add
your customizations for the new class. You will then be able to do everything
you need with the information about the newly created peer.

protected String paramString ()
When you call the toString() method of Checkbox, the default toString()
method of Component is called. This in turn calls paramString() which builds
up the string to display. At the Checkbox level, the label (if non-null) and the
state of the item are appended. Assuming the Dialog Checkbox in Figure 9-4
was selected, the results would be:

java.awt.Checkbox[85,34,344x32,label=Dialog,state=true]

9.3.2 Checkbox Events
The primary event for a Checkbox occurs when the user selects it. With the 1.0
event model, this generates an ACTION_EVENT and triggers the action() method.
Once the Checkbox has the input focus, the various keyboard events can be gener-
ated, but they do not serve any useful purpose because the Checkbox doesn’t
change. The sole key of value for a Checkbox is the spacebar. This may generate
the ACTION_EVENT after KEY_PRESS and KEY_RELEASE; thus the sequence of method
calls would be keyDown(), keyUp(), and then action().

With the version 1.1 event model, you register an ItemListener with the method
addItemListener(). Then when the user selects the Checkbox, the method Item-

Listener.itemStateChanged() is called through the protected

9.3 CHECKBOX 349

10 July 2002 22:21

350 CHAPTER 9: PICK ME

Checkbox.processItemEvent() method. Key, mouse, and focus listeners are regis-
tered through the Component methods of addKeyListener(), addMouseListener(),
and addFocusListener(), respectively.

Action

public boolean action (Event e, Object o)
The action() method for a Checkbox is called when the user selects it. e is the
Event instance for the specific event, while o is the opposite of the old state of
the toggle. If the Checkbox was true when it was selected, o will be false. Like-
wise, if it was false, o will be true. This incantation sounds unnecessarily com-
plex, and for a single Checkbox, it is: o is just the new state of the Checkbox.
The following code uses action() with a single Checkbox.

public boolean action (Event e, Object o) {
if (e.target instanceof Checkbox) {

System.out.println (“Checkbox is now “ + o);
}
return false;

}

On the other hand, if the Checkbox is in a CheckboxGroup, o is still the oppo-
site of the old state of the toggle, which may or may not be the new state of the
Checkbox. If the Checkbox is initially false, o will be true, and the Checkbox’s
new state will be true. However, if the Checkbox is initially true, selecting the
Checkbox doesn’t change anything because one Checkbox in the group must
always be true. In this case, o is false (the opposite of the old state), though
the Checkbox’s state remains true.

Therefore, if you’re working with a CheckboxGroup and need to do something
once when the selection changes, perform your action only when o is true. To
find out which Checkbox was actually chosen, you need to call the getLabel()

method for the target of event e. (It would be nice if o gave us the label of the
Checkbox that was selected, but it doesn’t.) An example of this follows:

public boolean action (Event e, Object o) {
if (e.target instanceof Checkbox) {

System.out.println (((Checkbox)(e.target)).getLabel() +
“ was selected.”);

if (new Boolean (o.toString()).booleanValue()) {
System.out.println (“New option chosen”);

} else {
System.out.println (“Use re-selected option”);

}
}
return false;

}

10 July 2002 22:21

One other unfortunate twist of CheckboxGroup: it would be nice if there was some
easy way to find out about checkboxes that change state without selection—for
example, if you could find out which Checkbox was deselected when a new Check-

box was selected. Unfortunately, you can’t, except by keeping track of the state of
all your checkboxes at all times. When a Checkbox state becomes false because
another Checkbox was selected, no additional event is generated, in either Java 1.0
or 1.1.

Keyboard

Checkboxes are able to capture keyboard-related events once the Checkbox has the
input focus, which happens when it is selected. If you can find a use for this, you
can use keyDown() and keyUp(). For most interface designs I can think of,
action() is sufficient. A possible use for keyboard events is to jump to other
Checkbox options in a CheckboxGroup, but I think that is more apt to confuse users
than help.

public boolean keyDown (Event e, int key)
The keyDown() method is called whenever the user presses a key while the
Checkbox has the input focus. e is the Event instance for the specific event,
while key is the integer representation of the character pressed. The identifier
for the event (e.id) for keyDown() could be either KEY_PRESS for a regular key
or KEY_ACTION for an action-oriented key (i.e., arrow or function key). There is
no visible indication that the user has pressed a key over the checkbox.

public boolean keyUp (Event e, int key)
The keyUp() method is called whenever the user releases a key while the
Checkbox has the input focus. e is the Event instance for the specific event,
while key is the integer representation of the character pressed. The identifier
for the event (e.id) for keyUp() could be either KEY_RELEASE for a regular key
or KEY_ACTION_RELEASE for an action-oriented key (i.e., arrow or function
key). keyUp() may be used to determine how long key has been pressed.

Mouse

Ordinarily, the Checkbox component does not reliably trigger any mouse events.

Focus

Ordinarily, the Checkbox component does not reliably trigger any focus events.

9.3 CHECKBOX 351

10 July 2002 22:21

352 CHAPTER 9: PICK ME

Listeners and 1.1 event handling

With the 1.1 event model, you register listeners, and they are told when the event
happens.

public void addItemListener(ItemListener listener) �

The addItemListener() method registers listener as an object interested in
being notified when an ItemEvent passes through the EventQueue with this
Checkbox as its target. Then, the listener.itemStateChanged() method will
be called. Multiple listeners can be registered.

public void removeItemListener(ItemListener listener) �

The removeItemListener() method removes listener as a interested listener.
If listener is not registered, nothing happens.

protected void processEvent(AWTEvent e) �

The processEvent() method receives every AWTEvent with this Checkbox as its
target. processEvent() then passes it along to any listeners for processing.
When you subclass Checkbox, overriding processEvent() allows you to process
all events yourself, before sending them to any listeners. In a way, overriding
processEvent() is like overriding handleEvent() using the 1.0 event model.

If you override processEvent(), remember to call super.processEvent(e) last
to ensure that regular event processing can occur. If you want to process your
own events, it’s a good idea to call enableEvents() (inherited from Compo-

nent) to ensure that events are delivered even in the absence of registered lis-
teners.

protected void processItemEvent(ItemEvent e) �

The processItemEvent() method receives every ItemEvent with this Checkbox
as its target. processItemEvent() then passes it along to any listeners for pro-
cessing. When you subclass Checkbox, overriding processItemEvent() allows
you to process all events yourself, before sending them to any listeners. In a
way, overriding processItemEvent() is like overriding action() using the 1.0
event model.

If you override processItemEvent(), remember to call the method
super.processItemEvent(e) last to ensure that regular event processing can
occur. If you want to process your own events, it’s a good idea to call
enableEvents() (inherited from Component) to ensure that events are deliv-
ered even in the absence of registered listeners.

10 July 2002 22:21

9.4 CheckboxGroup
The CheckboxGroup lets multiple checkboxes work together to provide a mutually
exclusion choice (at most one Checkbox can be selected at a time). Because the
CheckboxGroup is neither a Component nor a Container, you should normally put
all the Checkbox components associated with a CheckboxGroup in their own Panel

(or other Container). The LayoutManager of the Panel should be GridLayout (0,
1) if you want them in one column. Figure 9-5 shows both a good way and bad way
of positioning a set of Checkbox items in a CheckboxGroup. The image on the left is
preferred because the user can sense that the items are grouped; the image on the
right suggests three levels of different checkboxes and can therefore surprise the
user when checkboxes are deselected.

BadGood

Figure 9–5: Straightfor ward and confusing layouts of Checkbox components

9.4.1 CheckboxGroup Methods
Constructors

public CheckboxGroup ()
This constructor creates an instance of CheckboxGroup.

Miscellaneous methods

public int getSelectedCheckbox () �

public Checkbox getCurrent () ✩

The getSelectedCheckbox() method returns the Checkbox within the Check-

boxGroup whose value is true. If no item is selected, null is returned.

getCurrent() is the Java 1.0 name for this method.

9.4 CHECKBOXGROUP 353

10 July 2002 22:21

354 CHAPTER 9: PICK ME

public synchronized void setSelectedCheckbox (Checkbox checkbox) �

public synchronized void setCurrent (Checkbox checkbox) ✩

The setSelectedCheckbox() method makes checkbox the currently selected
Checkbox within the CheckboxGroup. If checkboxis null, the method deselects
all the items in the CheckboxGroup. If checkbox is not within the Checkbox-

Group, nothing happens.

setCurrent() is the Java 1.0 name for this method.

public String toString ()
The toString() method of CheckboxGroup creates a String representation of
the current choice (as returned by getSelectedCheckbox()). Using the
“straightfor ward” layout in Figure 9-5 as an example, the results would be:

java.awt.CheckboxGroup[current=java.awt.Checkbox[0,31,85x21,
label=Helvetica,state=true]]

If there is no currently selected item, the results within the square brackets
would be current=null.

9.5 ItemSelectable
In Java 1.1, the classes Checkbox, Choice, List, and CheckboxMenuItem (covered in
the next chapter) share a common interface that defines a method for getting the
currently selected item or items. This means that you can use the same methods to
retrieve the selection from any of these classes. More important, it means that you
can write code that doesn’t know what kind of selectable item it’s working with.
For example, you could write a method that returns the selectable component
from some user interface. This method might have the signature:

public ItemSelectable getChooser();

After you call this method, you can read selections from the user interface without
knowing exactly what you’re dealing with.

9.5.1 Methods
public Object[] getSelectedObjects () �

The getSelectedObjects() method returns the currently selected item or
items as an Object array. The return value is null if there is nothing selected.

10 July 2002 22:21

10
Would You Like
to Choose from

the Menu?

In this chapter:
• MenuComponent
• MenuContainer
• MenuShortcut
• MenuItem
• Menu
• CheckboxMenuItem
• MenuBar
• Putting It All

Together
• PopupMenu

In Chapter 6, Containers, I mentioned that a Frame can have a menu. Indeed, to
offer a menu in the AWT, you have to attach it to a Frame. With versions 1.0.2 and
1.1, Java does not support menu bars within an applet or any other container. We
hope that future versions of Java will allow menus to be used with other containers.
Java 1.1 goes partway toward solving this problem by introducing a PopupMenu that
lets you attach context menus to any Component. Java 1.1 also adds MenuShortcut
events, which represent keyboard accelerator events for menus.

Implementing a menu in a Frame involves connections among a number of differ-
ent objects: MenuBar, Menu, MenuItem, and the optional CheckboxMenuItem. Several
of these classes implement the MenuContainer inter face. Once you’ve created a few
menus, you’ll probably find the process quite natural, but it’s hard to describe
until you see what all the objects are. So this chapter describes most of the menu
classes first and then shows an example demonstrating their use.

All the components covered in previous chapters were subclasses of Component.
Most of the objects in this chapter subclass MenuComponent, which encapsulates the
common functionality of menu objects. The MenuComponent class hierarchy is
shown in Figure 10-1.

To display a Menu, you must first put it in a MenuBar, which you add to a Frame.
(Pop-up menus are different in that they don’t need a Frame.) A Menu can contain
MenuItem as well as other menus that form submenus. CheckboxMenuItem is a spe-
cialized MenuItem that (as you might guess) the user can toggle like a Checkbox.
One way to visualize how all these things work together is to imagine a set of cur-
tains. The different MenuItem components are the fabrics and panels that make up
the curtains. The Menus are the curtains. They get hung from the MenuBar, which is

355

10 July 2002 22:21

356 CHAPTER 10: WOULD YOU LIKE TO CHOOSE FROM THE MENU?

implements

extends

INTERFACE

CLASS ABSTRACT CLASS

java.lang

MenuBar

MenuItem Menu

CheckboxMenuItem

MenuContainer

MenuComponent

MenuShortcut

PopupMenuObject

ItemSelectable

java.awt

KEY

java.io

Serializable

Figure 10–1: MenuComponent class hierarchy

like a curtain rod. Then you place the MenuBar curtain rod into the Frame (the win-
dow, in our metaphor), curtains and all.

It might puzzle you that a Menu is a subclass of MenuItem, not the other way around.
This is because a Menu can appear on a Menu just like another MenuItem, which
would not be possible if the hierarchy was the other way around. Figure 10-2 points
out the different pieces involved in the creation of a menu: the MenuBar and vari-
ous kinds of menu items, including a submenu.

MenuItem

MenuBar

Menuseparator

CheckboxMenuItem

Figure 10–2: The pieces that make up a Menu

10 July 2002 22:21

10.1 MenuComponent
MenuComponent is an abstract class that is the parent of all menu-related objects.
You will never create an instance of the object. Nor are you likely to subclass it
yourself — to make the subclass work, you’d have to provide your own peer on
ever y platform where you want the application to run.

10.1.1 MenuComponent Methods
Constructor

public MenuComponent ()—cannot be called directly
Since MenuComponent is an abstract class, you cannot create an instance of the
object. This method is called when you create an instance of one of its
children.

Fonts

public Font getFont ()
The getFont() method retrieves the font associated with the MenuComponent

from setFont(). If the current object’s font has not been set, the parent
menu’s font is retrieved. If there is no parent and the current object’s font has
not been set, getFont() returns null.

public void setFont (Font f)
The setFont() method allows you to change the font of the particular menu-
related component to f. When a MenuComponent is first created, the initial
font is null, so the parent menu’s font is used.

NOTE Some platforms do not support changing the fonts of menu items.
Where supported, it can make some pretty ugly menus.

Names

The name serves as an alternative, nonlocalized reference identifier for menu
components. If your event handlers compare menu label strings to an expected
value and labels are localized for a new environment, the approach fails.

public String getName ()
The getName() method retrieves the name of the menu component. Every
instance of a subclass of MenuComponent is named when it is created.

10.1 MENUCOMPONENT 357

10 July 2002 22:21

358 CHAPTER 10: WOULD YOU LIKE TO CHOOSE FROM THE MENU?

public void setName (String name)
The setName() method changes the current name of the component to name.

Peers

public MenuComponentPeer getPeer () ✩

The getPeer() method returns a reference to the MenuComponent peer as a
MenuComponentPeer.

public synchronized void removeNotify ()
The removeNotify() method destroys the peer of the MenuComponent and
removes it from the screen. addNotify() will be specific to the subclass.

Events

Event handling is slightly different between versions. If using the 1.0 event model,
use postEvent(). Other wise, use dispatchEvent() to post an event to this Menu-
Component or processEvent() to receive and handle an event. Remember not to
mix versions within your programs.

public boolean postEvent (Event e) ✩

The postEvent() method posts Event e to the MenuComponent. The event is
delivered to the Frame at the top of the object hierarchy that contains the
selected MenuComponent. The only way to capture this event before it gets
handed to the Frame is to override this method. There are no helper functions
as there are for Components. Find out which MenuComponent triggered the
event by checking e.arg, which contains its label, or ((MenuItem)e.tar-

get).getName() for the nonlocalized name of the target.

public boolean postEvent (Event e) {
// Use getName() vs. e.arg for localization possibility
if ("About".equals (((MenuItem)e.target).getName()))

playLaughingSound(); // Help request
return super.postEvent (e);

}

If you override this method, in order for this Event to propagate to the Frame
that contains the MenuComponent, you must call the original postEvent()

method (super.postEvent(e)).

The actual value returned by postEvent() is irrelevant.

public final void dispatchEvent(AWTEvent e) �

The dispatchEvent() method allows you to post new AWT events to this menu
component’s listeners. dispatchEvent() tells the MenuComponent to deal with
the AWTEvent e by calling its processEvent() method. This method is similar

10 July 2002 22:21

to Java 1.0’s postEvent() method. Events delivered in this way bypass the sys-
tem’s event queue. It’s not clear why you would want to bypass the event
queue, except possibly to deliver some kind of high priority event.

protected void processEvent(AWTEvent e) �

The processEvent() method receives all AWTEvents with a subclass of Menu-
Component as its target. processEvent() then passes them along for process-
ing. When you subclass a child class, overriding processEvent() allows you to
process all events without having to provide listeners. However, remember to
call super.processEvent(e) last to ensure regular functionality is still exe-
cuted. This is like overriding postEvent() using the 1.0 event model.

Miscellaneous methods

public MenuContainer getParent ()
The getParent() method returns the parent MenuContainer for the MenuCom-

ponent. MenuContainer is an interface that is implemented by Component (in
1.1 only), Frame, Menu, and MenuBar. This means that getParent() could
return any one of the four.

protected String paramString ()
The paramString() method of MenuComponent helps build up the string to dis-
play when toString() is called for a subclass. At the MenuComponent level, the
current name of the object is appended to the output.

public String toString ()—can be called by user for subclass
The toString() method at the MenuComponent level cannot be called directly.
This toString() method is called when you call a subclass’s toString() and
the specifics of the subclass is added between the brackets ([and]). At this
level, the results would be:

java.awt.MenuComponent[aname1]

10.2 MenuContainer
MenuContainer is an interface implemented by the three menu containers: Frame,
Menu, and MenuBar; Java 1.1 adds a fourth, Component. You should never need to
worr y about the interface since it does all its work behind the scenes for you. You
will notice that the interface does not define an add() method. Each type of Menu-
Container defines its own add() method to add menus to itself.

10.2 MENUCONTAINER 359

10 July 2002 22:21

360 CHAPTER 10: WOULD YOU LIKE TO CHOOSE FROM THE MENU?

10.2.1 MenuContainer Methods
public abstract Font getFont ()

The getFont() method should provide an object’s font. MenuItem implements
this method, so all of its subclasses inherit it. MenuBar implements it, too, while
Frame gets the method from Component.

public abstract boolean postEvent (Event e) ✩

The postEvent() method should post Event e to the object. MenuComponent
implements this method, so all of its subclasses inherit it. (Frame gets the
method from Component.)

public abstract void remove (MenuComponent component)
The remove() method should remove the MenuComponent component from the
object. If component was not contained within the object, nothing should
happen.

10.3 MenuShortcut
MenuShortcut is a class used to represent a keyboard shortcut for a MenuItem.
When these events occur, an action event is generated that triggers the menu com-
ponent. When a shortcut is associated with a MenuItem, the MenuItem automatically
displays a visual clue, which indicates that a keyboard accelerator is available.

10.3.1 MenuShortcut Methods
Constructors

public MenuShortcut (int key) �

The first MenuShortcut constructor creates a MenuShortcut with key as its des-
ignated hot key. The key parameter can be any of the virtual key codes from
the KeyEvent class (e.g., VK_A, VK_B, etc.). These constants are listed in Table
4-4. To use the shortcut, the user must combine the given key with a platform-
specific modifier key. On Windows and Motif platforms, the modifier is the
Control key; on the Macintosh, it is the Command key. For example, if the
shortcut key is F1 (VK_F1) and you’re using Windows, you would press Ctrl+F1
to execute the shortcut. To find out the platform’s modifier key, call the
Toolkit.getMenuShortcutKeyMask() method.

public MenuShortcut(int key, boolean useShiftModifier) �

This MenuShortcut constructor creates a MenuShortcut with key as its desig-
nated hot key. If useShiftModifier is true, the Shift key must be depressed
for this shortcut to trigger the action event (in addition to the shortcut key).

10 July 2002 22:21

The key parameter represents the integer value of a KEY_PRESS event, so in
addition to ASCII values, possible values include the various Event keyboard
constants (listed in Table 4-2) like Event.F1, Event.HOME, and Event.PAUSE.
For example, if key is the ASCII value for A and useShiftModifier is true, the
shortcut key is Shift+Ctrl+A on a Windows/Motif platform.

Miscellaneous methods

public int getKey () �

The getKey() method retrieves the virtual key code for the key that triggered
this MenuShortcut. The virtual key codes are the VK constants defined by the
KeyEvent class (see Table 4-4).

public boolean usesShiftModifier() �

The usesShiftModifier() method returns true if this MenuShortcut requires
the Shift key be pressed, false other wise.

public boolean equals(MenuShortcut s) �

The equals() method overrides Object’s equals() method to define equality
for menu shortcuts. Two MenuShortcut objects are equal if their key and use-

ShiftModifier values are equal.

protected String paramString () �

The paramString() method of MenuShortcut helps build up a string describ-
ing the shortcut; it appends the shortcut key and a shift modifier indicator to
the string under construction. Oddly, this method is not currently used, nor
can you call it; MenuShortcut has its own toString() method that does the job
itself.

public String toString() �

The toString() method of MenuShortcut builds a String to display the con-
tents of the MenuShortcut.

10.4 MenuItem
A MenuItem is the basic item that goes on a Menu. Menus themselves are menu
items, allowing submenus to be nested inside of menus. MenuItem is a subclass of
MenuComponent.

10.4 MENUITEM 361

10 July 2002 22:21

362 CHAPTER 10: WOULD YOU LIKE TO CHOOSE FROM THE MENU?

10.4.1 MenuItem Methods
Constructors

public MenuItem () �

The first MenuItem constructor creates a MenuItem with an empty label and no
keyboard shortcut. To set the label at later time, use setLabel().

public MenuItem (String label)
This MenuItem constructor creates a MenuItem with a label of label and no key-
board shortcut. A label of “–” represents a separator.

public MenuItem (String label, MenuShortcut shortcut) �

The final MenuItem constructor creates a MenuItem with a label of label and a
MenuShortcut of shortcut. Pressing the shortcut key is the same as selecting
the menu item.

Menu labels

Each MenuItem has a label. This is the text that is displayed on the menu.

NOTE Prior to Java 1.1, there was no portable way to associate a hot key
with a MenuItem. However, in Java 1.0, if you precede a character with
an & on a Windows platform, it will appear underlined, and that key
will act as the menu’s mnemonic key (a different type of shortcut
from MenuShortcut). Unfortunately, on a Motif platform, the user
will see the &. Because the & is part of the label, even if it is not dis-
played, you must include it explicitly whenever you compare the
label to a string.

public String getLabel ()
The getLabel() method retrieves the label associated with the MenuItem.

public void setLabel (String label)
The setLabel() method changes the label of the MenuItem to label.

Shortcuts

public MenuShortcut getMenuShortcut () �

The getMenuShortcut() method retrieves the shortcut associated with this
MenuItem.

public void setShortcut (MenuShortcut shortcut) �

The setShortcut() method allows you to change the shortcut associated with
a MenuItem to shortcut after the MenuItem has been created.

10 July 2002 22:21

public void deleteMenuShortcut () �

The deleteMenuShortcut() method removes any associated MenuShortcut

from the MenuItem. If there was no shortcut, nothing happens.

Enabling

public boolean isEnabled ()
The isEnabled() method checks to see if the MenuItem is currently enabled.
An enabled MenuItem can be selected by the user. A disabled MenuItem, by con-
vention, appears grayed out on the Menu. Initially, each MenuItem is enabled.

public synchronized void setEnabled(boolean b) �

public void enable (boolean condition) ✩

The setEnabled() method either enables or disables the MenuItem based on
the value of condition. If condition is true, the MenuItem is enabled. If con-
dition is false, it is disabled. When enabled, the user can select it, generating
ACTION_EVENT or notifying the ActionListener. When disabled, the peer does
not generate an ACTION_EVENT if the user tries to select the MenuItem. A dis-
abled MenuItem is usually grayed out to signify its state. The way that disabling
is signified is platform specific.

enable() is the Java 1.0 name for this method.

public synchronized void enable () ✩

The enable() method enables the MenuItem. In Java 1.1, it is better to use
setEnabled().

public synchronized void disable () ✩

The disable() method disables the component so that the user cannot select
it. In Java 1.1, it is better to use setEnabled().

Miscellaneous methods

public synchronized void addNotify ()
The addNotify() method creates the MenuItem peer.

public String paramString ()
The paramString() method of MenuItem should be protected like other
paramString() methods. However, it is public so you have access to it. When
you call the toString() method of a MenuItem, the default toString()

method of MenuComponent is called. This in turn calls paramString() which
builds up the string to display. At the MenuItem level, the current label of the
object and the shortcut (if present) is appended to the output. If the construc-
tor for the MenuItem was new MenuItem("File"), the results of toString()
would be:

10.4 MENUITEM 363

10 July 2002 22:21

364 CHAPTER 10: WOULD YOU LIKE TO CHOOSE FROM THE MENU?

java.awt.MenuItem[label=File]

10.4.2 MenuItem Events
Event handling

With 1.0 event handing, a MenuItem generates an ACTION_EVENT when it is selected.
The argument to action() will be the label of the MenuItem. But the target of the
ACTION_EVENT is the Frame containing the menu. You cannot subclass MenuItem
and catch the Event within it with action(), but you can with postEvent(). No
other events are generated for MenuItem instances.

public boolean action (Event e, Object o)—overridden by user, called by system
The action() method for a MenuItem signifies that the user selected it. e is the
Event instance for the specific event, while o is the label of the MenuItem.

Listeners and 1.1 event handling

With the 1.1 event model, you register listeners, and they are told when the event
happens.

public String getActionCommand() �

The getActionCommand() method retrieves the command associated with this
MenuItem. By default, it is the label. However, the default can be changed by
using the setActionCommand() method (described next). The command acts
like the second parameter to the action() method in the 1.0 event model.

public void setActionCommand(String command) �

The setActionCommand() method changes the command associated with a
MenuItem. When an ActionEvent happens, the command is part of the event. By
default, this would be the label of the MenuItem. However, you can change the
action command by calling this method. Using action commands is a good
idea, particularly if you expect your code to run in a multilingual environ-
ment.

public void addActionListener(ItemListener listener) �

The addActionListener() method registers listener as an object interested
in being notified when an ActionEvent passes through the EventQueue with
this MenuItem as its target. The listener.actionPerformed() method is called
whenever these events occur. Multiple listeners can be registered.

public void removeActionListener(ItemListener listener) �

The removeActionListener() method removes listener as an interested lis-
tener. If listener is not registered, nothing happens.

10 July 2002 22:21

protected final void enableEvents(long eventsToEnable) �

Using the enableEvents() method is usually not necessary. When you register
an action listener, the MenuItem listens for action events. However, if you wish
to listen for events when listeners are not registered, you must enable the
events explicitly by calling this method. The settings for the eventsToEnable

parameter are found in the AWTEvent class; you can use any of the EVENT_MASK
constants like COMPONENT_EVENT_MASK, MOUSE_EVENT_MASK, and WIN-

DOW_EVENT_MASK ORed together for the events you care about. For instance, to
listen for action events, call:

enableEvents (AWTEvent.ACTION_EVENT_MASK);

protected final void disableEvents(long eventsToDisable) �

Using the disableEvents() method is usually not necessary. When you
remove an action listener, the MenuItem stops listening for action events if
there are no more listeners. However, if you need to, you can disable events
explicitly by calling disableEvents(). The settings for the eventsToDisable

parameter are found in the AWTEvent class; you can use any of the EVENT_MASK
constants such as FOCUS_EVENT_MASK, MOUSE_MOTION_EVENT_MASK, and
ACTION_EVENT_MASK ORed together for the events you no longer care about.

protected void processEvent(AWTEvent e) �

The processEvent() method receives all AWTEvents with this MenuItem as its
target. processEvent() then passes them along to any listeners for processing.
When you subclass MenuItem, overriding processEvent() allows you to process
all events yourself, before sending them to any listeners. In a way, overriding
processEvent() is like overriding postEvent() using the 1.0 event model.

If you override processEvent(), remember to call super.processEvent(e) last
to ensure that regular event processing can occur. If you want to process your
own events, it’s a good idea to call enableEvents() to ensure that events are
delivered even in the absence of registered listeners.

protected void processActionEvent(ItemEvent e) �

The processActionEvent() method receives all ActionEvents with this Menu-
Item as its target. processActionEvent() then passes them along to any listen-
ers for processing. When you subclass MenuItem, overriding processAction-

Event() allows you to process all action events yourself, before sending them
to any listeners. In a way, overriding processActionEvent() is like overriding
action() using the 1.0 event model.

If you override processActionEvent(), remember to call the method
super.processActionEvent(e) last to ensure that regular event processing
can occur. If you want to process your own events, it’s a good idea to call
enableEvents() to ensure that events are delivered even in the absence of reg-
istered listeners.

10.4 MENUITEM 365

10 July 2002 22:21

366 CHAPTER 10: WOULD YOU LIKE TO CHOOSE FROM THE MENU?

10.5 Menu
Menus are the pull-down objects that appear on the MenuBar of a Frame or within
other menus. They contain MenuItems or CheckboxMenuItems for the user to select.
The Menu class subclasses MenuItem (so it can appear on a Menu, too) and imple-
ments MenuContainer. Tear-off menus are menus that can be dragged, placed else-
where on the screen, and remain on the screen when the input focus moves to
something else. Java supports tear-off menus if the underlying platform does. Motif
(UNIX) supports tear-off menus; Microsoft Windows platforms do not.

10.5.1 Menu Methods
Constructors

public Menu () �

The first constructor for Menu creates a menu that has no label and cannot be
torn off. To set the label at a later time, use setLabel().

public Menu (String label)
This constructor for Menu creates a Menu with label displayed on it. The Menu

cannot be torn off.

public Menu (String label, boolean tearOff)
This constructor for Menu creates a Menu with label displayed on it. The han-
dling of tearOff is platform dependent.

Figure 10-3 shows a tear-off menu for Windows NT/95 and Motif. Since Win-
dows does not support tear-off menus, the Windows menu looks and acts like a
regular menu.

Windows Motif Tear-off

Figure 10–3: Tear-off menu

10 July 2002 22:21

Items

public int getItemCount() �

public int countItems () ✩

The getItemCount() method returns the number of items within the Menu.
Only top-level items are counted: if an item is a submenu, this method doesn’t
include the items on it.

countItems() is the Java 1.0 name for this method.

public MenuItem getItem (int index)
The getItem() method returns the MenuItem at position index. If index is
invalid, getItem() throws the ArrayIndexOutOfBoundsException run-time
exception.

public synchronized MenuItem add (MenuItem item)
The add() method puts item on the menu. The label assigned to item when it
was created is displayed on the menu. If item is already in another menu, it is
removed from that menu. If item is a Menu, it creates a submenu. (Remember
that Menu subclasses MenuItem.)

public void add (String label)
This version of add() creates a MenuItem with label as the text and adds that
to the menu. If label is the String “-”, a separator bar is added to the Menu.

public synchronized void insert(MenuItem item, int index) �

The insert() method puts item on the menu at position index. The label
assigned to item when it was created is displayed on the menu. Positions are
zero based, and if index < 0, insert() throws the IllegalArgumentException

run-time exception.

public synchronized void insert(String label, int index) �

This version of insert() method creates a MenuItem with label as the text and
adds that to the menu at position index. If label is the String “-”, a separator
bar is added to the Menu. Positions are zero based, and if index < 0, this
method throws the IllegalArgumentException run-time exception.

public void addSeparator ()
The addSeparator() method creates a separator MenuItem and adds that to
the menu. Separator menu items are strictly cosmetic and do not generate
events when selected.

public void insertSeparator(int index) �

The insertSeparator() method creates a separator MenuItem and adds that to
the menu at position index. Separator menu items are strictly cosmetic and
do not generate events when selected. Positions are zero based. If index < 0,
insertSeparator() throws the IllegalArgumentException run-time excep-
tion.

10.5 MENU 367

10 July 2002 22:21

368 CHAPTER 10: WOULD YOU LIKE TO CHOOSE FROM THE MENU?

public synchronized void remove (int index)
The remove() method removes the MenuItem at position index from the Menu.
If index is invalid, remove() throws the ArrayIndexOutOfBoundsException

run-time exception. index is zero based, so it can range from 0 to getItem-

Count()-1.

public synchronized void remove (MenuComponent component)
This version of remove() removes the menu item component from the Menu. If
component is not in the Menu, nothing happens.

public synchronized void removeAll()
The removeAll() removes all MenuItems from the Menu.

Peers

public synchronized void addNotify ()
The addNotify() method creates the Menu peer with all the MenuItems on it.

public synchronized void removeNotify ()
The removeNotify() method destroys the peer of the MenuComponent and
removes it from the screen. The peers of the items on the menu are also
destroyed.

Miscellaneous methods

public boolean isTearOff ()
The isTearOff() method returns true if this Menu is a tear-off menu, and
false other wise. Once a menu is created, there is no way to change the tear-
off setting. This method can return true even on platforms that do not sup-
port tear-off menus.

public String paramString () �

The paramString() method of Menu should be protected like other param-

String() methods. However, it is public so you have access to it. When you
call the toString() method of a Menu, the default toString() method of
MenuComponent is called. This in turn calls paramString(), which builds up the
string to display. At the Menu level, the setting for TearOff (from constructor)
and whether or not it is the help menu (from MenuBar.setHelpMenu()) for the
menu bar are added. If the constructor for the Menu was new Menu ("File"),
the results of toString() would be:

java.awt.Menu [menu0,label=File,tearOff=false,isHelpMenu=false]

10 July 2002 22:21

10.5.2 Menu Events
A Menu does not generate any event when it is selected. An event is generated when
a MenuItem on the menu is selected, as long as it is not another Menu. You can cap-
ture all the events that happen on a Menu by overriding postEvent().

10.6 CheckboxMenuItem
The CheckboxMenuItem is a subclass of MenuItem that can be toggled. It is similar to
a Checkbox but appears on a Menu. The appearance depends upon the platform.
There may or may not be a visual indicator next to the choice. However, when the
MenuItem is selected (true), a checkmark or some similar graphic will be displayed
next to the label.

There is no way to put CheckboxMenuItem components into a CheckboxGroup to
form a radio menu group.

An example of a CheckboxMenuItem is the Show Java Console menu item in
Netscape Navigator.

10.6.1 CheckboxMenuItem Methods
Constructors

public CheckboxMenuItem (String label)
The first CheckboxMenuItem constructor creates a CheckboxMenuItem with no
label displayed next to the check toggle. The initial value of the Checkbox-

MenuItem is false. To set the label at a later time, use setLabel().

public CheckboxMenuItem (String label)
The next CheckboxMenuItem constructor creates a CheckboxMenuItem with
label displayed next to the check toggle. The initial value of the Checkbox-

MenuItem is false.

public CheckboxMenuItem (String label, boolean state)
The final CheckboxMenuItem constructor creates a CheckboxMenuItem with
label displayed next to the check toggle. The initial value of the Checkbox-

MenuItem is state.

Selection

public boolean getState ()
The getState() method retrieves the current state of the CheckboxMenuItem.

10.6 CHECKBOXMENUITEM 369

10 July 2002 22:21

370 CHAPTER 10: WOULD YOU LIKE TO CHOOSE FROM THE MENU?

public void setState (boolean condition)
The setState() method changes the current state of the CheckboxMenuItem to
condition. When true, the CheckboxMenuItem will have the toggle checked.

public Object[] getSelectedObjects () �

The getSelectedItems() method returns the currently selected item as an
Object array. This method, which is required by the ItemSelectable inter face,
allows you to use the same methods to retrieve the selected items of any
Checkbox, Choice, or List. The array has at most one element, which contains
the label of the selected item; if no item is selected, getSelectedItems()
returns null.

Miscellaneous methods

public synchronized void addNotify ()
The addNotify() method creates the CheckboxMenuItem peer.

public String paramString ()
The paramString() method of CheckboxMenuItem should be protected like
other paramString() methods. However, it is public, so you have access to it.
When you call the toString() method of a CheckboxMenuItem, the default
toString() method of MenuComponent is called. This in turn calls param-

String() which builds up the string to display. At the CheckboxMenuItem level,
the current state of the object is appended to the output. If the constructor for
the CheckboxMenuItem was new CheckboxMenuItem("File") the results would
be:

java.awt.CheckboxMenuItem[label=File,state=false]

10.6.2 CheckboxMenuItem Events
Event handling

A CheckboxMenuItem generates an ACTION_EVENT when it is selected. The argument
to action() is the label of the CheckboxMenuItem, like the method provided by
MenuItem, not the state of the CheckboxMenuItem as used in Checkbox. The target of
the ACTION_EVENT is the Frame containing the menu. You cannot subclass
CheckboxMenuItem and handle the Event within the subclass unless you override
postEvent().

Listeners and 1.1 event handling

With the Java 1.1 event model, you register listeners, which are told when the event
happens.

10 July 2002 22:21

public void addItemListener(ItemListener listener) �

The addItemListener() method registers listener as an object that is inter-
ested in being notified when an ItemEvent passes through the EventQueue

with this CheckboxMenuItem as its target. When these item events occur, the
listener.itemStateChanged() method is called. Multiple listeners can be reg-
istered.

public void removeItemListener(ItemListener listener) �

The removeItemListener() method removes listener as a interested listener.
If listener is not registered, nothing happens.

protected void processEvent(AWTEvent e) �

The processEvent() method receives every AWTEvent with this Checkbox-

MenuItem as its target. processEvent() then passes it along to any listeners for
processing. When you subclass CheckboxMenuItem, overriding processEvent()

allows you to process all events yourself, before sending them to any listeners.
In a way, overriding processEvent() is like overriding postEvent() using the
1.0 event model.

If you override processEvent(), remember to call super.processEvent(e) last
to ensure that regular event processing can occur. If you want to process your
own events, it’s a good idea to call enableEvents() to ensure that events are
delivered, even in the absence of registered listeners.

protected void processItemEvent(ItemEvent e) �

The processItemEvent() method receives every ItemEvent with this
CheckboxMenuItem as its target. processItemEvent() then passes it along to
any listeners for processing. When you subclass CheckboxMenuItem, overriding
processItemEvent() allows you to process all item events yourself, before
sending them to any listeners. In a way, overriding processItemEvent() is like
overriding action() using the 1.0 event model.

If you override processItemEvent(), remember to call the method
super.processItemEvent(e) last to ensure that regular event processing can
occur. If you want to process your own events, it’s a good idea to call
enableEvents() to ensure that events are delivered even in the absence of reg-
istered listeners.

10.7 MenuBar
The MenuBar is the component you add to the Frame that is displayed on the top
line of the Frame; the MenuBar contains menus. A Frame can display only one
MenuBar at a time. However, you can change the MenuBar based on the state of the
program so that different menus can appear at different points. The MenuBar class
extends MenuComponent and implements the MenuContainer inter face.

10.7 MENUBAR 371

10 July 2002 22:21

372 CHAPTER 10: WOULD YOU LIKE TO CHOOSE FROM THE MENU?

A MenuBar can be used only as a child component of a Frame. An applet cannot
have a MenuBar attached to it, unless you implement the whole thing yourself. Nor-
mally, you cannot modify the MenuBar of the applet holder (the browser), unless it
is Java based. In other words, you cannot affect the menus of Netscape Navigator,
but you can customize appletviewer and HotJava, as shown in the following code
with the result shown in Figure 10-4. The getTopLevelParent() method was intro-
duced in Section 6.4 with Window.

import java.awt.*;
public class ChangeMenu extends java.applet.Applet {

public void init () {
Frame f = ComponentUtilities.getTopLevelParent(this);
if (f != null) {

MenuBar mb = f.getMenuBar();
Menu m = new Menu ("Cool");
mb.add (m);

}
}

}

Figure 10–4: Customizing appletviewer’s MenuBar

NOTE When you add a MenuBar to a Frame, it takes up space that is part of
the drawing area. You need to get the top insets to find out how
much space is occupied by the MenuBar and be careful not to draw
under it. If you do, the MenuBar will cover what you draw.

10.7.1 MenuBar Methods
Constructors

public MenuBar()
The MenuBar constructor creates an empty MenuBar. To add menus to the
MenuBar, use the add()method.

10 July 2002 22:21

Menus

public int getMenuCount () �

public int countMenus () ✩

The getMenuCount() method returns the number of top-level menus within
the MenuBar.

countMenus() is the Java 1.0 name for this method.

public Menu getMenu (int index)
The getMenu() method returns the Menu at position index. If index is invalid,
getMenu() throws the run-time exception ArrayIndexOutOfBoundsException.

public synchronized Menu add (Menu m)
The add() method puts choice m on the MenuBar. The label used to create m is
displayed on the MenuBar. If m is already in another MenuBar, it is removed
from it. The order of items added determines the order displayed on the
MenuBar, with one exception: if a menu is designated as a help menu by
setHelpMenu(), it is placed at the right end of the menu bar. Only a Menu can
be added to a MenuBar; you can’t add a MenuItem. In other words, a MenuItem
has to lie under at least one menu.

public synchronized void remove (int index)
The remove() method removes the Menu at position index from the MenuBar. If
index is invalid, remove() throws the ArrayIndexOutOfBoundsException run-
time exception. index is zero based.

public synchronized void remove (MenuComponent component)
This version of remove() removes the menu component from the MenuBar. If
component is not in MenuBar, nothing happens. The system calls this method
when you add a new Menu to make sure it does not exist on another MenuBar.

Shortcuts

public MenuItem getShortcutMenuItem (MenuShortcut shortcut) �

The getShortcutMenuItem() method retrieves the MenuItem associated with
the MenuShortcut shortcut. If MenuShortcut does not exist for this Menu, the
method returns null. getShortcutMenuItem() walks through the all submenus
recursively to try to find shortcut.

public synchronized Enumeration shortcuts() �

The shortcuts() method retrieves an Enumeration of all the MenuShortcut

objects associated with this MenuBar.

10.7 MENUBAR 373

10 July 2002 22:21

374 CHAPTER 10: WOULD YOU LIKE TO CHOOSE FROM THE MENU?

public void deleteShortcut (MenuShortcut shortcut) �

The deleteShortcut() method removes MenuShortcut from the associated
MenuItem in the MenuBar. If the shortcut is not associated with any menu item,
nothing happens.

Help menus

It is the convention on many platforms to display help menus as the last menu on
the MenuBar. The MenuBar class lets you designate one of the menus as this special
menu. The physical position of a help menu depends on the platform, but those
giving special treatment to help menus place them on the right. A Menu designated
as a help menu doesn’t have to bear the label “Help”; the label is up to you.

public Menu getHelpMenu ()
The getHelpMenu() method returns the Menu that has been designated as the
help menu with setHelpMenu(). If the menu bar doesn’t have a help menu,
getHelpMenu() returns null.

public synchronized void setHelpMenu (Menu m)
The setHelpMenu() method sets the menu bar’s help menu to m. This makes m
the rightmost menu on the MenuBar, possibly right justified. If m is not already
on the MenuBar, nothing happens.

Peers

public synchronized void addNotify ()
The addNotify() method creates the MenuBar peer with all the menus on it,
and in turn their menu items.

public synchronized void removeNotify ()
The removeNotify() method destroys the peer of the MenuBar and removes it
from the screen. The peers of the items on the MenuBar are also destroyed.

10.7.2 MenuBar Events
A MenuBar does not generate any events.

10.8 Putting It All Together
Now that you know about all the different menu classes, it is time to show an exam-
ple. Example 10-1 contains the code to put up a functional MenuBar attached to a
Frame, using the 1.0 event model. Figure 10-2 (earlier in the chapter) displays the
resulting screen. The key parts to examine are how the menus are put together in
the MenuTest constructor and how their actions are handled within action(). I

10 July 2002 22:21

implement one real action in the example: the one that terminates the application
when the user chooses Quit. Any other action just displays the label of the item
and (if it was a CheckBoxMenuItem) the item’s state, to give you an idea of how you
can use the information returned in the event.

Example 10–1: MenuTest 1.0 Source Code

import java.awt.*;
public class MenuTest extends Frame {

MenuTest () {
super ("MenuTest");
MenuItem mi;
Menu file = new Menu ("File", true);
file.add ("Open");
file.add (mi = new MenuItem ("Close"));
mi.disable();
Menu extras = new Menu ("Extras", false);
extras.add (new CheckboxMenuItem ("What"));
extras.add ("Yo");
extras.add ("Yo");
file.add (extras);
file.addSeparator();
file.add ("Quit");
Menu help = new Menu("Help");
help.add ("About");
MenuBar mb = new MenuBar();
mb.add (file);
mb.add (help);
mb.setHelpMenu (help);
setMenuBar (mb);
resize (200, 200);

}
public boolean handleEvent (Event e) {

if (e.id == Event.WINDOW_DESTROY) {
System.exit(0);

}
return super.handleEvent (e);

}
public boolean action (Event e, Object o) {

if (e.target instanceof MenuItem) {
if ("Quit".equals (o)) {

dispose();
System.exit(1);

} else {
System.out.println ("User selected " + o);
if (e.target instanceof CheckboxMenuItem) {

CheckboxMenuItem cb = (CheckboxMenuItem)e.target;
System.out.println ("The value is: " + cb.getState());

}
}
return true;

}
return false;

10.8 PUTTING IT ALL TOGETHER 375

10 July 2002 22:21

376 CHAPTER 10: WOULD YOU LIKE TO CHOOSE FROM THE MENU?

Example 10–1: MenuTest 1.0 Source Code (continued)

}
public static void main (String []args) {

MenuTest f = new MenuTest ();
f.show();

}
}

The MenuTest constructor builds all the menus, creates a menu bar, adds the
menus to the menu bar, and adds the menu bar to the Frame. To show what is pos-
sible, I’ve included a submenu, a separator bar, a disabled item, and a help menu.

The handleEvent() method exists to take care of WINDOW_DESTROY events, which
are generated if the user uses a native command to exit from the window.

The action() method does the work; it received the action events generated
whenever the user selects a menu. We ignore most of them, but a real application
would need to do more work figuring out the user’s selection. As it is, action() is
fairly simple. If the user selected a menu item, we check to see whether the item’s
label was “Quit”; if it was, we exit. If the user selected anything else, we print the
selection and return true to indicate that we handled the event.

10.8.1 Using Java 1.1 Events
Example 10-2 uses the Java 1.1 event model but is otherwise very similar to Exam-
ple 10-1. Take a close look at the differences and similarities. Although the code
that builds the GUI is basically the same in both examples, the event handling is
completely different. The helper class MyMenuItem is necessary to simplify event
handling. In Java 1.1, every menu item can be an event source, so you have to reg-
ister a listener for each item. Rather than calling addActionListener() explicitly
for each item, we create a subclass of MenuItem that registers a listener automati-
cally. The listener is specified in the constructor to MyMenuItem; in this example,
the object that creates the menus (MenuTest12) always registers itself as the lis-
tener. An alternative would be to override processActionEvent() in MyMenuItem,
but then we’d also need to write a subclass for CheckboxMenuItem.

Having said all that, the code is relatively simple. MenuTest12 implements Action-
Listener so it can receive action events from the menus. As I noted previously, it
registers itself as the listener for every menu item when it builds the interface. The
actionPerformed() method is called whenever the user selects a menu item; the
logic of this method is virtually the same as it was in Example 10-1. Notice, though,
that we use getActionCommand() to read the label of the menu item. (Note also
that getActionCommand() doesn’t necessarily return the label; you can change the

10 July 2002 22:21

command associated with the menu item by calling setActionCommand().) Simi-
larly, we call the event’s getSource() method to get the menu item that actually
generated the event; we need this to figure out whether the user selected a
CheckboxMenuItem (which implements ItemSelectable).

We override processWindowEvent() so that we can receive WINDOW_CLOSING events
without registering a listener. Window closings occur when the user uses the native
display manager to close the application. If one of these events arrives, we shut
down cleanly. To make sure that we receive window events even if there are no lis-
teners, the MenuTest12 constructor calls enableEvents(WINDOW_EVENT_MASK).

Example 10–2: MenuTest12 Source Code, Using Java 1.1 Event Handling

// Java 1.1 only
import java.awt.*;
import java.awt.event.*;
public class MenuTest12 extends Frame implements ActionListener {

class MyMenuItem extends MenuItem {
public MyMenuItem (String s, ActionListener al) {

super (s);
addActionListener (al);

}
}
public MenuTest12 () {

super ("MenuTest");
MenuItem mi;
Menu file = new Menu ("File", true);
file.add (new MyMenuItem ("Open", this));
mi = file.add (new MyMenuItem ("Close", this));
mi.setEnabled (false);
Menu extras = new Menu ("Extras", false);
mi = extras.add (new CheckboxMenuItem ("What"));
mi.addActionListener(this);
mi = extras.add (new MyMenuItem ("Yo", this));
mi.setActionCommand ("Yo1");
mi = extras.add (new MyMenuItem ("Yo", this));
mi.setActionCommand ("Yo2");
file.add (extras);
file.addSeparator();
file.add (new MyMenuItem ("Quit", this));
Menu help = new Menu("Help");
help.add (new MyMenuItem ("About", this));
MenuBar mb = new MenuBar();
mb.add (file);
mb.add (help);
mb.setHelpMenu (help);
setMenuBar (mb);
setSize (200, 200);
enableEvents (AWTEvent.WINDOW_EVENT_MASK);

}
// Cannot override processActionEvent since method of MenuItem
// Would have to subclass both MenuItem and CheckboxMenuItem

10.8 PUTTING IT ALL TOGETHER 377

10 July 2002 22:21

378 CHAPTER 10: WOULD YOU LIKE TO CHOOSE FROM THE MENU?

Example 10–2: MenuTest12 Source Code, Using Java 1.1 Event Handling (continued)

public void actionPerformed(ActionEvent e) {
if (e.getActionCommand().equals("Quit")) {

System.exit(0);
}
System.out.println ("User selected " + e.getActionCommand());
if (e.getSource() instanceof ItemSelectable) {

ItemSelectable is = (ItemSelectable)e.getSource();
System.out.println ("The value is: " +

(is.getSelectedObjects().length != 0)));
}

}
protected void processWindowEvent(WindowEvent e) {

if (e.getID() == WindowEvent.WINDOW_CLOSING) {
// Notify others we are closing
super.processWindowEvent(e);
System.exit(0);

} else {
super.processWindowEvent(e);

}
}
public static void main (String []args) {

MenuTest12 f = new MenuTest12 ();
f.show();

}
}

I took the opportunity when writing the 1.1 code to make one additional improve-
ment to the program. By using action commands, you can easily differentiate
between the two Yo menu items. Just call setActionCommand() to assign a different
command to each item. (I used “Yo1” and “Yo2”.) You could also differentiate
between the items by saving a reference to each menu item, calling getSource() in
the event handler, and comparing the result to the saved references. However, if
the ActionListener is another class, it would need access to those references.
Using action commands is simpler and results in a cleaner event handler.

The intent of the setActionCommand() and getActionCommand() methods is more
for internationalization support. For example, you could use setActionCommand()

to associate the command Quit with a menu item, then set the item’s label to the
appropriate text for the user’s locality.

10.9 PopupMenu
The PopupMenu class is new to Java 1.1; it allows you to associate context-sensitive
menus with Java components. To associate a pop-up menu with a component, cre-
ate the menu, and add it to the component using the add(PopupMenu) method,
which all components inherit from the Component class.

10 July 2002 22:21

In principle, any GUI object can have a pop-up menu. In practice, there are a few
exceptions. If the component’s peer has its own pop-up menu (i.e., a pop-up menu
provided by the run-time platform), that pop-up menu effectively overrides the
pop-up menu provided by Java. For example, under Windows NT/95, a TextArea

has a pop-up menu provided by the Windows NT/95 platforms. Java can’t override
this menu; although you can add a pop-up menu to a TextArea, you can’t display
that menu under Windows NT/95 with the usual mouse sequence.

10.9.1 PopupMenu Methods
Constructors

public PopupMenu() �

The first PopupMenu constructor creates an untitled PopupMenu. Once created,
the menu can be populated with menu items like any other menu.

public PopupMenu(String label) �

This constructor creates a PopupMenu with a title of label. The title appears
only on platforms that support titles for context menus. Once created, the
menu can be populated with menu items like any other menu.

Miscellaneous methods

public void show(Component origin, int x, int y) �

Call the show() method to display the PopupMenu. x and y specify the location
at which the pop-up menu should appear; origin specifies the Component

whose coordinate system is used to locate x and y. In most cases, you’ll want
the menu to appear at the point where the user clicked the mouse; to do this,
set origin to the Component that received the mouse event, and set x and y to
the location of the mouse click. It is easy to extract this information from an
old-style (1.0) Event or a Java 1.1 MouseEvent. In Java 1.1, the platform-inde-
pendent way to say “give me the mouse events that are supposed to trigger
pop-up menus” is to call MouseEvent.isPopupTrigger(). If this method
returns true, you should show the pop-up menu if one is associated with the
event source. (Note that the mouse event could also be used for some other
purpose.)

If the PopupMenu is not associated with a Component, show() throws the run-
time exception NullPointerException. If origin is not the MenuContainer for
the PopupMenu and origin is not within the Container that the pop-up menu
belongs to, show() throws the run-time exception IllegalArgumentException.
Finally, if the Container of origin does not exist or is not showing, show()
throws a run-time exception.

10.9 POPUPMENU 379

10 July 2002 22:21

380 CHAPTER 10: WOULD YOU LIKE TO CHOOSE FROM THE MENU?

public synchronized void addNotify () �

The addNotify() method creates the PopupMenu peer with all the MenuItems

on it.

Example 10-3 is a simple applet that raises a pop-up menu if the user clicks the
appropriate mouse button anywhere within the applet. Although the program
could use the 1.0 event model, under the 1.0 model, it is impossible to tell which
mouse event is appropriate to display the pop-up menu.

Example 10–3: Using a PopupMenu

// Java 1.1 only
import java.awt.*;
import java.applet.*;
import java.awt.event.*;

public class PopupTest extends Applet implements ActionListener {
PopupMenu popup;
public void init() {

MenuItem mi;
popup = new PopupMenu("Title Goes Here");
popup.add(mi = new MenuItem ("Undo"));
mi.addActionListener (this);
popup.addSeparator();
popup.add(mi = new MenuItem("Cut")).setEnabled(false);
mi.addActionListener (this);
popup.add(mi = new MenuItem("Copy")).setEnabled(false);
mi.addActionListener (this);
popup.add(mi = new MenuItem ("Paste"));
mi.addActionListener (this);
popup.add(mi = new MenuItem("Delete")).setEnabled(false);
mi.addActionListener (this);
popup.addSeparator();
popup.add(mi = new MenuItem ("Select All"));
mi.addActionListener (this);
add (popup);
resize(200, 200);
enableEvents (AWTEvent.MOUSE_EVENT_MASK);

}
protected void processMouseEvent (MouseEvent e) {

if (e.isPopupTrigger())
popup.show(e.getComponent(), e.getX(), e.getY());

super.processMouseEvent (e);
}
public void actionPerformed(ActionEvent e) {

System.out.println (e);
}

}

10 July 2002 22:21

11

Scrolling

In this chapter:
• Scrollbar
• Scrolling An Image
• The Adjustable

Interface
• ScrollPane

This chapter describes how Java deals with scrolling. AWT provides two means for
scrolling. The first is the fairly primitive Scrollbar object. It really provides only
the means to read a value from a slider setting. Anything else is your responsibility:
if you want to display the value of the setting (for example, if you’re using the
scrollbar as a volume control) or want to change the display (if you’re using scroll-
bars to control an area that’s too large to display), you have to do it yourself. The
Scrollbar reports scrolling actions through the standard event mechanisms; it is
up to the programmer to handle those events and perform the scrolling.

Unlike other components, which generate an ACTION_EVENT when something
exciting happens, the Scrollbar generates five events: SCROLL_LINE_UP,
SCROLL_LINE_DOWN, SCROLL_PAGE_UP, SCROLL_PAGE_DOWN, and SCROLL_ABSOLUTE. In
Java 1.0, none of these events trigger a default event handler like the action()

method. To work with them, you must override the handleEvent() method. With
Java 1.1, you handle scrolling events by registering an AdjustmentListener with
the Scrollbar.addAdjustmentListener() method; when adjustment events occur,
the listener’s adjustmentValueChanged() method is called.

Release 1.1 of AWT also includes a ScrollPane container object; it is a response to
one of the limitations of AWT 1.0. A ScrollPane is like a Panel, but it has scroll-
bars and scrolling built in. In this sense, it’s like TextArea, which contains its own
scrollbars. You could use a ScrollPane to implement a drawing pad that could
cover an arbitrarily large area. This saves you the burden of implementing
scrolling yourself: generating scrollbars, handling their events, and figuring out
how to redisplay the screen accordingly.

381

10 July 2002 22:22

382 CHAPTER 11: SCROLLING

Both Scrollbar and ScrollPane take advantage of the Adjustable inter face.
Adjustable defines the common scrolling activities of the two classes. The Scroll-
bar class implements Adjustable; a ScrollPane has two methods that return an
Adjustable object, one for each scrollbar. Currently, you can use the ScrollPane’s
“adjustables” to find out the scrollbar settings in each direction. You can’t change
the settings or register AdjustmentListeners; the appropriate methods exist, but
they don’t do anything. It’s not clear whether this is appropriate behavior or a bug
(remember, an inter face only lists methods that must be present but doesn’t
require them to do anything); it may change in a later release.

11.1 Scrollbar
Scrollbars come in two flavors: horizontal and vertical. Although there are several
methods for setting the page size, scrollbar range (minimum and maximum val-
ues), and so on, basically all you can do is get and set the scrollbar’s value. Scroll-
bars don’t contain any area to display their value, though if you want one, you
could easily attach a label.

To work with a Scrollbar, you need to understand the pieces from which it is
built. Figure 11-1 identifies each of the pieces. At both ends are arrows, which are
used to change the Scrollbar value the default amount (one unit) in the direc-
tion selected. The paging areas are used to change the Scrollbar value one page
(ten units by default) at a time in the direction selected. The slider can be moved
to set the scrollbar to an arbitrary value within the available range.

unit decrement

unit incrementblock
decrement

block
increment

scrollbar

visible (width of slider)
value determined by location

min. max.

slider

Figure 11–1: Scrollbar elements

10 July 2002 22:22

11.1.1 Scrollbar Methods
Constants

There are two direction specifiers for Scrollbar. The direction tells the Scrollbar
which way to orient itself. They are used in the constructors, as a parameter to
setOrientation(), and as the return value for the getOrientation() method.

public final static int HORIZONTAL
HORIZONTAL is the constant for horizontal orientation.

public final static int VERTICAL
VERTICAL is the constant for vertical orientation.

Constructors

public Scrollbar (int orientation, int value, int visible, int minimum, int maximum)
The Scrollbar constructor creates a Scrollbar with a direction of orienta-
tion and initial value of value. visible is the size of the slider. minimum and
maximum are the range of values that the Scrollbar can be. If orientation is
not HORIZONTAL or VERTICAL, the constructor throws the run-time exception
IllegalArgumentException. If maximum is below the value of minimum, the
scrollbar’s minimum and maximum values are both set to minimum. If value is
outside the range of the scrollbar, it is set to the limit it exceeded. The default
line scrolling amount is one. The default paging amount is ten.

If you are using the scrollbar to control a visual object, visible should be set
to the amount of a displayed object that is on the screen at one time, relative
to the entire size of the object (i.e., relative to the scrollbar’s range: maximum -
minimum). Some platforms ignore this parameter and set the scrollbar to a
fixed size.

public Scrollbar (int orientation)
This constructor for Scrollbar creates a Scrollbar with the direction of ori-
entation. In Java 1.0, the initial settings for value, visible, minimum, and max-

imum are 0. In Java 1.1, the default value for visible is 10, and the default for
maximum is 100; the other values default to 0. If orientation is not HORIZONTAL
or VERTICAL, the constructor throws the run-time exception IllegalArgu-

mentException. This constructor is helpful if you want to reserve space for the
Scrollbar on the screen, to be configured later. You would then use the set-
Values() method to configure the scrollbar.

11.1 SCROLLBAR 383

10 July 2002 22:22

384 CHAPTER 11: SCROLLING

public Scrollbar ()
This constructor creates a VERTICAL Scrollbar. In Java 1.0, the initial settings
for value, visible, minimum, and maximum are 0. In Java 1.1, the default value
for visible is 10, and the default for maximum is 100; the other values default
to 0. You would then use the setValues() method to configure the scrollbar.

Figure 11-2 shows both vertical and horizontal scrollbars. It also demonstrates a
problem you’ll run into if you’re not careful. If not constrained by the LayoutMan-
ager, scrollbars can get very fat. The result is rarely pleasing. The solution is to
place scrollbars in layout managers that restrict width for vertical scrollbars or
height for horizontal ones. The side regions (i.e., everything except the center) of
a border layout are ideal. In the long term, the solution will be scrollbars that give
you their maximum size and layout managers that observe the maximum size.

Figure 11–2: Vertical and horizontal scrollbars

Adjustable Methods

public int getOrientation ()
The getOrientation() method returns the current orientation of the scroll-
bar: either Scrollbar.HORIZONTAL or Scrollbar.VERTICAL.

public synchronized void setOrientation (int orientation) �

The setOrientation() method changes the orientation of the scrollbar to
orientation, which must be either Scrollbar.HORIZONTAL or Scrollbar.VER-
TICAL. If orientation is not HORIZONTAL or VERTICAL, this method throws the
run-time exception IllegalArgumentException. It was not possible to change
the orientation of a scrollbar prior to Java 1.1.

public int getVisibleAmount () �

public int getVisible () ✩

The getVisibleAmount() method gets the visible setting of the Scrollbar. If
the scrollbar’s Container is resized, the visible setting is not automatically
changed. getVisible() is the Java 1.0 name for this method.

10 July 2002 22:22

public synchronized void setVisibleAmount (int amount) �

The setVisibleAmount() method changes the current visible setting of the
Scrollbar to amount.

public int getValue ()
The getValue() method is probably the most frequently called method of
Scrollbar. It returns the current value of the scrollbar queried.

public synchronized void setValue (int value)
The setValue() method changes the value of the scrollbar to value. If value
exceeds a scrollbar limit, the scrollbar’s new value is set to that limit. In Java
1.1, this method is synchronized; it was not in earlier versions.

public int getMinimum ()
The getMinimum() method returns the current minimum setting for the
scrollbar.

public synchronized void setMinimum (int minimum) �

The setMinimum() method changes the Scrollbar’s minimum value to mini-

mum. The current setting for the Scrollbar may change to minimum if minimum
increases above getValue().

public int getMaximum ()
The getMaximum() method returns the current maximum setting for the
scrollbar.

public synchronized void setMaximum (int maximum) �

The setMaximum() method changes the maximum value of the Scrollbar to
maximum. The current setting for the Scrollbar may change to maximum if max-
imum decreases below getValue().

public synchronized void setValues (int value, int visible, int minimum, int maximum)
The setValues() method changes the value, visible, minimum, and maximum

settings all at once. In Java 1.0.2, separate methods do not exist for changing
visible, minimum, or maximum. The scrollbar’s value is set to value, visible to
visible, minimum to minimum, and maximum to maximum. If maximum is below
the value of minimum, it is set to minimum. If value is outside the range of the
scrollbar, it is set to the limit it exceeded. In Java 1.1, this method is synchro-
nized; it was not in earlier versions.

public int getUnitIncrement () �

public int getLineIncrement () ✩

The getUnitIncrement() method returns the current line increment. This is
the amount the scrollbar will scroll if the user clicks on one of the scrollbar’s
arrows.

11.1 SCROLLBAR 385

10 July 2002 22:22

386 CHAPTER 11: SCROLLING

getLineIncrement() is the Java 1.0 name for this method.

public void setUnitIncrement (int amount) �

public void setLineIncrement (int amount) ✩

The setUnitIncrement() method changes the line increment amount to
amount.

setLineIncrement() is the Java 1.0 name for this method.

Changing the line increment amount was not possible in Java 1.0.2. This
method acted like it returned successfully, and getLineIncrement() returned
the new value, but the Scrollbar changed its value by only one (the default)
when you clicked on one of the arrows. However, you could work around this
defect by explicitly handling the SCROLL_LINE_UP and SCROLL_LINE_DOWN

events: get the correct line increment, adjust the display appropriately, and
then set call setValue() to correct the scrollbar’s value. This workaround is
not needed in Java 1.1.

public int getBlockIncrement () �

public int getPageIncrement () ✩

The getBlockIncrement() method returns the current paging increment.
This is the amount the scrollbar will scroll if the user clicks between the slider
and one of the scrollbar’s arrows.

getPageIncrement() is the Java 1.0 name for this method.

public void setBlockIncrement (int amount) �

public void setPageIncrement (int amount) ✩

The setBlockIncrement() method changes the paging increment amount to
amount.

setPageIncrement() is the Java 1.0 name for this method.

Changing the paging increment amount was not possible in Java 1.0.2. This
method acts like it returns successfully, and getPageIncrement() returns the
new value, but the Scrollbar changes its value only by 10 (the default) when
you click on one of the paging areas. However, you can work around this
defect by explicitly handling the SCROLL_PAGE_UP and SCROLL_PAGE_DOWN

events: get the correct page increment, adjust the display appropriately, and
then set call setValue() to correct the scrollbar’s value. This workaround is
not necessary in Java 1.1.

Miscellaneous methods

public synchronized void addNotify ()
The addNotify() method creates the Scrollbar’s peer. If you override this
method, call super.addNotify() first. You will then be able to do everything
you need with the information about the newly created peer.

10 July 2002 22:22

protected String paramString ()
Scrollbar doesn’t have its own toString() method; when you call the
toString() method of a Scrollbar, you are actually calling the method
Component.toString(). This in turn calls paramString(), which builds the
string to display. For a Scrollbar, paramString() puts the scrollbar’s value, vis-
ibility, minimum, maximum, and direction into the string. In Java 1.0, there is
a minor bug in the output. Instead of displaying the scrollbar’s visible setting
(an integer), paramString() displays the component’s visible setting (a
boolean). (This is corrected in Java 1.1.) The following String is the result of
calling toString() for a horizontal Scrollbar that hasn’t been configured yet:

java.awt.Scrollbar[0,0,0x0,invalid,val=0,vis=true,min=0,max=0,horz]

11.1.2 Scrollbar Events
With the 1.0 event model, scrollbars generate five kinds of events in response to
user interaction: SCROLL_LINE_UP, SCROLL_LINE_DOWN, SCROLL_PAGE_UP,
SCROLL_PAGE_DOWN, and SCROLL_ABSOLUTE. The event that occurs depends on what
the user did, as shown in Table 11-1; the event type is specified in the id field of
the Event object passed to handleEvent(). However, as a programmer, you often
do not care which of these five events happened. You care only about the
scrollbar’s new value, which is always passed as the arg field of the Event object.

Table 11–1: Scrollbar Events

Event Type (Event.id) Event Meaning

SCROLL_ABSOLUTE User drags slider.

SCROLL_LINE_DOWN User presses down arrow.

SCROLL_LINE_UP User presses up arrow.

SCROLL_PAGE_DOWN User selects down paging area.

SCROLL_PAGE_UP User selects up paging area.

Because scrollbar events do not trigger any default event handlers (like action()),
it is necessary to override the handleEvent() method to deal with them. Unless
your version of handleEvent() deals with all conceivable events, you must ensure
that the original handleEvent() method is called. The simplest way is to have the
return statement call super.handleEvent().

Most handleEvent() methods first identify the type of event that occurred. The fol-
lowing two code blocks demonstrate different ways of checking for the Scrollbar

events.

11.1 SCROLLBAR 387

10 July 2002 22:22

388 CHAPTER 11: SCROLLING

if ((e.id == Event.SCROLL_LINE_UP) ||
(e.id == Event.SCROLL_LINE_DOWN) ||
(e.id == Event.SCROLL_PAGE_UP) ||
(e.id == Event.SCROLL_PAGE_DOWN) ||
(e.id == Event.SCROLL_ABSOLUTE)) {
// Then determine which Scrollbar was selected and act upon it

}

Or more simply:

if (e.target instanceof Scrollbar) {
// Then determine which Scrollbar was selected and act upon it.

}

Although the second code block is simpler, the first is the better choice because it
is more precise. For example, what would happen if mouse events are passed to
scrollbars? Different Java platforms differ most in the types of events passed to dif-
ferent objects; Netscape Navigator 3.0 for Windows 95 sends MOUSE_ENTER,
MOUSE_EXIT, and MOUSE_MOVE events to the Scrollbar.* The second code block exe-
cutes for all the mouse events—in fact, any event coming from a Scrollbar.
Therefore, it executes much more frequently (there can be many MOUSE_MOVE

events), leading to poor interactive performance.

Another platform-specific issue is the way the system generates SCROLL_ABSOLUTE
events. Some platforms generate many events while the user drags the scrollbar.
Others don’t generate the event until the user stops dragging the scrollbar. Some
implementations wait until the user stops dragging the scrollbar and then generate
a flood of SCROLL_ABSOLUTE events for you to handle. In theory, it does not matter
which is happening, as long as your event-processing code is tight. If your event-
processing code is time consuming, you may wish to start another thread to per-
form the work. If the thread is still alive when the next event comes along, flag it
down, and restart the operation.

Listeners and 1.1 event handling

With the 1.1 event model, you register an AdjustmentListener by calling the
addAdjustmentListener() method. Then when the user moves the Scrollbar

slider, the AdjustmentListener.adjustmentValueChanged() method is called
through the protected Scrollbar.processAdjustmentEvent() method. Key,
mouse, and focus listeners are registered through the three Component methods of
addKeyListener(), addMouseListener(), and addFocusListener(), respectively.
Because you need to register a separate listener for mouse events, you no longer
have the problem of distinguishing between mouse events and slider events. An
adjustment listener will never receive mouse events.

* MOUSE_UP, MOUSE_DOWN, and MOUSE_DRAG are not generated since these operations generate SCROLL
events.

10 July 2002 22:22

public void addAdjustmentListener(AdjustmentListener listener) �

The addAdjustmentListener() method registers listener as an object inter-
ested in being notified when an AdjustmentEvent passes through the Event-

Queue with this Scrollbar as its target. The method listener.adjustmentVal-

ueChanged() is called when an event occurs. Multiple listeners can be regis-
tered.

public void removeAdjustmentListener(ItemListener listener) �

The removeAdjustmentListener() method removes listener as a interested
listener. If listener is not registered, nothing happens.

protected void processEvent(AWTEvent e) �

The processEvent() method receives every AWTEvent with this Scrollbar as its
target. processEvent() then passes it along to any listeners for processing.
When you subclass Scrollbar, overriding processEvent() allows you to pro-
cess all events yourself, before sending them to any listeners. In a way, overrid-
ing processEvent() is like overriding handleEvent() using the 1.0 event
model.

If you override the processEvent() method, remember to call the super.pro-
cessEvent(e) method last to ensure that regular event processing can occur. If
you want to process your own events, it’s a good idea to call enableEvents()
(inherited from Component) to ensure that events are delivered even in the
absence of registered listeners.

protected void processAdjustmentEvent(ItemEvent e) �

The processAdjustmentEvent() method receives all AdjustmentEvents with
this Scrollbar as its target. processAdjustmentEvent() then passes them
along to any listeners for processing. When you subclass Scrollbar, overriding
processAdjustmentEvent() allows you to process all events yourself, before
sending them to any listeners.

If you override processAdjustmentEvent(), you must remember to call
super.processAdjustmentEvent(e) last to ensure that regular event process-
ing can occur. If you want to process your own events, it’s a good idea to call
enableEvents() (inherited from Component) to ensure that events are deliv-
ered even in the absence of registered listeners.

11.2 Scrolling An Image
Example 11-1 is a Java application that displays any image in the current directory
in a viewing area. The viewing area scrolls to accommodate larger images; the user
can use the scrollbars or keypad keys to scroll the image. In Java 1.1, it is trivial to

11.2 SCROLLING AN IMAGE 389

10 July 2002 22:22

390 CHAPTER 11: SCROLLING

implement this example with a ScrollPane; however, if you’re using 1.0, you don’t
have this luxury. Even if you’re using 1.1, this example shows a lot about how to
use scrollbars.

Our application uses a Dialog to select which file to display; a FilenameFilter lim-
its the list to image files. We use a menu to let the user request a file list or exit the
program. After the user picks a file, the application loads it into the display area.
Figure 11-3 shows the main scrolling window.

Figure 11–3: Scrolling an image

The code for the scrolling image consists of a ScrollingImage class, plus several
helper classes. It places everything into the file ScrollingImage.java for compilation.

Example 11–1: Source Code for Scrolling an Image

import java.awt.*;
import java.io.FilenameFilter;
import java.io.File;

The first class contains the FilenameFilter used to select relevant filenames: that
is, files that are likely to contain GIF, JPEG, or XBM images. If the filename has an
appropriate ending, the accept() method returns true; other wise, it returns
false.

// True for files ending in jpeg/jpg/gif/xbm
class ImageFileFilter implements FilenameFilter {

public boolean accept (File dir, String name) {
String tempname = name.toLowerCase();
return (tempname.endsWith ("jpg") || tempname.endsWith ("jpeg") ||

10 July 2002 22:22

tempname.endsWith ("gif") || tempname.endsWith ("xbm"));
}

}

The ImageListDialog class displays a list of files from which the user can select.
Instead of using FileDialog, we created a customized List to prevent the user
from roaming around the entire hard drive; choices are limited to appropriate
files in the current directory. When the user selects an entry (by double-clicking),
the image is then displayed in the scrolling area.

class ImageListDialog extends Dialog {
private String name = null;
private String entries[];
private List list;
ImageListDialog (Frame f) {

super (f, "Image List", true);
File dir = new File (System.getProperty("user.dir"));
entries = dir.list (new ImageFileFilter());
list = new List (10, false);
for (int i=0;i<entries.length;i++) {

list.addItem (entries[i]);
}
add ("Center", list);
pack();

}
public String getName () {

return name;
}
public boolean action (Event e, Object o) {

name = (String)e.arg;
((ScrollingImage)getParent()).processImage();
dispose();
return true;

}
}

The code in this class is straightforward. The constructor reads the current direc-
tor y from the system property list, uses the list() method of the File class to cre-
ate a list of files that match our filename filter, and then creates a List object that
lists these files. getName() returns the name of the selected file. action() is called
when the user selects a file; it sets the name of the selected file from the arg field
of the Event and then calls the processImage() method of its parent container.
The parent container of our ImageListDialog is the ScrollingImage class we are
defining; its processImage() method displays a scrollable image.

The next class, ImageCanvas, is the Canvas that the image is drawn onto. We use a
separate Canvas rather than drawing directly onto the Frame so that the scrollbars
do not overlap the edges of the image. You will notice that the paint() method

11.2 SCROLLING AN IMAGE 391

10 July 2002 22:22

392 CHAPTER 11: SCROLLING

uses negative x and y values. This starts the drawing outside the Canvas area; as a
result, the Canvas displays only part of the image. This is how we do the actual
scrolling. (xPos, yPos) are the values given to us from the scrollbars; by positioning
the image at (-xPos, -yPos), we ensure that the point (xPos, yPos) appears in the
upper left corner of the canvas.

class ImageCanvas extends Canvas {
Image image;
int xPos, yPos;
public void redraw (int xPos, int yPos, Image image) {

this.xPos = xPos;
this.yPos = yPos;
this.image = image;
repaint();

}
public void paint (Graphics g) {

if (image != null)
g.drawImage (image, -xPos, -yPos, this);

}
}

ScrollingImage provides the framework for the rest of the program. It provides a
menu to bring up the Dialog to choose the file, the scrollbars to scroll the
scrolling canvas, and the image canvas area. This class also implements event han-
dling methods to capture the scrollbar events, paging keys, and menu events.

public class ScrollingImage extends Frame {
static Scrollbar horizontal, vertical;
ImageCanvas center;
int xPos, yPos;
Image image;
ImageListDialog ild;
ScrollingImage () {

super ("Image Viewer");
add ("Center", center = new ImageCanvas ());
add ("South", horizontal = new Scrollbar (Scrollbar.HORIZONTAL));
add ("East", vertical = new Scrollbar (Scrollbar.VERTICAL));
Menu m = new Menu ("File", true);
m.add ("Open");
m.add ("Close");
m.add ("-");
m.add ("Quit");
MenuBar mb = new MenuBar();
mb.add (m);
setMenuBar (mb);
resize (400, 300);

}
public static void main (String args[]) {

ScrollingImage si = new ScrollingImage ();
si.show();

}
public boolean handleEvent (Event e) {

10 July 2002 22:22

if (e.id == Event.WINDOW_DESTROY) {
System.exit(0);

} else if (e.target instanceof Scrollbar) {
if (e.target == horizontal) {

xPos = ((Integer)e.arg).intValue();
} else if (e.target == vertical) {

yPos = ((Integer)e.arg).intValue();
}
center.redraw (xPos, yPos, image);

}
return super.handleEvent (e);

}

This handleEvent() method kills the program if the user used the windowing sys-
tem to exit from it (WINDOW_DESTROY). More to the point, if a Scrollbar generated
the event, handleEvent() figures out if it was the horizontal or vertical scrollbar,
saves its value as the x or y position, and redraws the image in the new location.
Finally, it calls super.handleEvent(); as we will see in the following code, other
events that we care about (key events and menu events) we don’t want to handle
here — we would rather handle them normally, in action() and keyDown()

methods.

public void processImage () {
image = getToolkit().getImage (ild.getName());
MediaTracker tracker = new MediaTracker (this);
tracker.addImage (image, 0);
try {

tracker.waitForAll();
} catch (InterruptedException ie) {
}
xPos = 0;
yPos = 0;
int imageHeight = image.getHeight (this);
int imageWidth = image.getWidth (this);
vertical.setValues (0, 5, 0, imageHeight);
horizontal.setValues (0, 5, 0, imageWidth);
center.redraw (xPos, yPos, image);

}

processImage() reads the image’s filename, calls getImage(), and sets up a Media-
Tracker to wait for the image to load. Once the image has loaded, it reads the
height and width, and uses these to set the maximum values for the vertical and
horizontal scrollbars by calling setValues(). The scrollbars’ minimum and initial
values are both 0. The size of the scrollbar “handle” is set to 5, rather than trying
to indicate the visible portion of the image.

public boolean action (Event e, Object o) {
if (e.target instanceof MenuItem) {

if ("Open".equals (o)) {
// If showing already, do not show again
if ((ild == null) || (!ild.isShowing())) {

11.2 SCROLLING AN IMAGE 393

10 July 2002 22:22

394 CHAPTER 11: SCROLLING

ild = new ImageListDialog (this);
ild.show();

}
} else if ("Close".equals(o)) {

image = null;
center.redraw (xPos, yPos, image);

} else if ("Quit".equals(o)) {
System.exit(0);

}
return true;

}
return false;

}

action() handles menu events. If the user selected Open, it displays the dialog
box that selects a file. Close redraws the canvas with a null image; Quit exits the
program. If any of these events occurred, action() returns true, indicating that
the event was fully handled. If any other event occurred, action() returns false,
so that the system will deliver the event to any other methods that might be inter-
ested in it.

public boolean keyDown (Event e, int key) {
if (e.id == Event.KEY_ACTION) {

Scrollbar target = null;
switch (key) {

case Event.HOME:
target = vertical;
vertical.setValue(vertical.getMinimum());
break;

case Event.END:
target = vertical;
vertical.setValue(vertical.getMaximum());
break;

case Event.PGUP:
target = vertical;
vertical.setValue(vertical.getValue()

- vertical.getPageIncrement());
break;

case Event.PGDN:
target = vertical;
vertical.setValue(vertical.getValue()

+ vertical.getPageIncrement());
break;

case Event.UP:
target = vertical;
vertical.setValue(vertical.getValue()

- vertical.getLineIncrement());
break;

case Event.DOWN:
target = vertical;
vertical.setValue(vertical.getValue()

+ vertical.getLineIncrement());
break;

10 July 2002 22:22

case Event.LEFT:
target = horizontal;
if (e.controlDown())

horizontal.setValue(horizontal.getValue() -
horizontal.getPageIncrement());

else
horizontal.setValue(horizontal.getValue() -

horizontal.getLineIncrement());
break;

case Event.RIGHT:
target = horizontal;
if (e.controlDown())

horizontal.setValue(horizontal.getValue() +
horizontal.getPageIncrement());

else
horizontal.setValue(horizontal.getValue() +

horizontal.getLineIncrement());
break;

default:
return false;

}
Integer value = new Integer (target.getValue());
postEvent (new Event ((Object)target,

Event.SCROLL_ABSOLUTE, (Object)value));
return true;

}
return false;

}
}

keyDown() isn’t really necessary, but it adds a nice extension to our scrollbars: in
addition to using the mouse, the user can scroll with the arrow keys. Pressing an
arrow key generates a KEY_ACTION event. If we have one of these events, we check
what kind of key it was, then compute a new scrollbar value, then call setValue()
to set the appropriate scrollbar to this value. For example, if the user presses the
page up key, we read the page increment, add it to the current value of the vertical
scrollbar, and then set the vertical scrollbar accordingly. (Note that this works even
though nondefault page and line increments aren’t implemented correctly.) The
one trick here is that we have to get the rest of the program to realize that the
scrollbar values have changed. To do so, we create a new SCROLL_ABSOLUTE event,
and call postEvent() to deliver it.

11.3 The Adjustable Interface
The Adjustable inter face is new to Java 1.1. It provides the method signatures
required for an object that lets you adjust a bounded integer value. It is currently
implemented by Scrollbar and returned by two methods within ScrollPane.

11.3 THE ADJUSTABLE INTERFACE 395

10 July 2002 22:22

396 CHAPTER 11: SCROLLING

11.3.1 Constants of the Adjustable Interface
There are two direction specifiers for Adjustable.

public final static int HORIZONTAL �

HORIZONTAL is the constant for horizontal orientation.

public final static int VERTICAL �

VERTICAL is the constant for vertical orientation.

11.3.2 Methods of the Adjustable Interface
public abstract int getOrientation () �

The getOrientation() method is for returning the current orientation of the
adjustable object, either Adjustable.HORIZONTAL or Adjustable.VERTICAL.

setOrientation() is not part of the interface. Not all adjustable objects need
to be able to alter orientation. For example, Scrollbar instances can change
their orientation, but each Adjustable instance associated with a ScrollPane

has a fixed, unchangeable orientation.

public abstract int getVisibleAmount () �

The getVisibleAmount() method lets you retrieve the size of the visible slider
of the adjustable object.

public abstract void setVisibleAmount (int amount) �

The setVisibleAmount() method lets you change the size of the visible slider
to amount.

public abstract int getValue () �

The getValue() method lets you retrieve the current value of the adjustable
object.

public abstract void setValue (int value) �

The setValue() method lets you change the value of the adjustable object to
value.

public abstract int getMinimum ()
The getMinimum() method lets you retrieve the current minimum setting for
the object.

public abstract void setMinimum (int minimum) �

The setMinimum() method lets you change the minimum value of the
adjustable object to minimum.

10 July 2002 22:22

public abstract int getMaximum () �

The getMaximum() method lets you retrieve the current maximum setting for
the object.

public abstract void setMaximum (int maximum) �

The setMaximum() method lets you change the maximum value of the
adjustable object to maximum.

public abstract int getUnitIncrement () �

The getUnitIncrement() method lets you retrieve the current line increment.

public abstract void setUnitIncrement (int amount) �

The setUnitIncrement() method lets you change the line increment amount
of the adjustable object to amount.

public abstract int getBlockIncrement () �

The getBlockIncrement() method lets you retrieve the current page
increment.

public abstract void setBlockIncrement (int amount) �

The setBlockIncrement() method lets you change the paging increment
amount of the adjustable object to amount.

public abstract void addAdjustmentListener(AdjustmentListener listener) �

The addAdjustmentListener() method lets you register listener as an object
interested in being notified when an AdjustmentEvent passes through the
EventQueue with this Adjustable object as its target.

public abstract void removeAdjustmentListener(ItemListener listener) �

The removeAdjustmentListener() method removes listener as a interested
listener. If listener is not registered, nothing happens.

11.4 ScrollPane
A ScrollPane is a Container with built-in scrollbars that can be used to scroll its
contents. In the current implementation, a ScrollPane can hold only one
Component and has no layout manager. The component within a ScrollPane is
always given its preferred size. While the scrollpane’s inability to hold multiple
components sounds like a deficiency, it isn’t; there’s no reason you can’t put a
Panel inside a ScrollPane, put as many components as you like inside the Panel,
and give the Panel any layout manager you wish.

Scrolling is handled by the ScrollPane peer, so processing is extremely fast. In
Example 11-1, the user moves a Scrollbar to trigger a scrolling event, and the
peer sends the event to the Java program to find someone to deal with it. Once it

11.4 SCROLLPANE 397

10 July 2002 22:22

398 CHAPTER 11: SCROLLING

identifies the target, it posts the event, then tries to find a handler. Eventually, the
applet’s handleEvent() method is called to reposition the ImageCanvas. The new
position is then given to the peer, which finally redisplays the Canvas. Although
most of the real work is behind the scenes, it is still happening. With ScrollPane,
the peer generates and handles the event itself, which is much more efficient.

11.4.1 ScrollPane Methods
Constants

The ScrollPane class contains three constants that can be used to control its
scrollbar display policy. The constants are fairly self-explanatory. The constants are
used in the constructor for a ScrollPane instance.

public static final int SCROLLBARS_AS_NEEDED �

SCROLLBARS_AS_NEEDED is the default scrollbar display policy. With this policy,
the ScrollPane displays each scrollbar only if the Component is too large in the
scrollbar’s direction.

public static final int SCROLLBARS_ ALWA YS �

With the SCROLLBARS_ALWAYS display policy, the ScrollPane should always dis-
play both scrollbars, whether or not they are needed.

public static final int SCROLLBARS_ NEVER �

With the SCROLLBARS_NEVER display policy, the ScrollPane should never dis-
play scrollbars, even when the object is bigger than the ScrollPane’s area.
When using this mode, you should provide some means for the user to scroll,
either through a button outside the container or by listening for events hap-
pening within the container.

Constructors

public ScrollPane () �

The first constructor creates an instance of ScrollPane with the default
scrollbar display policy setting, SCROLLBARS_AS_NEEDED.

public ScrollPane (int scrollbarDisplayPolicy) �

The other constructor creates an instance of ScrollPane with a scrollbar set-
ting of scrollbarDisplayPolicy. If scrollbarDisplayPolicy is not one of
the class constants, this constructor throws the IllegalArgumentException

run-time exception.

10 July 2002 22:22

Layout methods

public final void setLayout(LayoutManager mgr) �

The setLayout() method of ScrollPane throws an AWTError. It overrides the
setLayout() method of Container to prevent you from changing a Scroll-

Pane’s layout manager.

public void doLayout () �

public void layout () ✩

The doLayout() method of ScrollPane shapes the contained object to its pre-
ferred size.

layout() is another name for this method.

public final void addImpl(Component comp, Object constraints, int index) �

The addImpl() method of ScrollPane permits only one object to be added to
the ScrollPane. It overides the addImpl() method of Container to enforce the
ScrollPane’s limitations on adding components. If index > 0, addImpl()
throws the run-time exception IllegalArgumentException. If a component is
already within the ScrollPane, it is removed before comp is added. The con-

straints parameter is ignored.

Scrolling methods

public int getScrollbarDisplayPolicy() �

The getScrollbarDisplayPolicy() method retrieves the current display pol-
icy, as set by the constructor. You cannot change the policy once it has been
set. The return value is one of the class constants: SCROLLBARS_AS_NEEDED,
SCROLLBARS_ALWAYS, or SCROLLBARS_NEVER.

public Dimension getViewportSize() �

The getViewportSize() method returns the current size of the ScrollPane,
less any Insets, as a Dimension object. The size is given in pixels and has an
initial value of 100 x 100.

public int getHScrollbarHeight() �

The getHScrollbarHeight() method retrieves the height in pixels of a hori-
zontal scrollbar. The value returned is without regard to the display policy;
that is, you may be given a height even if the scrollbar is not displayed. This
method may return 0 if the scrollbar’s height cannot be calculated at this time
(no peer) or if you are using the SCROLLBARS_NEVER display policy.

The width of a horizontal scrollbar is just getViewportSize().width.

11.4 SCROLLPANE 399

10 July 2002 22:22

400 CHAPTER 11: SCROLLING

public int getVScrollbarWidth() �

The getVScrollbarWidth() method retrieves the width in pixels of a vertical
scrollbar. The value returned is without regard to the display policy; that is,
you may be given a width even if the scrollbar is not displayed. This method
may return 0 if the scrollbar’s width cannot be calculated at this time (no
peer) or if you are using the SCROLLBARS_NEVER display policy.

The height of a vertical scrollbar is just getViewportSize().height.

public Adjustable getHAdjustable() �

The getHAdjustable() method returns the adjustable object representing the
horizontal scrollbar (or null if it is not present). Through the methods of
Adjustable, you can get the different settings of the scrollbar.

The object that this method returns is an instance of the package private class
ScrollPaneAdjustable, which implements the Adjustable inter face. this class
allows you to register listeners for the scrollpane’s events and inquire about
various properties of the pane’s scrollbars. It does not let you set some
scrollbar properties; the setMinimum(), setMaximum(), and setVisi-

bleAmount() methods throw an AWTError when called.

public Adjustable getVAdjustable() �

The getVAdjustable() method returns the adjustable object representing the
vertical scrollbar (or null if it is not present). Through the methods of
Adjustable, you can get the different settings of the scrollbar.

The object that this method returns is an instance of the package private class
ScrollPaneAdjustable, which implements the Adjustable inter face. this class
allows you to register listeners for the scrollpane’s events and inquire about
various properties of the pane’s scrollbars. It does not let you set some
scrollbar properties; the setMinimum(), setMaximum(), and setVisi-

bleAmount() methods throw an AWTError when called.

public void setScrollPosition(int x, int y) �

This setScrollPosition() method moves the ScrollPane to the designated
location if possible. The x and y arguments are scrollbar settings, which should
be interpreted in terms of the minimum and maximum values given to you by
the horizontal and vertical Adjustable objects (returned by the previous two
methods). If the ScrollPane does not have a child component, this method
throws the run-time exception NullPointerException. You can also move the
ScrollPane by calling the Adjustable.setValue() method of one of the
scrollpane’s Adjustable objects.

10 July 2002 22:22

public void setScrollPosition(Point p) �

This setScrollPosition() method calls the previous with parameters of p.x,
and p.y.

public Point getScrollPosition() �

The getScrollPosition() method returns the current position of both the
scrollpane’s Adjustable objects as a Point. If there is no component within
the ScrollPane, getScrollPosition() throws the NullPointerException run-
time exception. Another way to get this information is by calling the
Adjustable.getValue() method of each Adjustable object.

Miscellaneous methods

public void printComponents (Graphics g) �

The printComponents() method of ScrollPane prints the single component it
contains. This is done by clipping the context g to the size of the display area
and calling the contained component’s printAll() method.

public synchronized void addNotify () �

The addNotify() method creates the ScrollPane peer. If you override this
method, call super.addNotify() first, then add your customizations for the
new class. You will then be able to do everything you need with the informa-
tion about the newly created peer.

protected String paramString () �

ScrollPane doesn’t have its own toString() method; so when you call the
toString() method of a ScrollPane, you are actually calling the
Component.toString() method. This in turn calls paramString(), which
builds the string to display. For a ScrollPane, paramString() adds the current
scroll position, insets, and scrollbar display policy. For example:

java.awt.ScrollPane[scrollpane0,0,0,0x0,invalid,ScrollPosition=(0,0),
Insets=(0,0,0,0),ScrollbarDisplayPolicy=always]

11.4.2 ScrollPane Events
The ScrollPane peer deals with the scrolling events for you. It is not necessary to
catch or listen for these events. As with any other Container, you can handle the
1.0 events of the object you contain or listen for 1.1 events that happen within you.

11.4.3 Using a ScrollPane
The following applet demonstrates one way to use a ScrollPane. Basically, you
place the object you want to scroll in the ScrollPane by calling the add() method.

11.4 SCROLLPANE 401

10 July 2002 22:22

402 CHAPTER 11: SCROLLING

This can be a Panel with many objects on it or a Canvas with an image drawn on it.
You then add as many objects as you want to the Panel or scribble on the Canvas to
your heart’s delight. No scrolling event handling is necessary. That is all there is to
it. To make this example a little more interesting, whenever you select a button,
the ScrollPane scrolls to a randomly selected position. Figure 11-4 displays the
screen.

Figure 11–4: A ScrollPane containing many buttons

Here’s the code:

// Java 1.1 only
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
public class scroll extends Applet implements ActionListener, ContainerListener {

ScrollPane sp = new ScrollPane (ScrollPane.SCROLLBARS_ALWAYS);
public void init () {

setLayout (new BorderLayout ());
Panel p = new Panel(new GridLayout (7, 8));
p.addContainerListener (this);
for (int j=0;j<50;j++)

p.add (new Button ("Button-" + j));
sp.add (p);
add (sp, "Center");

}
public void componentAdded(ContainerEvent e) {

if (e.getID() == ContainerEvent.COMPONENT_ADDED) {
if (e.getChild() instanceof Button) {

Button b = (Button)e.getChild();
b.addActionListener(this);

}
}

}
public void componentRemoved(ContainerEvent e) {
}
public void actionPerformed (ActionEvent e) {

Component c = sp.getComponent();

10 July 2002 22:22

Dimension d = c.getSize();
sp.setScrollPosition ((int)(Math.random()*d.width),

(int)(Math.random()*d.height));
}

}

Working with the ScrollPane itself is easy; we just create one, add a Panel to it, set
the Panel’s layout manager to GridLayout, and add a lot of buttons to the Panel.
The applet itself is the action listener for all the buttons; when anybody clicks a
button, actionPerformed() is called, which generates a new random position
based on the viewport size and sets the new scrolling position accordingly by call-
ing setScrollPosition().

The more interesting part of this applet is the way it works with buttons. Instead of
directly adding a listener for each button, we add a ContainerListener to the con-
taining panel and let it add listeners. Although this may seem like extra work here,
it demonstrates how you can use container events to take actions whenever some-
one adds or removes a component. At first glance, you might ask why I didn’t just
call enableEvents(AWTEvent.CONTAINER_EVENT_MASK) and override the applet’s
processContainerEvent() to attach the listeners. If we were only adding our com-
ponents to the applet, that would work great. Unfortunately, the applet is not noti-
fied when buttons are added to an unrelated panel. It would be notified only when
the panel was added to the applet.

11.4 SCROLLPANE 403

10 July 2002 22:22

12

Image Processing

In this chapter:
• ImageObserver
• ColorModel
• ImageProducer
• ImageConsumer
• ImageFilter

The image processing parts of Java are buried within the java.awt.image package.
The package consists of three interfaces and eleven classes, two of which are
abstract. They are as follows:

• The ImageObserver inter face provides the single method necessary to support
the asynchronous loading of images. The interface implementers watch the
production of an image and can react when certain conditions arise. We
briefly touched on ImageObserver when we discussed the Component class (in
Chapter 5, Components), because Component implements the interface.

• The ImageConsumer and ImageProducer inter faces provide the means for low
level image creation. The ImageProducer provides the source of the pixel data
that is used by the ImageConsumer to create an Image.

• The PixelGrabber and ImageFilter classes, along with the AreaAverag-

ingScaleFilter, CropImageFilter, RGBImageFilter, and ReplicateScale-

Filter subclasses, provide the tools for working with images. PixelGrabber
consumes pixels from an Image into an array. The ImageFilter classes modify
an existing image to produce another Image instance. CropImageFilter makes
smaller images; RGBImageFilter alters pixel colors, while AreaAverag-

ingScaleFilter and ReplicateScaleFilter scale images up and down using
different algorithms. All of these classes implement ImageConsumer because
they take pixel data as input.

• MemoryImageSource and FilteredImageSource produce new images. Memory-
ImageSource takes an array and creates an image from it. FilteredImage-
Source uses an ImageFilter to read and modify data from another image and
produces the new image based on the original. Both MemoryImageSource and
FilteredImageSource implement ImageProducer because they produce new
pixel data.

404

10 July 2002 22:22

• ColorModel and its subclasses, DirectColorModel and IndexColorModel, pro-
vide the palette of colors available when creating an image or tell you the
palette used when using PixelGrabber.

The classes in the java.awt.image package let you create Image objects at run-
time. These classes can be used to rotate images, make images transparent, create
image viewers for unsupported graphics formats, and more.

12.1 ImageObserver
As you may recall from Chapter 2, Simple Graphics, the last parameter to the draw-
Image() method is the image’s ImageObserver. However, in Chapter 2 I also said
that you can use this as the image observer and forget about it. Now it’s time to
ask the obvious questions: what is an image observer, and what is it for?

Because getImage() acquires an image asynchronously, the entire Image object
might not be fully loaded when drawImage() is called. The ImageObserver inter-
face provides the means for a component to be told asynchronously when addi-
tional information about the image is available. The Component class implements
the imageUpdate() method (the sole method of the ImageObserver inter face), so
that method is inherited by any component that renders an image. Therefore,
when you call drawImage(), you can pass this as the final argument; the compo-
nent on which you are drawing serves as the ImageObserver for the drawing pro-
cess. The communication between the image observer and the image consumer
happens behind the scenes; you never have to worry about it, unless you want to
write your own imageUpdate() method that does something special as the image is
being loaded.

If you call drawImage() to display an image created in local memory (either for
double buffering or from a MemoryImageSource), you can set the ImageObserver

parameter of drawImage() to null because no asynchrony is involved; the entire
image is available immediately, so an ImageObserver isn’t needed.

12.1.1 ImageObserver Interface
Constants

The various flags associated with the ImageObserver are used for the infoflags

argument to imageUpdate(). The flags indicate what kind of information is avail-
able and how to interpret the other arguments to imageUpdate(). Two or more
flags are often combined (by an OR operation) to show that several kinds of infor-
mation are available.

12.1 IMAGEOBSERVER 405

10 July 2002 22:22

406 CHAPTER 12: IMAGE PROCESSING

public static final int WIDTH
When the WIDTH flag is set, the width argument to imageUpdate() correctly
indicates the image’s width. Subsequent calls to getWidth() for the Image

return the valid image width. If you call getWidth() before this flag is set,
expect it to return -1.

public static final int HEIGHT
When the HEIGHT flag is set, the height argument to imageUpdate() correctly
indicates the image’s height. Subsequent calls to getHeight() for the Image

return the valid image height. If you call getHeight() before this flag is set,
expect it to return -1.

public static final int PROPERTIES
When the PROPERTIES flag is set, the image’s properties are available. Subse-
quent calls to getProperty() return valid image properties.

public static final int SOMEBITS
When the SOMEBITS flag of infoflags (from imageUpdate()) is set, the image
has started loading and at least some of its content are available for display.
When this flag is set, the x, y, width, and height arguments to imageUpdate()

indicate the bounding rectangle for the portion of the image that has been
delivered so far.

public static final int FRAMEBITS
When the FRAMEBITS flag of infoflags is set, a complete frame of a multi-
frame image has been loaded and can be drawn. The remaining parameters to
imageUpdate() should be ignored (x, y, width, height).

public static final int ALLBITS
When the ALLBITS flag of infoflags is set, the image has been completely
loaded and can be drawn. The remaining parameters to imageUpdate()

should be ignored (x, y, width, height).

public static final int ERROR
When the ERROR flag is set, the production of the image has stopped prior to
completion because of a severe problem. ABORT may or may not be set when
ERROR is set. Attempts to reload the image will fail. You might get an ERROR

because the URL of the Image is invalid (file not found) or the image file itself
is invalid (invalid size/content).

public static final int ABORT
When the ABORT flag is set, the production of the image has aborted prior to
completion. If ERROR is not set, a subsequent attempt to draw the image may
succeed. For example, an image would abort without an error if a network
error occurred (e.g., a timeout on the HTTP connection).

10 July 2002 22:22

Method

public boolean imageUpdate (Image image, int infoflags, int x, int y, int width, int height)
The imageUpdate() method is the sole method in the ImageObserver in-
ter face. It is called whenever information about an image becomes available.
To register an image observer for an image, pass an object that implements
the ImageObserver inter face to getWidth(), getHeight(), getProperty(),
prepareImage(), or drawImage().

The image parameter to imageUpdate() is the image being rendered on the
obser ver. The infoflags parameter is a set of ImageObserver flags ORed
together to signify the current information available about image. The mean-
ing of the x, y, width, and height parameters depends on the current
infoflags settings.

Implementations of imageUpdate() should return true if additional informa-
tion about the image is desired; returning false means that you don’t want
any additional information, and consequently, imageUpdate() should not be
called in the future for this image. The default imageUpdate() method returns
true if neither ABORT nor ALLBITS are set in the infoflags—that is, the
method imageUpdate() is interested in further information if no errors have
occurred and the image is not complete. If either flag is set, imageUpdate()
returns false.

You should not call imageUpdate() directly — unless you are developing an
ImageConsumer, in which case you may find it worthwhile to override the
default imageUpdate() method, which all components inherit from the Compo-
nent class.

12.1.2 Overriding imageUpdate
Instead of bothering with the MediaTracker class, you can override the imageUp-

date() method and use it to notify you when an image is completely loaded.
Example 12-1 demonstrates the use of imageUpdate(), along with a way to force
your images to load immediately. Here’s how it works: the init() method calls
getImage() to request image loading at some time in the future. Instead of waiting
for drawImage() to trigger the loading process, init() forces loading to start by
calling prepareImage(), which also registers an image observer. prepareImage() is
a method of the Component class discussed in Chapter 5.

The paint() method doesn’t attempt to draw the image until the variable loaded

is set to true. The imageUpdate() method checks the infoflags argument to see
whether ALLBITS is set; when it is set, imageUpdate() sets loaded to true, and
schedules a call to paint(). Thus, paint() doesn’t call drawImage() until the
method imageUpdate() has discovered that the image is fully loaded.

12.1 IMAGEOBSERVER 407

10 July 2002 22:22

408 CHAPTER 12: IMAGE PROCESSING

Example 12–1: imageUpdate Override.

import java.applet.*;
import java.awt.*;
import java.awt.image.ImageObserver;
public class imageUpdateOver extends Applet {

Image image;
boolean loaded = false;
public void init () {

image = getImage (getDocumentBase(), "rosey.jpg");
prepareImage (image, -1, -1, this);

}
public void paint (Graphics g) {

if (loaded)
g.drawImage (image, 0, 0, this);

}
public void update (Graphics g) {

paint (g);
}
public synchronized boolean imageUpdate (Image image, int infoFlags,

int x, int y, int width, int height) {
if ((infoFlags & ImageObserver.ALLBITS) != 0) {

loaded = true;
repaint();
return false;

} else {
return true;

}
}

}

Note that the call to prepareImage() is absolutely crucial. It is needed both to start
image loading and to register the image observer. If prepareImage() were omitted,
imageUpdate() would never be called, loaded would not be set, and paint() would
never attempt to draw the image. As an alternative, you could use the Media-

Tracker class to force loading to start and monitor the loading process; that
approach might give you some additional flexibility.

12.2 ColorModel
A color model determines how colors are represented within AWT. ColorModel is
an abstract class that you can subclass to specify your own representation for col-
ors. AWT provides two concrete subclasses of ColorModel that you can use to build
your own color model; they are DirectColorModel and IndexColorModel. These
two correspond to the two ways computers represent colors internally.

Most modern computer systems use 24 bits to represent each pixel. These 24 bits
contain 8 bits for each primary color (red, green, blue); each set of 8 bits

10 July 2002 22:22

represents the intensity of that color for the particular pixel. This arrangement
yields the familiar “16 million colors” that you see in advertisements. It corre-
sponds closely to Java’s direct color model.

However, 24 bits per pixel, with something like a million pixels on the screen, adds
up to a lot of memory. In the dark ages, memory was expensive, and devoting this
much memory to a screen buffer cost too much. Therefore, designers used fewer
bits — possibly as few as three, but more often eight—for each pixel. Instead of
representing the colors directly in these bits, the bits were an index into a color
map. Graphics programs would load the color map with the colors they were inter-
ested in and then represent each pixel by using the index of the appropriate color
in the map. For example, the value 1 might represent fuschia; the value 2 might
represent puce. Full information about how to display each color (the red, green,
and blue components that make up fuschia or puce) is contained only in the color
map. This arrangement corresponds closely to Java’s indexed color model.

Because Java is platform-independent, you don’t need to worry about how your
computer or the user’s computer represents colors. Your programs can use an
indexed or direct color map as appropriate. Java will do the best it can to render
the colors you request. Of course, if you use 5,000 colors on a computer that can
only display 256, Java is going to have to make compromises. It will decide which
colors to put in the color map and which colors are close enough to the colors in
the color map, but that’s done behind your back.

Java’s default color model uses 8 bits per pixel for red, green, and blue, along with
another 8 bits for alpha (transparency) level. However, as I said earlier, you can
create your own ColorModel if you want to work in some other scheme. For exam-
ple, you could create a grayscale color model for black and white pictures, or an
HSB (hue, saturation, brightness) color model if you are more comfortable work-
ing with this system. Your color model’s job will be to take a pixel value in your rep-
resentation and translate that value into the corresponding alpha, red, green, and
blue values. If you are working with a grayscale image, your image producer could
deliver grayscale values to the image consumer, plus a ColorModel that tells the
consumer how to render these gray values in terms of ARGB components.

12.2.1 ColorModel Methods
Constructors

public ColorModel (int bits)
There is a single constructor for ColorModel. It has one parameter, bits,
which describes the number of bits required per pixel of an image. Since this
is an abstract class, you cannot call this constructor directly. Since each pixel
value must be stored within an integer, the maximum value for bits is 32. If
you request more, you get 32.

12.2 COLORMODEL 409

10 July 2002 22:22

410 CHAPTER 12: IMAGE PROCESSING

Pseudo -constructors

public static ColorModel getRGBdefault()
The getRGBdefault() method returns the default ColorModel, which has 8
bits for each of the components alpha, red, green, and blue. The order the
pixels are stored in an integer is 0xAARRGGBB, or alpha in highest order
byte, down to blue in the lowest.

Other methods

public int getPixelSize ()
The getPixelSize() method returns the number of bits required for each
pixel as described by this color model. That is, it returns the number of bits
passed to the constructor.

public abstract int getAlpha (int pixel)
The getAlpha() method returns the alpha component of pixel for a color
model. Its range must be between 0 and 255, inclusive. A value of 0 means the
pixel is completely transparent and the background will appear through the
pixel. A value of 255 means the pixel is opaque and you cannot see the back-
ground behind it.

public abstract int getRed (int pixel)
The getRed() method returns the red component of pixel for a color model.
Its range must be between 0 and 255, inclusive. A value of 0 means the pixel
has no red in it. A value of 255 means red is at maximum intensity.

public abstract int getGreen (int pixel)
The getGreen() method returns the green component of pixel for a color
model. Its range must be between 0 and 255, inclusive. A value of 0 means the
pixel has no green in it. A value of 255 means green is at maximum intensity.

public abstract int getBlue (int pixel)
The getBlue() method returns the blue component of pixel for a color
model. Its range must be between 0 and 255, inclusive. A value of 0 means the
pixel has no blue in it. A value of 255 means blue is at maximum intensity.

public int getRGB(int pixel)
The getRGB() method returns the color of pixel in the default RGB color
model. If a subclass has changed the ordering or size of the different color
components, getRGB() will return the pixel in the RGB color model (0xAAR-
RGGBB order). In theory, the subclass does not need to override this method,
unless it wants to make it final. Making this method final may yield a signifi-
cant performance improvement.

10 July 2002 22:22

public void finalize ()
The garbage collector calls finalize() when it determines that the Color-

Model object is no longer needed. finalize() frees any internal resources that
the ColorModel object has used.

12.2.2 DirectColorModel
The DirectColorModel class is a concrete subclass of ColorModel. It specifies a
color model in which each pixel contains all the color information (alpha, red,
green, and blue values) explicitly. Pixels are represented by 32-bit (int) quantities;
the constructor lets you change which bits are allotted to each component.

All of the methods in this class, except constructors, are final, because of assump-
tions made by the implementation. You can create subclasses of DirectColor-
Model, but you can’t override any of its methods. However, you should not need to
develop your own subclass. Just create an instance of DirectColorModel with the
appropriate constructor. Any subclassing results in serious performance degrada-
tion, because you are going from fast, static final method calls to dynamic method
lookups.

Constructors

public DirectColorModel (int bits, int redMask, int greenMask, int blueMask,
int alphaMask)

This constructor creates a DirectColorModel in which bits represents the
total number of bits used to represent a pixel; it must be less than or equal to
32. The redMask, greenMask, blueMask, and alphaMask specify where in a pixel
each color component exists. Each of the bit masks must be contiguous (e.g.,
red cannot be the first, fourth, and seventh bits of the pixel), must be smaller
than 2bits, and should not exceed 8 bits. (You cannot display more than 8 bits
of data for any color component, but the mask can be larger.) Combined, the
masks together should be bits in length. The default RGB color model is:

new DirectColorModel (32, 0x00ff0000, 0x0000ff00, 0x000000ff, 0xff000000)

The run-time exception IllegalArgumentException is thrown if any of the fol-
lowing occur:

• The bits that are set in a mask are not contiguous.

• Mask bits overlap (i.e., the same bit is set in two or more masks).

• The number of mask bits exceeds bits.

12.2 COLORMODEL 411

10 July 2002 22:22

412 CHAPTER 12: IMAGE PROCESSING

public DirectColorModel (int bits, int redMask, int greenMask, int blueMask)
This constructor for DirectColorModel calls the first with an alpha mask of 0,
which means that colors in this color model have no transparency component.
All colors will be fully opaque with an alpha value of 255. The same restrictions
for the red, green, and blue masks apply.

Methods

final public int getAlpha (int pixel)
The getAlpha() method returns the alpha component of pixel for the color
model as a number from 0 to 255, inclusive. A value of 0 means the pixel is
completely transparent, and the background will appear through the pixel. A
value of 255 means the pixel is opaque, and you cannot see the background
behind it.

final public int getRed (int pixel)
The getRed() method returns the red component of pixel for the color
model. Its range is from 0 to 255. A value of 0 means the pixel has no red in it.
A value of 255 means red is at maximum intensity.

final public int getGreen (int pixel)
The getGreen() method returns the green component of pixel for the color
model. Its range is from 0 to 255. A value of 0 means the pixel has no green in
it. A value of 255 means green is at maximum intensity.

final public int getBlue (int pixel)
The getBlue() method returns the blue component of pixel for the color
model. Its range is from 0 to 255. A value of 0 means the pixel has no blue in
it. A value of 255 means blue is at maximum intensity.

final public int getRGB (int pixel)
The getRGB() method returns the color of pixel in the default RGB color
model. If a subclass has changed the ordering or size of the different color
components, getRGB() will return the pixel in the RGB color model (0xAAR-
RGGBB order). The getRGB() method in this subclass is identical to the
method in ColorModel but overrides it to make it final.

Other methods

final public int getAlphaMask ()
The getAlphaMask() method returns the alphaMask from the DirectColor-

Model constructor (or 0 if constructor did not have alphaMask). The
alphaMask specifies which bits in the pixel represent the alpha transparency
component of the color model.

10 July 2002 22:22

final public int getRedMask ()
The getRedMask() method returns the redMask from the DirectColorModel

constructor. The redMask specifies which bits in the pixel represent the red
component of the color model.

final public int getGreenMask ()
The getGreenMask() method returns the greenMask from the DirectColor-

Model constructor. The greenMask specifies which bits in the pixel represent
the green component of the color model.

final public int getBlueMask ()
The getBlueMask() method returns the blueMask from the DirectColorModel
constructor. The blueMask specifies which bits in the pixel represent the blue
component of the color model.

12.2.3 IndexColorModel
The IndexColorModel is another concrete subclass of ColorModel. It specifies a
ColorModel that uses a color map lookup table (with a maximum size of 256),
rather than storing color information in the pixels themselves. Pixels are repre-
sented by an index into the color map, which is at most an 8-bit quantity. Each
entr y in the color map gives the alpha, red, green, and blue components of some
color. One entry in the map can be designated “transparent.” This is called the
“transparent pixel”; the alpha component of this map entry is ignored.

All of the methods in this class, except constructors, are final because of assump-
tions made by the implementation. You shouldn’t need to create subclasses; you
can if necessary, but you can’t override any of the IndexColorModel methods.
Example 12-2 (later in this chapter) uses an IndexColorModel.

Constructors

There are two sets of constructors for IndexColorModel. The first two constructors
use a single-byte array for the color map. The second group implements the color
map with separate byte arrays for each color component.

public IndexColorModel (int bits, int size, byte colorMap[], int start, boolean hasalpha,
int transparent)

This constructor creates an IndexColorModel. bits is the number of bits used
to represent each pixel and must not exceed 8. size is the number of ele-
ments in the map; it must be less than 2bits. hasalpha should be true if the
color map includes alpha (transparency) components and false if it doesn’t.
transparent is the location of the transparent pixel in the map (i.e., the pixel
value that is considered transparent). If there is no transparent pixel, set
transparent to -1.

12.2 COLORMODEL 413

10 July 2002 22:22

414 CHAPTER 12: IMAGE PROCESSING

The colorMap describes the colors used to paint pixels. start is the index
within the colorMap array at which the map begins; prior elements of the array
are ignored. An entry in the map consists of three or four consecutive bytes,
representing the red, green, blue, and (optionally) alpha components. If
hasalpha is false, a map entry consists of three bytes, and no alpha compo-
nents are present; if hasalpha is true, map entries consist of four bytes, and all
four components must be present.

For example, consider a pixel whose value is p, and a color map with a hasal-
pha set to false. Therefore, each element in the color map occupies three
consecutive array elements. The red component of that pixel will be located
at colorMap[start + 3*p]; the green component will be at colorMap[start +
3*p + 1]; and so on. The value of size may be smaller than 2bits, meaning that
there may be pixel values with no corresponding entry in the color map.
These pixel values (i.e., size ≤ p < 2bits) are painted with the color compo-
nents set to 0; they are transparent if hasalpha is true, opaque otherwise.

If bits is too large (greater than 8), size is too large (greater than 2bits), or
the colorMap array is too small to hold the map, the run-time exception
ArrayIndexOutOfBoundsException will be thrown.

public IndexColorModel (int bits, int size, byte colorMap[], int start, boolean hasalpha)
This version of the IndexColorModel constructor calls the previous constructor
with a transparent index of -1; that is, there is no transparent pixel. If bits is
too large (greater than 8), or size is too large (greater than 2bits), or the col-
orMap array is too small to hold the map, the run-time exception, ArrayIndex-
OutOfBoundsException will be thrown.

public IndexColorModel (int bits, int size, byte red[], byte green[], byte blue[],
int transparent)

The second set of constructors for IndexColorModel is similar to the first
group, with the exception that these constructors use three or four separate
arrays (one per color component) to represent the color map, instead of a sin-
gle array.

The bits parameter still represents the number of bits in a pixel. size repre-
sents the number of elements in the color map. transparent is the location of
the transparent pixel in the map (i.e., the pixel value that is considered trans-
parent). If there is no transparent pixel, set transparent to -1.

The red, green, and blue arrays contain the color map itself. These arrays
must have at least size elements. They contain the red, green, and blue com-
ponents of the colors in the map. For example, if a pixel is at position p,
red[p] contains the pixel’s red component; green[p] contains the green

10 July 2002 22:22

component; and blue[p] contains the blue component. The value of size
may be smaller than 2bits, meaning that there may be pixel values with no cor-
responding entry in the color map. These pixel values (i.e., size ≤ p < 2bits)
are painted with the color components set to 0.

If bits is too large (greater than 8), size is too large (greater than 2bits), or
the red, green, and blue arrays are too small to hold the map, the run-time
exception ArrayIndexOutOfBoundsException will be thrown.

public IndexColorModel (int bits, int size, byte red[], byte green[], byte blue[])
This version of the IndexColorModel constructor calls the previous one with a
transparent index of -1; that is, there is no transparent pixel. If bits is too
large (greater than 8), size is too large (greater than 2bits), or the red, green,
and blue arrays are too small to hold the map, the run-time exception
ArrayIndexOutOfBoundsException will be thrown.

public IndexColorModel (int bits, int size, byte red[], byte green[], byte blue[], byte alpha[])
Like the previous constructor, this version creates an IndexColorModel with no
transparent pixel. It differs from the previous constructor in that it supports
transparency; the array alpha contains the map’s transparency values. If bits is
too large (greater than 8), size is too large (greater than 2bits), or the red,
green, blue, and alpha arrays are too small to hold the map, the run-time
exception ArrayIndexOutOfBoundsException will be thrown.

Methods

final public int getAlpha (int pixel)
The getAlpha() method returns the alpha component of pixel for a color
model, which is a number between 0 and 255, inclusive. A value of 0 means
the pixel is completely transparent and the background will appear through
the pixel. A value of 255 means the pixel is opaque and you cannot see the
background behind it.

final public int getRed (int pixel)
The getRed() method returns the red component of pixel for a color model,
which is a number between 0 and 255, inclusive. A value of 0 means the pixel
has no red in it. A value of 255 means red is at maximum intensity.

final public int getGreen (int pixel)
The getGreen() method returns the green component of pixel for a color
model, which is a number between 0 and 255, inclusive. A value of 0 means
the pixel has no green in it. A value of 255 means green is at maximum
intensity.

12.2 COLORMODEL 415

10 July 2002 22:22

416 CHAPTER 12: IMAGE PROCESSING

final public int getBlue (int pixel)
The getBlue() method returns the blue component of pixel for a color
model, which is a number between 0 and 255, inclusive. A value of 0 means
the pixel has no blue in it. A value of 255 means blue is at maximum intensity.

final public int getRGB (int pixel)
The getRGB() method returns the color of pixel in the default RGB color
model. If a subclass has changed the ordering or size of the different color
components, getRGB() will return the pixel in the RGB color model (0xAAR-
RGGBB order). This version of getRGB is identical to the version in the Color-
Model class but overrides it to make it final.

Other methods

final public int getMapSize()
The getMapSize() method returns the size of the color map (i.e., the number
of distinct colors).

final public int getTransparentPixel ()
The getTransparentPixel() method returns the color map index for the
transparent pixel in the color model. If no transparent pixel exists, it returns
-1. It is not possible to change the transparent pixel after the color model has
been created.

final public void getAlphas (byte alphas[])
The getAlphas() method copies the alpha components of the ColorModel

into elements 0 through getMapSize()-1 of the alphas array. Space must
already be allocated in the alphas array.

final public void getReds (byte reds[])
The getReds() method copies the red components of the ColorModel into ele-
ments 0 through getMapSize()-1 of the reds array. Space must already be
allocated in the reds array.

final public void getGreens (byte greens[])
The getGreens() method copies the green components of the ColorModel

into elements 0 through getMapSize()-1 of the greens array. Space must
already be allocated in the greens array.

final public void getBlues (byte blues[])
The getBlues() method copies the blue components of the ColorModel into
elements 0 through getMapSize()-1 of the blues array. Space must already be
allocated in the blues array.

10 July 2002 22:22

12.3 ImageProducer
The ImageProducer inter face defines the methods that ImageProducer objects
must implement. Image producers serve as sources for pixel data; they may com-
pute the data themselves or interpret data from some external source, like a GIF
file. No matter how it generates the data, an image producer’s job is to hand that
data to an image consumer, which usually renders the data on the screen. The
methods in the ImageProducer inter face let ImageConsumer objects register their
interest in an image. The business end of an ImageProducer—that is, the methods
it uses to deliver pixel data to an image consumer—are defined by the ImageCon-

sumer inter face. Therefore, we can summarize the way an image producer works as
follows:

• It waits for image consumers to register their interest in an image.

• As image consumers register, it stores them in a Hashtable, Vector, or some
other collection mechanism.

• As image data becomes available, it loops through all the registered consumers
and calls their methods to transfer the data.

There’s a sense in which you have to take this process on faith; image consumers
are usually well hidden. If you call createImage(), an image consumer will eventu-
ally show up.

Ever y Image has an ImageProducer associated with it; to acquire a reference to the
producer, use the getSource() method of Image.

Because an ImageProducer must call methods in the ImageConsumer inter face, we
won’t show an example of a full-fledged producer until we have discussed Image-

Consumer.

12.3.1 ImageProducer Interface
Methods

public void addConsumer (ImageConsumer ic)
The addConsumer() method registers ic as an ImageConsumer interested in the
Image information. Once an ImageConsumer is registered, the ImageProducer

can deliver Image pixels immediately or wait until startProduction() has
been called.

Note that one image may have many consumers; therefore, addConsumer()
usually stores image consumers in a collection like a Vector or Hashtable.
There is one notable exception: if the producer has the image data in

12.3 IMAGEPRODUCER 417

10 July 2002 22:22

418 CHAPTER 12: IMAGE PROCESSING

memor y, addConsumer() can deliver the image to the consumer immediately.
When addConsumer() returns, it has finished with the consumer. In this case,
you don’t need to manage a list of consumers, because there is only one image
consumer at a time. (In this case, addConsumer() should be implemented as a
synchronized method.)

public boolean isConsumer (ImageConsumer ic)
The isConsumer() method checks to see if ic is a registered ImageConsumer

for this ImageProducer. If ic is registered, true is returned. If ic is not regis-
tered, false is returned.

public void removeConsumer (ImageConsumer ic)
The removeConsumer() method removes ic as a registered ImageConsumer for
this ImageProducer. If ic was not a registered ImageConsumer, nothing should
happen. This is not an error that should throw an exception. Once ic has
been removed from the registry, the ImageProducer should no longer send
data to it.

public void startProduction (ImageConsumer ic)
The startProduction() method registers ic as an ImageConsumer interested
in the Image information and tells the ImageProducer to start sending the
Image data immediately. The ImageProducer sends the image data to ic and all
other registered ImageConsumer objects, through addConsumer().

public void requestTopDownLeftRightResend (ImageConsumer ic)
The requestTopDownLeftRightResend() method is called by the ImageCon-

sumer ic requesting that the ImageProducer retransmit the Image data in top-
down, left-to-right order. If the ImageProducer is unable to send the data in
that order or always sends the data in that order (like with MemoryImage-

Source), it can ignore the call.

12.3.2 FilteredImageSource
The FilteredImageSource class combines an ImageProducer and an ImageFilter

to create a new Image. The image producer generates pixel data for an original
image. The FilteredImageSource takes this data and uses an ImageFilter to pro-
duce a modified version: the image may be scaled, clipped, or rotated, or the col-
ors shifted, etc. The FilteredImageSource is the image producer for the new
image. The ImageFilter object transforms the original image’s data to yield the
new image; it implements the ImageConsumer inter face. We cover the ImageCon-

sumer inter face in Section 12.4 and the ImageFilter class in Section 12.5. Figure
12-1 shows the relationship between an ImageProducer, FilteredImageSource,
ImageFilter, and the ImageConsumer.

10 July 2002 22:22

Fil
ter

edImageSource

image data ImageConsumer

ImageFilter
(ImageConsumer)

image
data

ImageProducer
(original)

filtered image data

(ImageProducer)

Figure 12–1: Image producers, filters, and consumers

Constructors

public FilteredImageSource (ImageProducer original, ImageFilter filter)
The FilteredImageSource constructor creates an image producer that com-
bines an image, original, and a filter, filter, to create a new image. The
ImageProducer of the original image is the constructor’s first parameter; given
an Image, you can acquire its ImageProducer by using the getSource()

method. The following code shows how to create a new image from an origi-
nal. Section 12.5 shows several extensive examples of image filters.

Image image = getImage (new URL
("http://www.ora.com/graphics/headers/homepage.gif"));

Image newOne = createImage (new FilteredImageSource
(image.getSource(), new SomeImageFilter()));

ImageProducer interface methods

The ImageProducer inter face methods maintain an internal table for the image
consumers. Since this is private, you do not have direct access to it.

public synchronized void addConsumer (ImageConsumer ic)
The addConsumer() method adds ic as an ImageConsumer interested in the
pixels for this image.

public synchronized boolean isConsumer (ImageConsumer ic)
The isConsumer() method checks to see if ic is a registered ImageConsumer

for this ImageProducer. If ic is registered, true is returned. If not registered,
false is returned.

12.3 IMAGEPRODUCER 419

10 July 2002 22:22

420 CHAPTER 12: IMAGE PROCESSING

public synchronized void removeConsumer (ImageConsumer ic)
The removeConsumer() method removes ic as a registered ImageConsumer for
this ImageProducer.

public void startProduction (ImageConsumer ic)
The startProduction() method registers ic as an ImageConsumer interested
in the Image information and tells the ImageProducer to start sending the
Image data immediately.

public void requestTopDownLeftRightResend (ImageConsumer ic)
The requestTopDownLeftRightResend() method registers ic as an ImageCon-

sumer interested in the Image information and requests the ImageProducer to
retransmit the Image data in top-down, left-to-right order.

12.3.3 MemoryImageSource
The MemoryImageSource class allows you to create images completely in memory;
you generate pixel data, place it in an array, and hand that array and a ColorModel
to the MemoryImageSource constructor. The MemoryImageSource is an image pro-
ducer that can be used with a consumer to display the image on the screen. For
example, you might use a MemoryImageSource to display a Mandelbrot image or
some other image generated by your program. You could also use a MemoryImage-
Source to modify a pre-existing image; use PixelGrabber to get the image’s pixel
data, modify that data, and then use a MemoryImageSource as the producer for the
modified image. Finally, you can use MemoryImageSource to simplify implementa-
tion of a new image type; you can develop a class that reads an image in some
unsupported format from a local file or the network; interprets the image file and
puts pixel data into an array; and uses a MemoryImageSource to serve as an image
producer. This is simpler than implementing an image producer yourself, but it
isn’t quite as flexible; you lose the ability to display partial images as the data
becomes available.

In Java 1.1, MemoryImageSource supports multiframe images to animate a
sequence. In earlier versions, it was necessary to create a dynamic ImageFilter to
animate the image.

Constructors

There are six constructors for MemoryImageSource, each with slightly different
parameters. They all create an image producer that delivers some array of data to
an image consumer. The constructors are:

public MemoryImageSource (int w, int h, ColorModel cm, byte pix[], int off, int scan)
public MemoryImageSource (int w, int h, ColorModel cm, byte pix[], int off, int scan,
Hashtable props)

10 July 2002 22:22

public MemoryImageSource (int w, int h, ColorModel cm, int pix[],
int off, int scan)
public MemoryImageSource (int w, int h, ColorModel cm, int pix[],
int off, int scan, Hashtable props)
public MemoryImageSource (int w, int h, int pix[], int off, int scan)
public MemoryImageSource (int w, int h, int pix[], int off, int scan,
Hashtable props)

The parameters that might be present are:

w Width of the image being created, in pixels.

h Height of the image being created, in pixels.

cm The ColorModel that describes the color representation used in the pixel data.
If this parameter is not present, the MemoryImageSource uses the default RGB
color model (ColorModel.getRGBDefault()).

pix[]

The array of pixel information to be converted into an image. This may be
either a byte array or an int array, depending on the color model. If you’re
using a direct color model (including the default RGB color model), pix is
usually an int array; if it isn’t, it won’t be able to represent all 16 million possi-
ble colors. If you’re using an indexed color model, the array should be a byte
array. However, if you use an int array with an indexed color model, the Memo-
ryImageSource ignores the three high-order bytes because an indexed color
model has at most 256 entries in the color map. In general: if your color
model requires more than 8 bits of data per pixel, use an int array; if it
requires 8 bits or less, use a byte array.

off

The first pixel used in the array (usually 0); prior pixels are ignored.

scan

The number of pixels per line in the array (usually equal to w). The number of
pixels per scan line in the array may be larger than the number of pixels in the
scan line. Extra pixels in the array are ignored.

props

A Hashtable of the properties associated with the image. If this argument isn’t
present, the constructor assumes there are no properties.

The pixel at location (x, y) in the image is located at pix[y * scan + x + off].

12.3 IMAGEPRODUCER 421

10 July 2002 22:22

422 CHAPTER 12: IMAGE PROCESSING

ImageProducer interface methods

In Java 1.0, the ImageProducer inter face methods maintain a single internal vari-
able for the image consumer because the image is delivered immediately and syn-
chronously. There is no need to worry about multiple consumers; as soon as one
registers, you give it the image, and you’re done. These methods keep track of this
single ImageConsumer.

In Java 1.1, MemoryImageSource supports animation. One consequence of this new
feature is that it isn’t always possible to deliver all the image’s data immediately.
Therefore, the class maintains a list of image consumers that are notified when
each frame is generated. Since this list is private, you do not have direct access
to it.

public synchronized void addConsumer (ImageConsumer ic)
The addConsumer() method adds ic as an ImageConsumer interested in the
pixels for this image.

public synchronized boolean isConsumer (ImageConsumer ic)
The isConsumer() method checks to see if ic is a registered ImageConsumer

for this ImageProducer. If ic is registered, true is returned. If ic is not regis-
tered, false is returned.

public synchronized void removeConsumer (ImageConsumer ic)
The removeConsumer() method removes ic as a registered ImageConsumer for
this ImageProducer.

public void startProduction (ImageConsumer ic)
The startProduction() method calls addConsumer().

public void requestTopDownLeftRightResend (ImageConsumer ic)
The requestTopDownLeftRightResend() method does nothing since in-mem-
or y images are already in this format or are multiframed, with each frame in
this format.

Animation methods

In Java 1.1, MemoryImageSource supports animation; it can now pass multiple
frames to interested image consumers. This feature mimics GIF89a’s multiframe
functionality. (If you have GIF89a animations, you can display them using getIm-

age() and drawImage(); you don’t have to build a complicated creature using Mem-
oryImageSource.) . An animation example follows in Example 12-3 (later in this
chapter).

public synchronized void setAnimated(boolean animated) �

The setAnimated() method notifies the MemoryImageSource if it will be in ani-
mation mode (animated is true) or not (animated is false). By default, ani-
mation is disabled; you must call this method to generate an image sequence.

10 July 2002 22:22

To prevent losing data, call this method immediately after calling the Memory-
ImageSource constructor.

public synchronized void setFullBufferUpdates(boolean fullBuffers) �

The setFullBufferUpdates() method controls how image updates are done
during an animation. It is ignored if you are not creating an animation. If
fullBuffers is true, this method tells the MemoryImageSource that it should
always send all of an image’s data to the consumers whenever it received new
data (by a call to newPixels()). If fullBuffers is false, the MemoryImage-

Source sends only the changed portion of the image and notifies consumers
(by a call to ImageConsumer.setHints()) that frames sent will be complete.

Like setAnimated(), setFullBufferUpdates() should be called immediately
after calling the MemoryImageSource constructor, before the animation is
started.

To do the actual animation, you update the image array pix[] that was specified in
the constructor and call one of the overloaded newPixels() methods to tell the
MemoryImageSource that you have changed the image data. The parameters to
newPixels() determine whether you are animating the entire image or just a por-
tion of the image. You can also supply a new array to take pixel data from, replac-
ing pix[]. In any case, pix[] supplies the initial image data (i.e., the first frame of
the animation).

If you have not called setAnimated(true), calls to any version of newPixels() are
ignored.

public void newPixels() �

The version of newPixels() with no parameters tells the MemoryImageSource

to send the entire pixel data (frame) to all the registered image consumers
again. Data is taken from the original array pix[]. After the data is sent, the
MemoryImageSource notifies consumers that a frame is complete by calling
imageComplete(ImageConsumer.SINGLEFRAMEDONE), thus updating the display
when the image is redisplayed. Remember that in many cases, you don’t need
to update the entire image; updating part of the image saves CPU time, which
may be crucial for your application. To update part of the image, call one of
the other versions of newPixels().

public synchronized void newPixels(int x, int y, int w, int h) �

This newPixels() method sends part of the image in the array pix[] to the
consumers. The portion of the image sent has its upper left corner at the
point (x, y), width w and height h, all in pixels. Changing part of the image
rather than the whole thing saves considerably on system resources. Obviously,
it is appropriate only if most of the image is still. For example, you could use

12.3 IMAGEPRODUCER 423

10 July 2002 22:22

424 CHAPTER 12: IMAGE PROCESSING

this method to animate the steam rising from a cup of hot coffee, while leav-
ing the cup itself static (an image that should be familiar to anyone reading
JavaSoft’s Web site). After the data is sent, consumers are notified that a frame
is complete by a call to imageComplete(ImageConsumer.SINGLEFRAMEDONE),
thus updating the display when the image is redisplayed.

If setFullBufferUpdates() was called, the entire image is sent, and the
dimensions of the bounding box are ignored.

public synchronized void newPixels(int x, int y, int w, int h, boolean frameNotify) �

This newPixels() method is identical to the last, with one exception: con-
sumers are notified that new image data is available only when frameNotify is
true. This method allows you to generate new image data in pieces, updating
the consumers only once when you are finished.

If setFullBufferUpdates() was called, the entire image is sent, and the
dimensions of the bounding box are ignored.

public synchronized void newPixels(byte[] newpix, ColorModel newmodel, int offset,
int scansize) �

public synchronized void newPixels(int[] newpix, ColorModel newmodel, int offset,
int scansize) �

These newPixels() methods change the source of the animation to the byte

or int array newpix[], with a ColorModel of newmodel. offset marks the
beginning of the data in newpix to use, while scansize states the number of
pixels in newpix per line of Image data. Future calls to other versions of new-
Pixels() should modify newpix[] rather than pix[].

Using MemoryImageSource to create a static image

You can create an image by generating an integer or byte array in memory and
converting it to an image with MemoryImageSource. The following MemoryImage

applet generates two identical images that display a series of color bars from left to
right. Although the images look the same, they were generated differently: the
image on the left uses the default DirectColorModel; the image on the right uses
an IndexColorModel.

Because the image on the left uses a DirectColorModel, it stores the actual color
value of each pixel in an array of integers (rgbPixels[]). The image on the right
can use a byte array (indPixels[]) because the IndexColorModel puts the color
information in its color map instead of the pixel array; elements of the pixel array
need to be large enough only to address the entries in this map. Images that are
based on IndexColorModel are generally more efficient in their use of space (inte-
ger vs. byte arrays, although IndexColorModel requires small support arrays) and
in performance (if you filter the image).

10 July 2002 22:22

The output from this example is shown in Figure 12-2. The source is shown in
Example 12-2.

Figure 12–2: Memor yImage applet output

Example 12–2: Memor yImage Test Program

import java.applet.*;
import java.awt.*;
import java.awt.image.*;
public class MemoryImage extends Applet {

Image i, j;
int width = 200;
int height = 200;
public void init () {

int rgbPixels[] = new int [width*height];
byte indPixels[] = new byte [width*height];
int index = 0;
Color colorArray[] = {Color.red, Color.orange, Color.yellow,

Color.green, Color.blue, Color.magenta};
int rangeSize = width / colorArray.length;
int colorRGB;
byte colorIndex;
byte reds[] = new byte[colorArray.length];
byte greens[] = new byte[colorArray.length];
byte blues[] = new byte[colorArray.length];
for (int i=0;i<colorArray.length;i++) {

reds[i] = (byte)colorArray[i].getRed();
greens[i] = (byte)colorArray[i].getGreen();
blues[i] = (byte)colorArray[i].getBlue();

}
for (int y=0;y<height;y++) {

for (int x=0;x<width;x++) {
if (x < rangeSize) {

colorRGB = Color.red.getRGB();
colorIndex = 0;

} else if (x < (rangeSize*2)) {

12.3 IMAGEPRODUCER 425

10 July 2002 22:22

426 CHAPTER 12: IMAGE PROCESSING

Example 12–2: Memor yImage Test Program (continued)

colorRGB = Color.orange.getRGB();
colorIndex = 1;

} else if (x < (rangeSize*3)) {
colorRGB = Color.yellow.getRGB();
colorIndex = 2;

} else if (x < (rangeSize*4)) {
colorRGB = Color.green.getRGB();
colorIndex = 3;

} else if (x < (rangeSize*5)) {
colorRGB = Color.blue.getRGB();
colorIndex = 4;

} else {
colorRGB = Color.magenta.getRGB();
colorIndex = 5;

}
rgbPixels[index] = colorRGB;
indPixels[index] = colorIndex;
index++;

}
}
i = createImage (new MemoryImageSource (width, height, rgbPixels,

0, width));
j = createImage (new MemoryImageSource (width, height,

new IndexColorModel (8, colorArray.length, reds, greens, blues),
indPixels, 0, width));

}
public void paint (Graphics g) {

g.drawImage (i, 0, 0, this);
g.drawImage (j, width+5, 0, this);

}
}

Almost all of the work is done in init() (which, in a real applet, isn’t a terribly
good idea; ideally init() should be lightweight). Previously, we explained the
color model’s use for the images on the left and the right. Toward the end of
init(), we create the images i and j by calling createImage() with a MemoryIm-

ageSource as the image producer. For image i, we used the simplest MemoryImage-
Source constructor, which uses the default RGB color model. For j, we called the
IndexColorModel constructor within the MemoryImageSource constructor, to create
a color map that has only six entries: one for each of the colors we use.

Using MemoryImageSource for animation

As we’ve seen, Java 1.1 gives you the ability to create an animation using a Memory-
ImageSource by updating the image data in memory; whenever you have finished
an update, you can send the resulting frame to the consumers. This technique
gives you a way to do animations that consume very little memory, since you keep

10 July 2002 22:22

over writing the original image. The applet in Example 12-3 demonstrates Memory-
ImageSource’s animation capability by creating a Mandelbrot image in memory,
updating the image as new points are added. Figure 12-3 shows the results, using
four consumers to display the image four times.

Example 12–3: Mandelbrot Program

// Java 1.1 only
import java.awt.*;
import java.awt.image.*;
import java.applet.*;

public class Mandelbrot extends Applet implements Runnable {
Thread animator;
Image im1, im2, im3, im4;
public void start() {

animator = new Thread(this);
animator.start();

}
public synchronized void stop() {

animator = null;
}
public void paint(Graphics g) {

if (im1 != null)
g.drawImage(im1, 0, 0, null);

if (im2 != null)
g.drawImage(im2, 0, getSize().height / 2, null);

if (im3 != null)
g.drawImage(im3, getSize().width / 2, 0, null);

if (im4 != null)
g.drawImage(im4, getSize().width / 2, getSize().height / 2, null);

}
public void update (Graphics g) {

paint (g);
}
public synchronized void run() {

Thread.currentThread().setPriority(Thread.MIN_PRIORITY);
int width = getSize().width / 2;
int height = getSize().height / 2;
byte[] pixels = new byte[width * height];
int index = 0;
int iteration=0;
double a, b, p, q, psq, qsq, pnew, qnew;
byte[] colorMap = {(byte)255, (byte)255, (byte)255, // white

(byte)0, (byte)0, (byte)0}; // black
MemoryImageSource mis = new MemoryImageSource(

width, height,
new IndexColorModel (8, 2, colorMap, 0, false, -1),
pixels, 0, width);

mis.setAnimated(true);
im1 = createImage(mis);
im2 = createImage(mis);
im3 = createImage(mis);

12.3 IMAGEPRODUCER 427

10 July 2002 22:22

428 CHAPTER 12: IMAGE PROCESSING

Example 12–3: Mandelbrot Program (continued)

im4 = createImage(mis);
// Generate Mandelbrot
final int ITERATIONS = 16;
for (int y=0; y<height; y++) {

b = ((double)(y-64))/32;
for (int x=0; x<width; x++) {

a = ((double)(x-64))/32;
p=q=0;
iteration = 0;
while (iteration < ITERATIONS) {

psq = p*p;
qsq = q*q;
if ((psq + qsq) >= 4.0)

break;
pnew = psq - qsq + a;
qnew = 2*p*q+b;
p = pnew;
q = qnew;
iteration++;

}
if (iteration == ITERATIONS) {

pixels[index] = 1;
mis.newPixels(x, y, 1, 1);
repaint();

}
index++;

}
}

}
}

Most of the applet in Example 12-3 should be self-explanatory. The init() method
starts the thread in which we do our computation. paint() just displays the four
images we create. All the work, including the computation, is done in the thread’s
run() method. run() starts by setting up a color map, creating a MemoryImage-

Source with animation enabled and creating four images using that source as the
producer. It then does the computation, which I won’t explain; for our purposes,
the interesting part is what happens when we’ve computed a pixel. We set the
appropriate byte in our data array, pixels[], and then call newPixels(), giving the
location of the new pixel and its size (1 by 1) as arguments. Thus, we redraw the
images for every new pixel. In a real application, you would probably compute a
somewhat larger chunk of new data before updating the screen, but the same prin-
ciples apply.

10 July 2002 22:22

Figure 12–3: Mandelbrot output

12.4 ImageConsumer
The ImageConsumer inter face specifies the methods that must be implemented to
receive data from an ImageProducer. For the most part, that is the only context in
which you need to know about the ImageConsumer inter face. If you write an image
producer, it will be handed a number of obscure objects, about which you know
nothing except that they implement ImageConsumer, and that you can therefore
call the methods discussed in this section to deliver your data. The chances that
you will ever implement an image consumer are rather remote, unless you are
porting Java to a new environment. It is more likely that you will want to subclass
ImageFilter, in which case you may need to implement some of these methods.
But most of the time, you will just need to know how to hand your data off to the
next element in the chain.

The java.awt.image package includes two classes that implement ImageConsumer:
PixelGrabber and ImageFilter (and its subclasses). These classes are unique in
that they don’t display anything on the screen. PixelGrabber takes the image data
and stores it in a pixel array; you can use this array to save the image in a file, gen-
erate a new image, etc. ImageFilter, which is used in conjunction with Filtered-

ImageSource, modifies the image data; the FilteredImageSource sends the
modified image to another consumer, which can further modify or display the new
image. When you draw an image on the screen, the JDK’s ImageRepresentation
class is probably doing the real work. This class is part of the sun.awt.image pack-
age. You really don’t need to know anything about it, although you may see
ImageRepresentation mentioned in a stack trace if you try to filter beyond the end
of a pixel array.

12.4 IMAGECONSUMER 429

10 July 2002 22:22

430 CHAPTER 12: IMAGE PROCESSING

12.4.1 ImageConsumer Interface
Constants

There are two sets of constants for ImageConsumer. One set represents those that
can be used for the imageComplete() method. The other is used with the
setHints() method. See the descriptions of those methods on how to use them.

The first set of flags is for the imageComplete() method:

public static final int IMAGEABORTED
The IMAGEABORTED flag signifies that the image creation process was aborted
and the image is not complete. In the image production process, an abort
could mean multiple things. It is possible that retrying the production would
succeed.

public static final int IMAGEERROR
The IMAGEERROR flag signifies that an error was encountered during the image
creation process and the image is not complete. In the image production pro-
cess, an error could mean multiple things. More than likely, the image file or
pixel data is invalid, and retrying won’t succeed.

public static final int SINGLEFRAMEDONE
The SINGLEFRAMEDONE flag signifies that a frame other than the last has com-
pleted loading. There are additional frames to display, but a new frame is avail-
able and is complete. For an example of this flag in use, see the dynamic
ImageFilter example in Example 12-8.

public static final int STATICIMAGEDONE
The STATICIMAGEDONE flag signifies that the image has completed loading. If
this is a multiframe image, all frames have been generated. For an example of
this flag in use, see the dynamic ImageFilter example in Example 12-8.

The following set of flags can be ORed together to form the single parameter to
the setHints() method. Certain flags do not make sense set together, but it is the
responsibility of the concrete ImageConsumer to enforce this.

public static final int COMPLETESCANLINES
The COMPLETESCANLINES flag signifies that each call to setPixels() will deliver
at least one complete scan line of pixels to this consumer.

public static final int RANDOMPIXELORDER
The RANDOMPIXELORDER flag tells the consumer that pixels are not provided in
any particular order. Therefore, the consumer cannot perform optimization
that depends on pixel delivery order. In the absence of both COMPLETESCAN-

LINES and RANDOMPIXELORDER, the ImageConsumer should assume pixels will
arrive in RANDOMPIXELORDER.

10 July 2002 22:22

public static final int SINGLEFRAME
The SINGLEFRAME flag tells the consumer that this image contains a single non-
changing frame. This is the case with most image formats. An example of an
image that does not contain a single frame is the multiframe GIF89a image.

public static final int SINGLEPASS
The SINGLEPASS flag tells the consumer to expect each pixel once and only
once. Certain image formats, like progressive JPEG images, deliver a single
image several times, with each pass yielding a sharper image.

public static final int TOPDOWNLEFTRIGHT
The final setHints() flag, TOPDOWNLEFTRIGHT, tells the consumer to expect the
pixels in a top-down, left-right order. This flag will almost always be set.

Methods

The interface methods are presented in the order in which they are normally
called by an ImageProducer.

void setDimensions (int width, int height)
The setDimensions() method should be called once the ImageProducer

knows the width and height of the image. This is the actual width and height,
not necessarily the scaled size. It is the consumer’s responsibility to do the scal-
ing and resizing.

void setProperties (Hashtable properties)
The setProperties() method should only be called by the ImageProducer if
the image has any properties that should be stored for later retrieval with the
getProperty() method of Image. Ever y image format has its own property set.
One property that tends to be common is the “comment” property. proper-
ties represents the Hashtable of properties for the image; the name of each
property is used as the Hashtable key.

void setColorModel (ColorModel model)
The setColorModel() method gives the ImageProducer the opportunity to tell
the ImageConsumer that the ColorModel model will be used for the majority of
pixels in the image. The ImageConsumer may use this information for optimiza-
tion. However, each call to setPixels() contains its own ColorModel, which
isn’t necessarily the same as the color model given here. In other words, set-
ColorModel() is only advisory; it does not guarantee that all (or any) of the
pixels in the image will use this model. Using different color models for differ-
ent parts of an image is possible, but not recommended.

12.4 IMAGECONSUMER 431

10 July 2002 22:22

432 CHAPTER 12: IMAGE PROCESSING

void setHints (int hints)
An ImageProducer should call the setHints() method prior to any setPix-

els() calls. The hints are formed by ORing the constants COMPLETESCANLINES,
RANDOMPIXELORDER, SINGLEFRAME, SINGLEPASS, and TOPDOWNLEFTRIGHT. These
hints give the image consumer information about the order in which the pro-
ducer will deliver pixels. When the ImageConsumer is receiving pixels, it can
take advantage of these hints for optimization.

void setPixels (int x, int y, int width, int height, ColorModel model, byte pixels[],
int offset, int scansize)

An ImageProducer calls the setPixels() method to deliver the image pixel
data to the ImageConsumer. The bytes are delivered a rectangle at a time. (x,
y) represents the top left corner of the rectangle; its dimensions are width

height. model is the ColorModel used for this set of pixels; different calls to
setPixels() may use different color models. The pixels themselves are taken
from the byte array pixels. offset is the first element of the pixel array that
will be used. scansize is the length of the scan lines in the array. In most cases,
you want the consumer to render all the pixels on the scan line; in this case,
scansize will equal width. However, there are cases in which you want the con-
sumer to ignore part of the scan line; you may be clipping an image, and the
ends of the scan line fall outside the clipping region. In this case, rather than
copying the pixels you want into a new array, you can specify a width that is
smaller than scansize.

That’s a lot of information, but it’s easy to summarize. A pixel located at point
(x1, y1) within the rectangle being delivered to the consumer is located at
position ((y1 - y) * scansize + (x1 - x) + offset) within the array pix-
els[]. Figure 12-4 shows how the pixels delivered by setPixels() fit into the
complete image; Figure 12-5 shows how pixels are stored within the array.

void setPixels (int x, int y, int width, int height, ColorModel model, int pixels[],
int offset, int scansize)

The second setPixels() method is similar to the first. pixels[] is an array of
ints; this is necessary when you have more than eight bits of data per pixel.

void imageComplete (int status)
The ImageProducer calls imageComplete() to tell an ImageConsumer that it has
transferred a complete image. The status argument is a flag that describes
exactly why the ImageProducer has finished. It may have one of the following
values: IMAGEABORTED (if the image production was aborted); IMAGEERROR (if an
error in producing the image occurred); SINGLEFRAMEDONE (if a single frame
of a multiframe image has been completed); or STATICIMAGEDONE (if all pixels
have been delivered). When imageComplete() gets called, the ImageConsumer

should call the image producer’s removeConsumer() method, unless it wants to
receive additional frames (status of SINGLEFRAMEDONE).

10 July 2002 22:22

(x,y)

he
igh

t f
ro

m
s
e
t
D
i
m
e
n
s
i
o
n
s
(
)

width from setDimensions()

width from setPixels()

he
igh

t f
ro

m
s
e
t
P
i
x
e
l
s
(
)

(x1,y1)

pixels delivered by setPixels()

Figure 12–4: Delivering pixels for an image

y1 = 0

offset width scansize - width width scansize - width

y1 = 1

unused data unused datax1=0, x1=1, x1=2, … x1=0, x1=1, x1=2, …unused data

Figure 12–5: Storing pixels in an array

PPMImageDecoder

Now that we have discussed the ImageConsumer inter face, we’re finally ready to
give an example of a full-fledged ImageProducer. This producer uses the methods
of the ImageConsumer inter face to communicate with image consumers; image
consumers use the ImageProducer inter face to register themselves with this pro-
ducer.

Our image producer will interpret images in the PPM format.* PPM is a simple
image format developed by Jef Poskanzer as part of the pbmplus image conversion
package. A PPM file starts with a header consisting of the image type, the image’s
width and height in pixels, and the maximum value of any RGB component. The

* For more information about PPM and the pbmplus package, see Encyclopedia of Graphics File Formats, by
James D. Murray and William VanR yper (from O’Reilly & Associates). See also http://www.acme.com/.

12.4 IMAGECONSUMER 433

10 July 2002 22:22

434 CHAPTER 12: IMAGE PROCESSING

header is entirely in ASCII. The pixel data follows the header; it is either in binary
(if the image type is P6) or ASCII (if the image type is P3). The pixel data is simply
a series of bytes describing the color of each pixel, moving left to right and top to
bottom. In binary format, each pixel is represented by three bytes: one for red,
one for green, and one for blue. In ASCII format, each pixel is represented by
three numeric values, separated by white space (space, tab, or newline). A com-
ment may occur anywhere in the file, but it would be surprising to see one outside
of the header. Comments start with # and continue to the end of the line. ASCII
format files are obviously much larger than binary files. There is no compression
on either file type.

The PPMImageDecoder source is listed in Example 12-4. The applet that uses this
class is shown in Example 12-5. You can reuse a lot of the code in the PPMImageDe-
coder when you implement your own image producers.

Example 12–4: PPMImageDecoder Source

import java.awt.*;
import java.awt.image.*;
import java.util.*;
import java.io.*;

public class PPMImageDecoder implements ImageProducer {

/* Since done in-memory, only one consumer */
private ImageConsumer consumer;
boolean loadError = false;
int width;
int height;
int store[][];
Hashtable props = new Hashtable();

/* Format of Ppm file is single pass/frame, w/ complete scan lines in order */
private static int PpmHints = (ImageConsumer.TOPDOWNLEFTRIGHT |

ImageConsumer.COMPLETESCANLINES |
ImageConsumer.SINGLEPASS |
ImageConsumer.SINGLEFRAME);

The class starts by declaring class variables and constants. We will use the variable
PpmHints when we call setHints(). Here, we set this variable to a collection of
“hint” constants that indicate we will produce pixel data in top-down, left-right
order; we will always send complete scan lines; we will make only one pass over the
pixel data (we will send each pixel once); and there is one frame per image (i.e.,
we aren’t producing a multiframe sequence).

The next chunk of code implements the ImageProducer inter face; consumers use
it to request image data:

10 July 2002 22:22

/* There is only a single consumer. When it registers, produce image. */
/* On error, notify consumer. */

public synchronized void addConsumer (ImageConsumer ic) {
consumer = ic;
try {

produce();
}catch (Exception e) {

if (consumer != null)
consumer.imageComplete (ImageConsumer.IMAGEERROR);

}
consumer = null;

}

/* If consumer passed to routine is single consumer, return true, else false. */

public synchronized boolean isConsumer (ImageConsumer ic) {
return (ic == consumer);

}

/* Disables consumer if currently consuming. */

public synchronized void removeConsumer (ImageConsumer ic) {
if (consumer == ic)

consumer = null;
}

/* Production is done by adding consumer. */

public void startProduction (ImageConsumer ic) {
addConsumer (ic);

}

public void requestTopDownLeftRightResend (ImageConsumer ic) {
// Not needed. The data is always in this format.

}

The previous group of methods implements the ImageProducer inter face. They
are quite simple, largely because of the way this ImageProducer generates images.
It builds the image in memory before delivering it to the consumer; you must call
the readImage() method (discussed shortly) before you can create an image with
this consumer. Because the image is in memory before any consumers can register
their interest, we can write an addConsumer() method that registers a consumer
and delivers all the data to that consumer before returning. Therefore, we don’t
need to manage a list of consumers in a Hashtable or some other collection
object. We can store the current consumer in an instance variable ic and forget
about any others: only one consumer exists at a time. To make sure that only one
consumer exists at a time, we synchronize the addConsumer(), isConsumer(), and
removeConsumer() methods. Synchronization prevents another consumer from

12.4 IMAGECONSUMER 435

10 July 2002 22:22

436 CHAPTER 12: IMAGE PROCESSING

registering itself before the current consumer has finished. If you write an Image-

Producer that builds the image in memory before delivering it, you can probably
use this code verbatim.

addConsumer() is little more than a call to the method produce(), which handles
“consumer relations”: it delivers the pixels to the consumer using the methods in
the ImageConsumer inter face. If produce() throws an exception, addConsumer()
calls imageComplete() with an IMAGEERROR status code. Here’s the code for the
produce() method:

/* Production Process:
Prerequisite: Image already read into store array. (readImage)

props / width / height already set (readImage)
Assumes RGB Color Model - would need to filter to change.
Sends Ppm Image data to consumer.
Pixels sent one row at a time.

*/

private void produce () {
ColorModel cm = ColorModel.getRGBdefault();
if (consumer != null) {

if (loadError) {
consumer.imageComplete (ImageConsumer.IMAGEERROR);

} else {
consumer.setDimensions (width, height);
consumer.setProperties (props);
consumer.setColorModel (cm);
consumer.setHints (PpmHints);
for (int j=0;j<height;j++)

consumer.setPixels (0, j, width, 1, cm, store[j], 0, width);
consumer.imageComplete (ImageConsumer.STATICIMAGEDONE);

}
}

}

produce() just calls the ImageConsumer methods in order: it sets the image’s
dimensions, hands off an empty Hashtable of properties, sets the color model (the
default RGB model) and the hints, and then calls setPixels() once for each row
of pixel data. The data is in the integer array store[][], which has already been
loaded by the readImage() method (defined in the following code). When the
data is delivered, the method setPixels() calls imageComplete() to indicate that
the image has been finished successfully.

/* Allows reading to be from internal byte array, in addition to disk/socket */

public void readImage (byte b[]) {
readImage (new ByteArrayInputStream (b));

}

/* readImage reads image data from Stream */
/* parses data for PPM format */

10 July 2002 22:22

/* closes inputstream when done */

public void readImage (InputStream is) {
long tm = System.currentTimeMillis();
boolean raw=false;
DataInputStream dis = null;
BufferedInputStream bis = null;
try {

bis = new BufferedInputStream (is);
dis = new DataInputStream (bis);
String word;
word = readWord (dis);
if ("P6".equals (word)) {

raw = true;
} else if ("P3".equals (word)) {

raw = false;
} else {

throw (new AWTException ("Invalid Format " + word));
}
width = Integer.parseInt (readWord (dis));
height = Integer.parseInt (readWord (dis));
// Could put comments in props - makes readWord more complex
int maxColors = Integer.parseInt (readWord (dis));
if ((maxColors < 0) || (maxColors > 255)) {

throw (new AWTException ("Invalid Colors " + maxColors));
}
store = new int[height][width];
if (raw) { // binary format (raw) pixel data

byte row[] = new byte [width*3];
for (int i=0;i<height;i++){

dis.readFully (row);
for (int j=0,k=0;j<width;j++,k+=3) {

int red = row[k];
int green = row[k+1];
int blue = row[k+2];
if (red < 0)

red +=256;
if (green < 0)

green +=256;
if (blue < 0)

blue +=256;
store[i][j] = (0xff<< 24) | (red << 16) |

(green << 8) | blue;
}

}
} else { // ASCII pixel data

for (int i=0;i<height;i++) {
for (int j=0;j<width;j++) {

int red = Integer.parseInt (readWord (dis));
int green = Integer.parseInt (readWord (dis));
int blue = Integer.parseInt (readWord (dis));
store[i][j] = (0xff<< 24) | (red << 16) |

(green << 8) | blue;
}

12.4 IMAGECONSUMER 437

10 July 2002 22:22

438 CHAPTER 12: IMAGE PROCESSING

}
}

} catch (IOException io) {
loadError = true;
System.out.println ("IO Exception " + io.getMessage());

} catch (AWTException awt) {
loadError = true;
System.out.println ("AWT Exception " + awt.getMessage());

} catch (NoSuchElementException nse) {
loadError = true;
System.out.println ("No Such Element Exception " + nse.getMessage());

} finally {
try {

if (dis != null)
dis.close();

if (bis != null)
bis.close();

if (is != null)
is.close();

} catch (IOException io) {
System.out.println ("IO Exception " + io.getMessage());

}
}
System.out.println ("Done in " + (System.currentTimeMillis() - tm)

+ " ms");
}

readImage() reads the image data from an InputStream and converts it into the
array of pixel data that produce() transfers to the consumer. Code using this class
must call readImage() to process the data before calling createImage(); we’ll see
how this works shortly. Although there is a lot of code in readImage(), it’s fairly
simple. (It would be much more complex if we were dealing with an image format
that compressed the data.) It makes heavy use of readWord(), a utility method that
we’ll discuss next; readWord() returns a word of ASCII text as a string.

readImage() starts by converting the InputStream into a DataInputStream. It uses
readWord() to get the first word from the stream. This should be either “P6” or
“P3”, depending on whether the data is in binary or ASCII. It then uses read-
Word() to save the image’s width and height and the maximum value of any color
component. Next, it reads the color data into the store[][] array. The ASCII case
is simple because we can use readWord() to read ASCII words conveniently; we
read red, green, and blue words, convert them into ints, and pack the three into
one element (one pixel) of store[][]. For binary data, we read an entire scan line
into the byte array row[], using readFully(); then we start a loop that packs this
scan line into one row of store[][]. A little additional complexity is in the inner
loop because we must keep track of two arrays (row[] and store[][]). We read
red, green, and blue components from row[], converting Java’s signed bytes to
unsigned data by adding 256 to any negative values; finally, we pack these compo-
nents into one element of store[][].

10 July 2002 22:22

/* readWord returns a word of text from stream */
/* Ignores PPM comment lines. */
/* word defined to be something wrapped by whitespace */

private String readWord (InputStream is) throws IOException {
StringBuffer buf = new StringBuffer();
int b;
do {// get rid of leading whitespace

if ((b=is.read()) == -1)
throw new EOFException();

if ((char)b == ’#’) { // read to end of line - ppm comment
DataInputStream dis = new DataInputStream (is);
dis.readLine();
b = ’ ’; // ensure more reading

}
}while (Character.isSpace ((char)b));
do {

buf.append ((char)(b));
if ((b=is.read()) == -1)

throw new EOFException();
} while (!Character.isSpace ((char)b)); // reads first space
return buf.toString();

}
}

readWord() is a utility method that reads one ASCII word from an InputStream. A
word is a sequence of characters that aren’t spaces; space characters include new-
lines and tabs in addition to spaces. This method also throws out any comments
(anything between # and the end of the line). It collects the characters into a
StringBuffer, converting the StringBuffer into a String when it returns.

Example 12–5: PPMImageDecoder Test Program

import java.awt.Graphics;
import java.awt.Color;
import java.awt.image.ImageConsumer;
import java.awt.Image;
import java.awt.MediaTracker;
import java.net.URL;
import java.net.MalformedURLException;
import java.io.InputStream;
import java.io.IOException;
import java.applet.Applet;
public class ppmViewer extends Applet {

Image image = null;
public void init () {

try {
String file = getParameter ("file");
if (file != null) {

URL imageurl = new URL (getDocumentBase(), file);
InputStream is = imageurl.openStream();
PPMImageDecoder ppm = new PPMImageDecoder ();
ppm.readImage (is);

12.4 IMAGECONSUMER 439

10 July 2002 22:22

440 CHAPTER 12: IMAGE PROCESSING

Example 12–5: PPMImageDecoder Test Program (continued)

image = createImage (ppm);
repaint();

}
} catch (MalformedURLException me) {

System.out.println ("Bad URL");
} catch (IOException io) {

System.out.println ("Bad File");
}

}
public void paint (Graphics g) {

g.drawImage (image, 0, 0, this);
}

}

The applet we use to test our ImageProducer is very simple. It creates a URL that
points to an appropriate PPM file and gets an InputStream from that URL. It then
creates an instance of our PPMImageDecoder; calls readImage() to load the image
and generate pixel data; and finally, calls createImage() with our ImageProducer
as an argument to create an Image object, which we draw in paint().

12.4.2 PixelGrabber
The PixelGrabber class is a utility for converting an image into an array of pixels.
This is useful in many situations. If you are writing a drawing utility that lets users
create their own graphics, you probably want some way to save a drawing to a file.
Likewise, if you’re implementing a shared whiteboard, you’ll want some way to
transmit images across the Net. If you’re doing some kind of image processing,
you may want to read and alter individual pixels in an image. The PixelGrabber

class is an ImageConsumer that can capture a subset of the current pixels of an
Image. Once you have the pixels, you can easily save the image in a file, send it
across the Net, or work with individual points in the array. To recreate the Image

(or a modified version), you can pass the pixel array to a MemoryImageSource.

Prior to Java 1.1, PixelGrabber saves an array of pixels but doesn’t save the image’s
width and height—that’s your responsibility. You may want to put the width and
height in the first two elements of the pixel array and use an offset of 2 when you
store (or reproduce) the image.

Starting with Java 1.1, the grabbing process changes in several ways. You can ask
the PixelGrabber for the image’s size or color model. You can grab pixels asyn-
chronously and abort the grabbing process before it is completed. Finally, you
don’t have to preallocate the pixel data array.

10 July 2002 22:22

Constructors

public PixelGrabber (ImageProducer ip, int x, int y, int width, int height, int pixels[],
int offset, int scansize)

The first PixelGrabber constructor creates a new PixelGrabber instance. The
PixelGrabber uses ImageProducer ip to store the unscaled cropped rectangle
at position (x, y) of size width height into the pixels array, starting at offset
within pixels, and each row starting at increments of scansize from that.

As shown in Figure 12-5, the position (x1, y1) would be stored in pixels[] at
position (y1 - y) * scansize + (x1 - x) + offset. Calling grabPixels()

starts the process of writing pixels into the array.

The ColorModel for the pixels copied into the array is always the default RGB
model: that is, 32 bits per pixel, with 8 bits for alpha, red, green, and blue
components.

public PixelGrabber (Image image, int x, int y, int width, int height, int pixels[], int offset,
int scansize)

This version of the PixelGrabber constructor gets the ImageProducer of the
Image image through getSource(); it then calls the previous constructor to
create the PixelGrabber.

public PixelGrabber (Image image, int x, int y, int width, int height, boolean forceRGB) �

This version of the constructor does not require you to preallocate the pixel
array and lets you preserve the color model of the original image. If forceRGB
is true, the pixels of image are converted to the default RGB model when
grabbed. If forceRGB is false and all the pixels of image use one ColorModel,
the original color model of image is preserved.

As with the other constructors, the x, y, width, and height values define the
bounding box to grab. However, there’s one special case to consider. Setting
width or height to -1 tells the PixelGrabber to take the width and height

from the image itself. In this case, the grabber stores all the pixels below and
to the right of the point (x, y). If (x, y) is outside of the image, you get an
empty array.

Once the pixels have been grabbed, you get the pixel data via the getPixels()
method described in “Other methods.” To get the ColorModel, see the get-

ColorModel() method.

ImageConsumer interface methods

public void setDimensions (int width, int height)
In Java 1.0, the setDimensions() method of PixelGrabber ignores the width

and height, since this was set by the constructor.

12.4 IMAGECONSUMER 441

10 July 2002 22:22

442 CHAPTER 12: IMAGE PROCESSING

With Java 1.1, setDimensions() is called by the image producer to give it the
dimensions of the original image. This is how the PixelGrabber finds out the
image’s size if the constructor specified -1 for the image’s width or height.

public void setHints (int hints)
The setHints() method ignores the hints.

public void setProperties (Hashtable properties)
The setProperties() method ignores the properties.

public void setColorModel (ColorModel model)
The setColorModel() method ignores the model.

public void setPixels (int x, int y, int w, int h, ColorModel model, byte pixels[],
int offset, int scansize)

The setPixels() method is called by the ImageProducer to deliver pixel data
for some image. If the pixels fall within the portion of the image that the Pix-
elGrabber is interested in, they are stored within the array passed to the Pix-

elGrabber constructor. If necessar y, the ColorModel is used to convert each
pixel from its original representation to the default RGB representation. This
method is called when each pixel coming from the image producer is repre-
sented by a byte.

public void setPixels (int x, int y, int w, int h, ColorModel model, int pixels[],
int offset, int scansize)

The second setPixels() method is almost identical to the first; it is used when
each pixel coming from the image producer is represented by an int.

public synchronized void imageComplete (int status)
The imageComplete() method uses status to determine if the pixels were suc-
cessfully delivered. The PixelGrabber then notifies anyone waiting for the pix-
els from a grabPixels() call.

Grabbing methods

public synchronized boolean grabPixels (long ms) throws InterruptedException
The grabPixels() method starts storing pixel data from the image. It doesn’t
return until all pixels have been loaded into the pixels array or until ms mil-
liseconds have passed. The return value is true if all pixels were successfully
acquired. Otherwise, it returns false for the abort, error, or timeout condition
encountered. The exception InterruptedException is thrown if another
thread interrupts this one while waiting for pixel data.

10 July 2002 22:22

public boolean grabPixels () throws InterruptedException
This grabPixels() method starts storing pixel data from the image. It doesn’t
return until all pixels have been loaded into the pixels array. The return value
is true if all pixels were successfully acquired. It returns false if it encoun-
tered an abort or error condition. The exception InterruptedException is
thrown if another thread interrupts this one while waiting for pixel data.

public synchronized void startGrabbing() �

The startGrabbing() method provides an asynchronous means of grabbing
the pixels. This method returns immediately; it does not block like the
grabPixels() methods described previously. To find out when the PixelGrab-
ber has finished, call getStatus().

public synchronized void abortGrabbing() �

The abortGrabbing() method allows you to stop grabbing pixel data from the
image. If a thread is waiting for pixel data from a grabPixels() call, it is inter-
rupted and grabPixels() throws an InterruptedException.

Other methods

public synchronized int getStatus() �

public synchronized int status () ✩

Call the getStatus() method to find out whether a PixelGrabber succeeded
in grabbing the pixels you want. The return value is a set of ImageObserver
flags ORed together. ALLBITS and FRAMEBITS indicate success; which of the two
you get depends on how the image was created. ABORT and ERROR indicate that
problems occurred while the image was being produced.

status()is the Java 1.0 name for this method.

public synchronized int getWidth() �

The getWidth() method reports the width of the image data stored in the des-
tination buffer. If you set width to -1 when you called the PixelGrabber con-
structor, this information will be available only after the grabber has received
the information from the image producer (setDimensions()). If the width is
not available yet, getWidth() returns -1.

The width of the resulting image depends on several factors. If you specified
the width explicitly in the constructor, the resulting image has that width, no
questions asked—even if the position at which you start grabbing is outside
the image. If you specified -1 for the width, the resulting width will be the dif-
ference between the x position at which you start grabbing (set in the con-
structor) and the actual image width; for example, if you start grabbing at
x=50 and the original image width is 100, the width of the resulting image is
50. If x falls outside the image, the resulting width is 0.

12.4 IMAGECONSUMER 443

10 July 2002 22:22

444 CHAPTER 12: IMAGE PROCESSING

public synchronized int getHeight() �

The getHeight() method reports the height of the image data stored in the
destination buffer. If you set height to -1 when you called the PixelGrabber

constructor, this information will be available only after the grabber has
received the information from the image producer (setDimensions()). If the
height is not available yet, getHeight() returns -1.

The height of the resulting image depends on several factors. If you specified
the height explicitly in the constructor, the resulting image has that height, no
questions asked—even if the position at which you start grabbing is outside
the image. If you specified -1 for the height, the resulting height will be the
difference between the y position at which you start grabbing (set in the con-
structor) and the actual image height; for example, if you start grabbing at
y=50 and the original image height is 100, the height of the resulting image is
50. If y falls outside the image, the resulting height is 0.

public synchronized Object getPixels() �

The getPixels() method returns an array of pixel data. If you passed a pixel
array to the constructor, you get back your original array object, with the data
filled in. If, however, the array was not previously allocated, you get back a new
array. The size of this array depends on the image you are grabbing and the
portion of that image you want. If size and image format are not known yet,
this method returns null. If the PixelGrabber is still grabbing pixels, this
method returns an array that may change based upon the rest of the image.
The type of the array you get is either int[] or byte[], depending on the
color model of the image. To find out if the PixelGrabber has finished, call
getStatus().

public synchronized ColorModel getColorModel() �

The getColorModel() method returns the color model of the image. This
could be the default RGB ColorModel if a pixel buffer was explicitly provided,
null if the color model is not known yet, or a varying color model until all the
pixel data has been grabbed. After all the pixels have been grabbed, getCol-
orModel() returns the actual color model used for the getPixels()array. It is
best to wait until grabbing has finished before you ask for the ColorModel; to
find out, call getStatus().

Using PixelGrabber to modify an image

You can modify images by combining a PixelGrabber with MemoryImageSource.
Use getImage() to load an image from the Net; then use PixelGrabber to convert
the image into an array. Modify the data in the array any way you please; then use
MemoryImageSource as an image producer to display the new image.

10 July 2002 22:22

Example 12-6 demonstrates the use of the PixelGrabber and MemoryImageSource

to rotate, flip, and mirror an image. (We could also do the rotations with a subclass
of ImageFilter, which we will discuss next.) The output is shown in Figure 12-6.
When working with an image that is loaded from a local disk or the network,
remember to wait until the image is loaded before grabbing its pixels. In this
example, we use a MediaTracker to wait for the image to load.

Example 12–6: Flip Source

import java.applet.*;
import java.awt.*;
import java.awt.image.*;
public class flip extends Applet {

Image i, j, k, l;
public void init () {

MediaTracker mt = new MediaTracker (this);
i = getImage (getDocumentBase(), "ora-icon.gif");
mt.addImage (i, 0);

try {
mt.waitForAll();
int width = i.getWidth(this);
int height = i.getHeight(this);
int pixels[] = new int [width * height];
PixelGrabber pg = new PixelGrabber
(i, 0, 0, width, height, pixels, 0, width);
if (pg.grabPixels() && ((pg.status() &

ImageObserver.ALLBITS) !=0)) {
j = createImage (new MemoryImageSource (width, height,

rowFlipPixels (pixels, width, height), 0, width));
k = createImage (new MemoryImageSource (width, height,

colFlipPixels (pixels, width, height), 0, width));
l = createImage (new MemoryImageSource (height, width,

rot90Pixels (pixels, width, height), 0, height));
}

} catch (InterruptedException e) {
e.printStackTrace();

}
}

The try block in Example 12-6 does all the interesting work. It uses a PixelGrab-
ber to grab the entire image into the array pixels[]. After calling grabPixels(), it
checks the PixelGrabber status to make sure that the image was stored correctly. It
then generates three new images based on the first by calling createImage() with
a MemoryImageSource object as an argument. Instead of using the original array,
the MemoryImageSource objects call several utility methods to manipulate the array:
rowFlipPixels(), colFlipPixels(), and rot90Pixels(). These methods all
return integer arrays.

public void paint (Graphics g) {
g.drawImage (i, 10, 10, this); // regular
if (j != null)

12.4 IMAGECONSUMER 445

10 July 2002 22:22

446 CHAPTER 12: IMAGE PROCESSING

Figure 12–6: Flip output

g.drawImage (j, 150, 10, this); // rowFlip
if (k != null)

g.drawImage (k, 10, 60, this); // colFlip
if (l != null)

g.drawImage (l, 150, 60, this); // rot90
}
private int[] rowFlipPixels (int pixels[], int width, int height) {

int newPixels[] = null;
if ((width*height) == pixels.length) {

newPixels = new int [width*height];
int newIndex=0;
for (int y=height-1;y>=0;y--)

for (int x=width-1;x>=0;x--)
newPixels[newIndex++]=pixels[y*width+x];

}
return newPixels;

}

rowFlipPixels() creates a mirror image of the original, flipped horizontally. It is
nothing more than a nested loop that copies the original array into a new array.

private int[] colFlipPixels (int pixels[], int width, int height) {
...

}
private int[] rot90Pixels (int pixels[], int width, int height) {

...
}

}

colFlipPixels() and rot90Pixels() are fundamentally similar to

10 July 2002 22:22

rowFlipPixels(); they just copy the original pixel array into another array, and
return the result. colFlipPixels() generates a vertical mirror image; rot90Pix-
els() rotates the image by 90 degrees counterclockwise.

Grabbing data asynchronously

To demonstrate the new methods introduced by Java 1.1 for PixelGrabber, the fol-
lowing program grabs the pixels and reports information about the original image
on mouse clicks. It takes its data from the image used in Figure 12-6.

// Java 1.1 only
import java.applet.*;
import java.awt.*;
import java.awt.image.*;
import java.awt.event.*;
public class grab extends Applet {

Image i;
PixelGrabber pg;
public void init () {

i = getImage (getDocumentBase(), "ora-icon.gif");
pg = new PixelGrabber (i, 0, 0, -1, -1, false);
pg.startGrabbing();
enableEvents (AWTEvent.MOUSE_EVENT_MASK);

}
public void paint (Graphics g) {

g.drawImage (i, 10, 10, this);
}
protected void processMouseEvent(MouseEvent e) {

if (e.getID() == MouseEvent.MOUSE_CLICKED) {
System.out.println ("Status: " + pg.getStatus());
System.out.println ("Width: " + pg.getWidth());
System.out.println ("Height: " + pg.getHeight());
System.out.println ("Pixels: " +

(pg.getPixels() instanceof byte[] ? "bytes" : "ints"));
System.out.println ("Model: " + pg.getColorModel());

}
super.processMouseEvent (e);

}
}

This applet creates a PixelGrabber without specifying an array, then starts grab-
bing pixels. The grabber allocates its own array, but we never bother to ask for it
since we don’t do anything with the data itself: we only report the grabber’s status.
(If we wanted the data, we’d call getPixels().) Sample output from a single
mouse click, after the image loaded, would appear something like the following:

Status: 27
Width: 120
Height: 38
Pixels: bytes
Model: java.awt.image.IndexColorModel@1ed34

12.4 IMAGECONSUMER 447

10 July 2002 22:22

448 CHAPTER 12: IMAGE PROCESSING

You need to convert the status value manually to the corresponding meaning by
looking up the status codes in ImageObserver. The value 27 indicates that the 1, 2,
8, and 16 flags are set, which translates to the WIDTH, HEIGHT, SOMEBITS, and
FRAMEBITS flags, respectively.

12.5 ImageFilter
Image filters provide another way to modify images. An ImageFilter is used in
conjunction with a FilteredImageSource object. The ImageFilter, which imple-
ments ImageConsumer (and Cloneable), receives data from an ImageProducer and
modifies it; the FilteredImageSource, which implements ImageProducer, sends
the modified data to the new consumer. As Figure 12-1 shows, an image filter sits
between the original ImageProducer and the ultimate ImageConsumer.

The ImageFilter class implements a “null” filter that does nothing to the image.
To modify an image, you must use a subclass of ImageFilter, by either writing one
yourself or using a subclass provided with AWT, like the CropImageFilter. Another
ImageFilter subclass provided with AWT is the RGBImageFilter; it is useful for fil-
tering an image on the basis of a pixel’s color. Unlike the CropImageFilter,
RGBImageFilter is an abstract class, so you need to create your own subclass to use
it. Java 1.1 introduces two more image filters, AreaAveragingScaleFilter and
ReplicateScaleFilter. Other filters must be created by subclassing ImageFilter

and providing the necessary methods to modify the image as necessary.

ImageFilters tend to work on a pixel-by-pixel basis, so large Image objects can take
a considerable amount of time to filter, depending on the complexity of the filter-
ing algorithm. In the simplest case, filters generate new pixels based upon the
color value and location of the original pixel. Such filters can start delivering data
before they have loaded the entire image. More complex filters may use internal
buffers to store an intermediate copy of the image so the filter can use adjacent
pixel values to smooth or blend pixels together. These filters may need to load the
entire image before they can deliver any data to the ultimate consumer.

To use an ImageFilter, you pass it to the FilteredImageSource constructor, which
ser ves as an ImageProducer to pass the new pixels to their consumer. The following
code runs the image logo.jpg through an image filter, SomeImageFilter, to produce
a new image. The constructor for SomeImageFilter is called within the constructor
for FilteredImageSource, which in turn is the only argument to createImage().

Image image = getImage (new URL (
"http://www.ora.com/images/logo.jpg"));

Image newOne = createImage (new FilteredImageSource (image.getSource(),
new SomeImageFilter()));

10 July 2002 22:22

12.5.1 ImageFilter Methods
Variables

protected ImageConsumer consumer;
The actual ImageConsumer for the image. It is initialized automatically for you
by the getFilterInstance() method.

Constructor

public ImageFilter ()
The only constructor for ImageFilter is the default one, which takes no argu-
ments. Subclasses can provide their own constructors if they need additional
information.

ImageConsumer interface methods

public void setDimensions (int width, int height)
The setDimensions() method of ImageFilter is called when the width and
height of the original image are known. It calls consumer.setDimensions() to
tell the next consumer the dimensions of the filtered image. If you subclass
ImageFilter and your filter changes the image’s dimensions, you should over-
ride this method to compute and report the new dimensions.

public void setProperties (Hashtable properties)
The setProperties() method is called to provide the image filter with the
property list for the original image. The image filter adds the property fil-
ters to the list and passes it along to the next consumer. The value given for
the filters property is the result of the image filter’s toString() method;
that is, the String representation of the current filter. If filters is already set,
information about this ImageFilter is appended to the end. Subclasses of
ImageFilter may add other properties.

public void setColorModel (ColorModel model)
The setColorModel() method is called to give the ImageFilter the color
model used for most of the pixels in the original image. It passes this color
model on to the next consumer. Subclasses may override this method if they
change the color model.

public void setHints (int hints)
The setHints() method is called to give the ImageFilter hints about how the
producer will deliver pixels. This method passes the same set of hints to the
next consumer. Subclasses must override this method if they need to provide
different hints; for example, if they are delivering pixels in a different order.

12.5 IMAGEFILTER 449

10 July 2002 22:22

450 CHAPTER 12: IMAGE PROCESSING

public void setPixels (int x, int y, int width, int height, ColorModel model, byte pixels[],
int offset, int scansize)
public void setPixels (int x, int y, int width, int height, ColorModel model, int pixels[],
int offset, int scansize)

The setPixels() method receives pixel data from the ImageProducer and
passes all the information on to the ImageConsumer. (x, y) is the top left cor-
ner of the bounding rectangle for the pixels. The bounding rectangle has size
width height. The ColorModel for the new image is model. pixels is the byte
or integer array of the pixel information, starting at offset (usually 0), with
scan lines of size scansize (usually width).

public void imageComplete (int status)
The imageComplete() method receives the completion status from the
ImageProducer and passes it along to the ImageConsumer.

If you subclass ImageFilter, you will probably override the setPixels() meth-
ods. For simple filters, you may be able to modify the pixel array and deliver
the result to consumer.setPixels() immediately. For more complex filters,
you will have to build a buffer containing the entire image; in this case, the
call to imageComplete() will probably trigger filtering and pixel delivery.

Cloneable interface methods

public Object clone ()
The clone() method creates a clone of the ImageFilter. The getFilterIn-

stance() function uses this method to create a copy of the ImageFilter.
Cloning allows the same filter instance to be used with multiple Image objects.

Other methods

public ImageFilter getFilterInstance (ImageConsumer ic)
FilteredImageSource calls getFilterInstance() to register ic as the Image-

Consumer for an instance of this filter; to do so, it sets the instance variable
consumer. In effect, this method inserts the ImageFilter between the image’s
producer and the consumer. You have to override this method only if there
are special requirements for the insertion process. This default implementa-
tion just calls clone().

public void resendTopDownLeftRight (ImageProducer ip)
The resendTopDownLeftRight() method tells the ImageProducer ip to try to
resend the image data in the top-down, left-to-right order. If you override this
method and your ImageFilter has saved the image data internally, you may
want your ImageFilter to resend the data itself, rather than asking the
ImageProducer. Other wise, your subclass may ignore the request or pass it
along to the ImageProducer ip.

10 July 2002 22:22

Subclassing ImageFilter: A blurring filter

When you subclass ImageFilter, there are very few restrictions on what you can
do. We will create a few subclasses that show some of the possibilities. This Image-
Filter generates a new pixel by averaging the pixels around it. The result is a
blurred version of the original. To implement this filter, we have to save all the
pixel data into a buffer; we can’t start delivering pixels until the entire image is in
hand. Therefore, we override setPixels() to build the buffer; we override image-
Complete() to produce the new pixels and deliver them.

Before looking at the code, here are a few hints about how the filter works; it uses
a few tricks that may be helpful in other situations. We need to provide two ver-
sions of setPixels(): one for integer arrays, and the other for byte arrays. To
avoid duplicating code, both versions call a single method, setThePixels(), which
takes an Object as an argument, instead of a pixel array; thus it can be called with
either kind of pixel array. Within the method, we check whether the pixels argu-
ment is an instance of byte[] or int[]. The body of this method uses another
trick: when it reads the byte[] version of the pixel array, it ANDs the value with
0xff. This prevents the byte value, which is signed, from being converted to a nega-
tive int when used as an argument to cm.getRGB().

The logic inside of imageComplete() gets a bit hairy. This method does the actual
filtering, after all the data has arrived. Its job is basically simple: compute an aver-
age value of the pixel and the eight pixels surrounding it (i.e., a 33 rectangle with
the current pixel in the center). The problem lies in taking care of the edge condi-
tions. We don’t always want to average nine pixels; in fact, we may want to average
as few as four. The if statements figure out which surrounding pixels should be
included in the average. The pixels we care about are placed in sumArray[], which
has nine elements. We keep track of the number of elements that have been saved
in the variable sumIndex and use a helper method, avgPixels(), to compute the
average. The code might be a little cleaner if we used a Vector, which automati-
cally counts the number of elements it contains, but it would probably be much
slower.

Example 12-7 shows the code for the blurring filter.

Example 12–7: Blur Filter Source

import java.awt.*;
import java.awt.image.*;

public class BlurFilter extends ImageFilter {
private int savedWidth, savedHeight, savedPixels[];
private static ColorModel defaultCM = ColorModel.getRGBdefault();

public void setDimensions (int width, int height) {
savedWidth=width;

12.5 IMAGEFILTER 451

10 July 2002 22:22

452 CHAPTER 12: IMAGE PROCESSING

Example 12–7: Blur Filter Source (continued)

savedHeight=height;
savedPixels=new int [width*height];
consumer.setDimensions (width, height);

}

We override setDimensions() to save the original image’s height and width, which
we use later.

public void setColorModel (ColorModel model) {
// Change color model to model you are generating

consumer.setColorModel (defaultCM);
}

public void setHints (int hintflags) {
// Set new hints, but preserve SINGLEFRAME setting

consumer.setHints (TOPDOWNLEFTRIGHT | COMPLETESCANLINES |
SINGLEPASS | (hintflags & SINGLEFRAME));

}

This filter always generates pixels in the same order, so it sends the hint flags TOP-
DOWNLEFTRIGHT, COMPLETESCANLINES, and SINGLEPASS to the consumer, regardless
of what the image producer says. It sends the SINGLEFRAME hint only if the pro-
ducer has sent it.

private void setThePixels (int x, int y, int width, int height,
ColorModel cm, Object pixels, int offset, int scansize) {

int sourceOffset = offset;
int destinationOffset = y * savedWidth + x;
boolean bytearray = (pixels instanceof byte[]);
for (int yy=0;yy<height;yy++) {

for (int xx=0;xx<width;xx++)
if (bytearray)

savedPixels[destinationOffset++]=
cm.getRGB(((byte[])pixels)[sourceOffset++]&0xff);

else
savedPixels[destinationOffset++]=

cm.getRGB(((int[])pixels)[sourceOffset++]);
sourceOffset += (scansize - width);
destinationOffset += (savedWidth - width);

}
}

setThePixels() saves the pixel data for the image in the array savedPixels[].
Both versions of setPixels() call this method. It doesn’t pass the pixels along to
the image consumer, since this filter can’t process the pixels until the entire image
is available.

public void setPixels (int x, int y, int width, int height,
ColorModel cm, byte pixels[], int offset, int scansize) {

setThePixels (x, y, width, height, cm, pixels, offset, scansize);
}

10 July 2002 22:22

public void setPixels (int x, int y, int width, int height,
ColorModel cm, int pixels[], int offset, int scansize) {

setThePixels (x, y, width, height, cm, pixels, offset, scansize);
}

public void imageComplete (int status) {
if ((status == IMAGEABORTED) || (status == IMAGEERROR)) {

consumer.imageComplete (status);
return;

} else {
int pixels[] = new int [savedWidth];
int position, sumArray[], sumIndex;
sumArray = new int [9]; // maxsize - vs. Vector for performance
for (int yy=0;yy<savedHeight;yy++) {

position=0;
int start = yy * savedWidth;
for (int xx=0;xx<savedWidth;xx++) {

sumIndex=0;
// xx yy

sumArray[sumIndex++] = savedPixels[start+xx]; // center center
if (yy != (savedHeight-1)) // center bottom

sumArray[sumIndex++] = savedPixels[start+xx+savedWidth];
if (yy != 0) // center top

sumArray[sumIndex++] = savedPixels[start+xx-savedWidth];
if (xx != (savedWidth-1)) // right center

sumArray[sumIndex++] = savedPixels[start+xx+1];
if (xx != 0) // left center

sumArray[sumIndex++] = savedPixels[start+xx-1];
if ((yy != 0) && (xx != 0)) // left top

sumArray[sumIndex++] = savedPixels[start+xx-savedWidth-1];
if ((yy != (savedHeight-1)) && (xx != (savedWidth-1)))

// right bottom
sumArray[sumIndex++] = savedPixels[start+xx+savedWidth+1];

if ((yy != 0) && (xx != (savedWidth-1))) //right top
sumArray[sumIndex++] = savedPixels[start+xx-savedWidth+1];

if ((yy != (savedHeight-1)) && (xx != 0)) //left bottom
sumArray[sumIndex++] = savedPixels[start+xx+savedWidth-1];

pixels[position++] = avgPixels(sumArray, sumIndex);
}
consumer.setPixels (0, yy, savedWidth, 1, defaultCM,

pixels, 0, savedWidth);
}
consumer.imageComplete (status);

}
}

imageComplete() does the actual filtering after the pixels have been delivered and
saved. If the producer reports that an error occurred, this method passes the error
flags to the consumer and returns. If not, it builds a new array, pixels[], which
contains the filtered pixels, and delivers these to the consumer.

12.5 IMAGEFILTER 453

10 July 2002 22:22

454 CHAPTER 12: IMAGE PROCESSING

Previously, we gave an overview of how the filtering process works. Here are some
details. (xx, yy) represents the current point’s x and y coordinates. The point (xx,
yy) must always fall within the image; otherwise, our loops are constructed incor-
rectly. Therefore, we can copy (xx, yy) into the sumArray[] for averaging without
any tests. For the point’s eight neighbors, we check whether the neighbor falls in
the image; if so, we add it to sumArray[]. For example, the point just below (xx,
yy) is at the bottom center of the 33 rectangle of points we are averaging. We know
that xx falls within the image; yy falls within the image if it doesn’t equal saved-
Height-1. We do similar tests for the other points.

Even though we’re working with a rectangular image, our arrays are all one-dimen-
sional so we have to convert a coordinate pair (xx, yy) into a single array index. To
help us do the bookkeeping, we use the local variable start to keep track of the
start of the current scan line. Then start + xx is the current point; start + xx +
savedWidth is the point immediately below; start + xx + savedWidth-1 is the point
below and to the left; and so on.

avgPixels() is our helper method for computing the average value that we assign
to the new pixel. For each pixel in the pixels[] array, it extracts the red, blue,
green, and alpha components; averages them separately, and returns a new ARGB
value.

private int avgPixels (int pixels[], int size) {
float redSum=0, greenSum=0, blueSum=0, alphaSum=0;
for (int i=0;i<size;i++)

try {
int pixel = pixels[i];
redSum += defaultCM.getRed (pixel);
greenSum += defaultCM.getGreen (pixel);
blueSum += defaultCM.getBlue (pixel);
alphaSum += defaultCM.getAlpha (pixel);

} catch (ArrayIndexOutOfBoundsException e) {
System.out.println ("Ooops");

}
int redAvg = (int)(redSum / size);
int greenAvg = (int)(greenSum / size);
int blueAvg = (int)(blueSum / size);
int alphaAvg = (int)(alphaSum / size);
return ((0xff << 24) | (redAvg << 16) |

(greenAvg << 8) | (blueAvg << 0));
}

}

Producing many images from one: dynamic ImageFilter

The ImageFilter framework is flexible enough to allow you to return a sequence
of images based on an original. You can send back one frame at a time, calling the
following when you are finished with each frame:

10 July 2002 22:22

consumer.imageComplete(ImageConsumer.SINGLEFRAMEDONE);

After you have generated all the frames, you can tell the consumer that the
sequence is finished with the STATICIMAGEDONE constant. In fact, this is exactly
what the new animation capabilities of MemoryImageSource use.

In Example 12-8, the DynamicFilter lets the consumer display an image. After the
image has been displayed, the filter gradually overwrites the image with a specified
color by sending additional image frames. The end result is a solid colored rectan-
gle. Not too exciting, but it’s easy to imagine interesting extensions: you could use
this technique to implement a fade from one image into another. The key points
to understand are:

• This filter does not override setPixels(), so it is extremely fast. In this case,
we want the original image to reach the consumer, and there is no reason to
save the image in a buffer.

• Filtering takes place in the image-fetching thread, so it is safe to put the filter-
processing thread to sleep if the image is coming from disk. If the image is in
memor y, filtering should not sleep because there will be a noticeable perfor-
mance lag in your program if it does. The DynamicFilter class has a delay
parameter to its constructor that lets you control this behavior.

• This subclass overrides setDimensions() to save the image’s dimensions for its
own use. It needs to override setHints() because it sends pixels to the con-
sumer in a nonstandard order: it sends the original image, then goes back and
starts sending overlays. Likewise, this subclass overrides resendTopDownLeft-
Right() to do nothing because there is no way the original ImageProducer can
replace all the changes with the original Image.

• imageComplete() is where all the fun happens. Take a special look at the status
flags that are returned.

Example 12–8: DynamicFilter Source

import java.awt.*;
import java.awt.image.*;
public class DynamicFilter extends ImageFilter {

Color overlapColor;
int delay;
int imageWidth;
int imageHeight;
int iterations;
DynamicFilter (int delay, int iterations, Color color) {

this.delay = delay;
this.iterations = iterations;
overlapColor = color;

}
public void setDimensions (int width, int height) {

imageWidth = width;

12.5 IMAGEFILTER 455

10 July 2002 22:22

456 CHAPTER 12: IMAGE PROCESSING

Example 12–8: DynamicFilter Source (continued)

imageHeight = height;
consumer.setDimensions (width, height);

}
public void setHints (int hints) {

consumer.setHints (ImageConsumer.RANDOMPIXELORDER);
}
public void resendTopDownLeftRight (ImageProducer ip) {
}
public void imageComplete (int status) {

if ((status == IMAGEERROR) || (status == IMAGEABORTED)) {
consumer.imageComplete (status);
return;

} else {
int xWidth = imageWidth / iterations;
if (xWidth <= 0)

xWidth = 1;
int newPixels[] = new int [xWidth*imageHeight];
int iColor = overlapColor.getRGB();
for (int x=0;x<(xWidth*imageHeight);x++)

newPixels[x] = iColor;
int t=0;
for (;t<(imageWidth-xWidth);t+=xWidth) {

consumer.setPixels(t, 0, xWidth, imageHeight,
ColorModel.getRGBdefault(), newPixels, 0, xWidth);

consumer.imageComplete (ImageConsumer.SINGLEFRAMEDONE);
try {

Thread.sleep (delay);
} catch (InterruptedException e) {

e.printStackTrace();
}

}
int left = imageWidth-t;
if (left > 0) {

consumer.setPixels(imageWidth-left, 0, left, imageHeight,
ColorModel.getRGBdefault(), newPixels, 0, xWidth);

consumer.imageComplete (ImageConsumer.SINGLEFRAMEDONE);
}
consumer.imageComplete (STATICIMAGEDONE);

}
}

}

The DynamicFilter relies on the default setPixels() method to send the original
image to the consumer. When the original image has been transferred, the image
producer calls this filter’s imageComplete() method, which does the real work.
Instead of relaying the completion status to the consumer, imageComplete() starts
generating its own data: solid rectangles that are all in the overlapColor specified
in the constructor. It sends these rectangles to the consumer by calling

10 July 2002 22:22

consumer.setPixels(). After each rectangle, it calls consumer.imageComplete()
with the SINGLEFRAMEDONE flag, meaning that it has just finished one frame of a
multi-frame sequence. When the rectangles have completely covered the image,
the method imageComplete() finally notifies the consumer that the entire image
sequence has been transferred by sending the STATICIMAGEDONE flag.

The following code is a simple applet that uses this image filter to produce a new
image:

import java.applet.*;
import java.awt.*;
import java.awt.image.*;
public class DynamicImages extends Applet {

Image i, j;
public void init () {

i = getImage (getDocumentBase(), "rosey.jpg");
j = createImage (new FilteredImageSource (i.getSource(),

new DynamicFilter(250, 10, Color.red)));
}
public void paint (Graphics g) {

g.drawImage (j, 10, 10, this);
}

}

One final curiosity: the DynamicFilter doesn’t make any assumptions about the
color model used for the original image. It sends its overlays with the default RGB
color model. Therefore, this is one case in which an ImageConsumer may see calls
to setPixels() that use different color models.

12.5.2 RGBImageFilter
RGBImageFilter is an abstract subclass of ImageFilter that provides a shortcut for
building the most common kind of image filters: filters that independently modify
the pixels of an existing image, based only on the pixel’s position and color.
Because RGBImageFilter is an abstract class, you must subclass it before you can do
anything. The only method your subclass must provide is filterRGB(), which pro-
duces a new pixel value based on the original pixel and its location. A handful of
additional methods are in this class; most of them provide the behind-the-scenes
framework for funneling each pixel through the filterRGB() method.

If the filtering algorithm you are using does not rely on pixel position (i.e., the
new pixel is based only on the old pixel’s color), AWT can apply an optimization
for images that use an IndexColorModel: rather than filtering individual pixels, it
can filter the image’s color map. In order to tell AWT that this optimization is
okay, add a constructor to the class definition that sets the canFilter-

IndexColorModel variable to true. If canFilterIndexColorModel is false (the
default) and an IndexColorModel image is sent through the filter, nothing hap-
pens to the image.

12.5 IMAGEFILTER 457

10 July 2002 22:22

458 CHAPTER 12: IMAGE PROCESSING

Variables

protected boolean canFilterIndexColorModel
Setting the canFilterIndexColorModel variable permits the ImageFilter to fil-
ter IndexColorModel images. The default value is false. When this variable is
false, IndexColorModel images are not filtered. When this variable is true,
the ImageFilter filters the colormap instead of the individual pixel values.

protected ColorModel newmodel
The newmodel variable is used to store the new ColorModel when canFilter-

IndexColorModel is true and the ColorModel actually is of type IndexColor-

Model. Normally, you do not need to access this variable, even in subclasses.

protected ColorModel origmodel
The origmodel variable stores the original color model when filtering an
IndexColorModel. Normally, you do not need to access this variable, even in
subclasses.

Constructors

public RGBImageFilter ()—called by subclass
The only constructor for RGBImageFilter is the implied constructor with no
parameters. In most subclasses of RGBImageFilter, the constructor has to ini-
tialize only the canFilterIndexColorModel variable.

ImageConsumer interface methods

public void setColorModel (ColorModel model)
The setColorModel() method changes the ColorModel of the filter to model. If
canFilterIndexColorModel is true and model is of type IndexColorModel, a fil-
tered version of model is used instead.

public void setPixels (int x, int y, int w, int h, ColorModel model, byte pixels[],
int off, int scansize)
public void setPixels (int x, int y, int w, int h, ColorModel model, int pixels[],
int off, int scansize)

If necessary, the setPixels() method converts the pixels buffer to the
default RGB ColorModel and then filters them with filterRGBPixels(). If
model has already been converted, this method just passes the pixels along to
the consumer’s setPixels().

Other methods

The only method you care about here is filterRGB(). All subclasses of RGBImage-
Filter must override this method. It is very difficult to imagine situations in which
you would override (or even call) the other methods in this group. They are
helper methods that funnel pixels through filterRGB().

10 July 2002 22:22

public void substituteColorModel (ColorModel oldModel, ColorModel newModel)
substituteColorModel() is a helper method for setColorModel(). It initial-
izes the protected variables of RGBImageFilter. The origmodel variable is set
to oldModel and the newmodel variable is set to newModel.

public IndexColorModel filterIndexColorModel (IndexColorModel icm)
filterIndexColorModel() is another helper method for setColorModel(). It
runs the entire color table of icm through filterRGB() and returns the fil-
tered ColorModel for use by setColorModel().

public void filterRGBPixels (int x, int y, int width, int height, int pixels[], int off,
int scansize)

filterRGBPixels() is a helper method for setPixels(). It filters each ele-
ment of the pixels buffer through filterRGB(), converting pixels to the
default RGB ColorModel first. This method changes the values in the pixels

array.

public abstract int filterRGB (int x, int y, int rgb)
filterRGB() is the one method that RGBImageFilter subclasses must imple-
ment. The method takes the rgb pixel value at position (x, y) and returns the
converted pixel value in the default RGB ColorModel. Coordinates of (-1, -1)
signify that a color table entry is being filtered instead of a pixel.

A transparent image filter that extends RGBImageFilter

Creating your own RGBImageFilter is fairly easy. One of the more common appli-
cations for an RGBImageFilter is to make images transparent by setting the alpha
component of each pixel. To do so, we extend the abstract RGBImageFilter class.
The filter in Example 12-9 makes the entire image translucent, based on a percent-
age passed to the class constructor. Filtering is independent of position, so the con-
structor can set the canFilterIndexColorModel variable. A constructor with no
arguments uses a default alpha value of 0.75.

Example 12–9: TransparentImageFilter Source

import java.awt.image.*;
class TransparentImageFilter extends RGBImageFilter {

float alphaPercent;
public TransparentImageFilter () {

this (0.75f);
}
public TransparentImageFilter (float aPercent)

throws IllegalArgumentException {
if ((aPercent < 0.0) || (aPercent > 1.0))

throw new IllegalArgumentException();
alphaPercent = aPercent;
canFilterIndexColorModel = true;

}

12.5 IMAGEFILTER 459

10 July 2002 22:22

460 CHAPTER 12: IMAGE PROCESSING

Example 12–9: TransparentImageFilter Source (continued)

public int filterRGB (int x, int y, int rgb) {
int a = (rgb >> 24) & 0xff;
a *= alphaPercent;
return ((rgb & 0x00ffffff) | (a << 24));

}
}

12.5.3 CropImageFilter
The CropImageFilter is an ImageFilter that crops an image to a rectangular
region. When used with FilteredImageSource, it produces a new image that con-
sists of a portion of the original image. The cropped region must be completely
within the original image. It is never necessary to subclass this class. Also, using the
10 or 11 argument version of Graphics.drawImage() introduced in Java 1.1 pre-
cludes the need to use this filter, unless you need to save the resulting cropped
image.

If you crop an image and then send the result through a second ImageFilter, the
pixel array received by the filter will be the size of the original Image, with the off-
set and scansize set accordingly. The width and height are set to the cropped
values; the result is a smaller Image with the same amount of data. CropImage-
Filter keeps the full pixel array around, partially empty.

Constructors

public CropImageFilter (int x, int y, int width, int height) �

The constructor for CropImageFilter specifies the rectangular area of the old
image that makes up the new image. The (x, y) coordinates specify the top
left corner for the cropped image; width and height must be positive or the
resulting image will be empty. If the (x, y) coordinates are outside the original
image area, the resulting image is empty. If (x, y) starts within the image but
the rectangular area of size width height goes beyond the original image, the
part that extends outside will be black. (Remember the color black has pixel
values of 0 for red, green, and blue.)

ImageConsumer interface methods

public void setProperties (Hashtable properties) �

The setProperties() method adds the croprect image property to the prop-
erties list. The bounding Rectangle, specified by the (x, y) coordinates and
width height size, is associated with this property. After updating properties,
this method sets the properties list of the consumer.

10 July 2002 22:22

public void setDimensions (int width, int height) �

The setDimensions() method of CropImageFilter ignores the width and
height parameters to the function call. Instead, it relies on the size parameters
in the constructor.

public void setPixels (int x, int y, int w, int h, ColorModel model, byte pixels[], int offset,
int scansize) �

public void setPixels (int x, int y, int w, int h, ColorModel model, int pixels[], int offset,
int scansize) �

These setPixels() methods check to see what portion of the pixels array
falls within the cropped area and pass those pixels along.

Cropping an image with CropImageFilter

Example 12-10 uses a CropImageFilter to extract the center third of a larger
image. No subclassing is needed; the CropImageFilter is complete in itself. The
output is displayed in Figure 12-7.

Example 12–10: Crop Applet Source

import java.applet.*;
import java.awt.*;
import java.awt.image.*;
public class Crop extends Applet {

Image i, j;
public void init () {

MediaTracker mt = new MediaTracker (this);
i = getImage (getDocumentBase(), "rosey.jpg");
mt.addImage (i, 0);
try {

mt.waitForAll();
int width = i.getWidth(this);
int height = i. getHeight(this);
j = createImage (new FilteredImageSource (i.getSource(),

new CropImageFilter (width/3, height/3,
width/3, height/3)));

} catch (InterruptedException e) {
e.printStackTrace();

}
}
public void paint (Graphics g) {

g.drawImage (i, 10, 10, this); // regular
if (j != null) {

g.drawImage (j, 10, 90, this); // cropped
}

}
}

12.5 IMAGEFILTER 461

10 July 2002 22:22

462 CHAPTER 12: IMAGE PROCESSING

Figure 12–7: Image cropping example output.

TIP You can use CropImageFilter to help improve your animation per-
formance or just the general download time of images. Without
CropImageFilter, you can use Graphics.clipRect() to clip each
image of an image strip when drawing. Instead of clipping each
Image (each time), you can use CropImageFilter to create a new
Image for each cell of the strip. Or for times when an image strip is
inappropriate, you can put all your images within one image file (in
any order whatsoever), and use CropImageFilter to get each out as
an Image .

12.5.4 ReplicateScaleFilter
Back in Chapter 2 we introduced you to the getScaledInstance() method. This
method uses a new image filter that is provided with Java 1.1. The Repli-

cateScaleFilter and its subclass, AreaAveragingScaleFilter, allow you to scale
images before calling drawImage(). This can greatly speed your programs because
you don’t have to wait for the call to drawImage() before performing scaling.

The ReplicateScaleFilter is an ImageFilter that scales by duplicating or remov-
ing rows and columns. When used with FilteredImageSource, it produces a new
image that is a scaled version of the original. As you can guess, ReplicateScale-
Filter is very fast, but the results aren’t particularly pleasing aesthetically. It is
great if you want to magnify a checkerboard but not that useful if you want to scale
an image of your Aunt Polly. Its subclass, AreaAveragingScaleFilter, implements
a more time-consuming algorithm that is more suitable when image quality is a
concern.

10 July 2002 22:22

Constructor

public ReplicateScaleFilter (int width, int height)
The constructor for ReplicateScaleFilter specifies the size of the resulting
image. If either parameter is -1, the resulting image maintains the same aspect
ratio as the original image.

ImageConsumer interface methods

public void setProperties (Hashtable properties)
The setProperties() method adds the rescale image property to the proper-
ties list. The value of the rescale property is a quoted string showing the
image’s new width and height, in the form "<width>×<height>", where the
width and height are taken from the constructor. After updating properties,
this method sets the properties list of the consumer.

public void setDimensions (int width, int height)
The setDimensions() method of ReplicateScaleFilter passes the new width
and height from the constructor along to the consumer. If either of the con-
structor’s parameters are negative, the size is recalculated proportionally. If
both are negative, the size becomes width height.

public void setPixels (int x, int y, int w, int h, ColorModel model, int pixels[], int offset,
int scansize)
public void setPixels (int x, int y, int w, int h, ColorModel model, byte pixels[], int offset,
int scansize)

The setPixels() method of ReplicateScaleFilter checks to see which rows
and columns of pixels to pass along.

12.5.5 AreaAveragingScaleFilter
The AreaAveragingScaleFilter subclasses ReplicateScaleFilter to provide a
better scaling algorithm. Instead of just dropping or adding rows and columns,
AreaAveragingScaleFilter tries to blend pixel values when creating new rows and
columns. The filter works by replicating rows and columns to generate an image
that is a multiple of the original size. Then the image is resized back down by an
algorithm that blends the pixels around each destination pixel.

AreaAveragingScaleFilter methods

Because this filter subclasses ReplicateScaleFilter, the only methods it includes
are those that override methods of ReplicateScaleFilter.

12.5 IMAGEFILTER 463

10 July 2002 22:22

464 CHAPTER 12: IMAGE PROCESSING

Constructors

public AreaAveragingScaleFilter (int width, int height) �

The constructor for AreaAveragingScaleFilter specifies the size of the result-
ing image. If either parameter is -1, the resulting image maintains the same
aspect ratio as the original image.

ImageConsumer interface methods

public void setHints (int hints) �

The setHints() method of AreaAveragingScaleFilter checks to see if some
optimizations can be performed based upon the value of the hints parameter.
If they can’t, the image filter has to cache the pixel data until it receives the
entire image.

public void setPixels (int x, int y, int w, int h, ColorModel model, byte pixels[], int offset,
int scansize) �

public void setPixels (int x, int y, int w, int h, ColorModel model, int pixels[], int offset,
int scansize) �

The setPixels() method of AreaAveragingScaleFilter accumulates the pix-
els or passes them along based upon the available hints. If setPixels() accu-
mulates the pixels, this filter passes them along to the consumer when appro-
priate.

12.5.6 Cascading Filters
It is often a good idea to perform complex filtering operations by using several fil-
ters in a chain. This technique requires the system to perform several passes
through the image array, so it may be slower than using a single complex filter;
however, cascading filters yield code that is easier to understand and quicker to
write — particularly if you already have a collection of image filters from other pro-
jects.

For example, assume you want to make a color image transparent and then render
the image in black and white. The easy way to do this task is to apply a filter that
converts color to a gray value and then apply the TransparentImageFilter we
developed in Example 12-9. Using this strategy, we have to develop only one very
simple filter. Example 12-11 shows the source for the GrayImageFilter; Example
12-12 shows the applet that applies the two filters in a daisy chain.

Example 12–11: GrayImageFilter Source

import java.awt.image.*;
public class GrayImageFilter extends RGBImageFilter {

public GrayImageFilter () {
canFilterIndexColorModel = true;

}

10 July 2002 22:22

Example 12–11: GrayImageFilter Source (continued)

public int filterRGB (int x, int y, int rgb) {
int gray = (((rgb & 0xff0000) >> 16) +

((rgb & 0x00ff00) >> 8) +
(rgb & 0x0000ff)) / 3;

return (0xff000000 | (gray << 16) | (gray << 8) | gray);
}

}

Example 12–12: DrawingImages Source

import java.applet.*;
import java.awt.*;
import java.awt.image.*;
public class DrawingImages extends Applet {

Image i, j, k, l;
public void init () {

i = getImage (getDocumentBase(), "rosey.jpg");
GrayImageFilter gif = new GrayImageFilter ();
j = createImage (new FilteredImageSource (i.getSource(), gif));
TransparentImageFilter tf = new TransparentImageFilter (.5f);
k = createImage (new FilteredImageSource (j.getSource(), tf));
l = createImage (new FilteredImageSource (i.getSource(), tf));

}
public void paint (Graphics g) {

g.drawImage (i, 10, 10, this); // regular
g.drawImage (j, 270, 10, this); // gray
g.drawImage (k, 10, 110, Color.red, this); // gray - transparent
g.drawImage (l, 270, 110, Color.red, this); // transparent

}
}

Granted, neither the GrayImageFilter or the TransparentImageFilter are very
complex, but consider the savings you would get if you wanted to blur an image,
crop it, and then render the result in grayscale. Writing a filter that does all three
is not a task for the faint of heart; remember, you can’t subclass RGBImageFilter or
CropImageFilter because the result does not depend purely on each pixel’s color
and position. However, you can solve the problem easily by cascading the filters
developed in this chapter.

12.5 IMAGEFILTER 465

10 July 2002 22:22

13

AWT Exceptions and Errors

In this chapter:
• AWTException
• IllegalComponentStateException
• AWTError

This chapter describes AWTException, IllegalComponentStateException, and
AWTError. AWTException is a subclass of Exception. It is not used by any of the pub-
lic classes in java.awt; you may, however, find it convenient to throw AWTException

within your own code. IllegalComponentStateException is another Exception

subclass, which is new to Java 1.1. This exception is used when you try to do some-
thing with a Component that is not yet appropriate. AWTError is a subclass of Error
that is thrown when a serious problem occurs in AWT — for example, the environ-
ment is unable to get the platform’s Toolkit.

13.1 AWTException
AWTException is a generic exception that can be thrown when an exceptional con-
dition has occurred within AWT. None of the AWT classes throw this. If you sub-
class any of the AWT classes, you can throw an AWTException to indicate a
problem. Using AWTException is slightly preferable to creating your own Excep-

tion subclass because you do not have to generate another class file. Since it is a
part of Java, AWTException is guaranteed to exist on the run-time platform.

If you throw an instance of AWTException, like any other Exception, it must be
caught in a catch clause or declared in the throws clause of the method.

13.1.1 AWTException Method
Constructor

public AWTException (String message)
The sole constructor creates an AWTException with a detailed message of mes-
sage. This message can be retrieved using getMessage(), which it inherits
from Exception (and which is required by the Throwable inter face). If you do

466

10 July 2002 22:23

not want a detailed message, message may be null.

13.1.2 Throwing an AWTException
An AWTException is used the same way as any other Throwable object. Here’s an
example:

if (someProblem) {
throw new AWTException ("Problem Encountered While Initializing");

}

13.2 IllegalComponentStateException
IllegalComponentStateException is a subclass of IllegalStateException; both
are new to Java 1.1. This exception is used when you try to do something with a
Component that is not yet appropriate. With the standard AWT components, this
can happen only in three instances:

• If you call setCaretPosition() to set the cursor position of a text component
before the component’s peer exists.

• If you call getLocale() to get the locale of a component that does not have
one and is not in a container that has one.

• If you call getLocationOnScreen() for a component that is not showing.

In these cases, the operation isn’t fundamentally illegal; you are just trying to per-
form it before the component is ready. When you create your own components,
you should consider using this exception for similar cases.

Since IllegalComponentStateException is a subclass of Run-TimeException, you
do not have to enclose method calls that might throw this exception within
try/catch blocks. However, catching this exception isn’t a bad idea, since it should
be fairly easy to correct the problem and retry the operation.

13.2.1 IllegalComponentStateException Method
Constructor

public IllegalComponentStateException () �

The first constructor creates an IllegalComponentStateException instance
with no detail message.

13.2 ILLEGALCOMPONENTSTATEEXCEPTION 467

10 July 2002 22:23

468 CHAPTER 13: AWT EXCEPTIONS AND ERRORS

public IllegalComponentStateException (String message) �

This constructor creates an IllegalComponentStateException with a detail
message of message. This message can be retrieved using getMessage(),
which it inherits from Exception (and is required by the Throwable inter face).

13.2.2 IllegalComponentStateException Example
The following code throws an IllegalComponentStateException. The Exception

occurs because the TextField peer does not exist when setCaretPosition() is
called. setCaretPosition() throws an IllegalComponentStateException, and the
next statement never executes.

import java.awt.TextField;
public class illegal {

public static void main (String[] args) {
new TextField().setCaretPosition (24);
System.out.println ("Never gets here");

}
}

13.3 AWTError
AWTError is a subclass of Error that is used when a serious run-time error has
occurred within AWT. For example, an AWTError is thrown if the default Toolkit
cannot be initialized or if you try to create a FileDialog within Netscape Navigator
(since that program does not permit local file system access). When an AWTError is
thrown and not caught, the virtual machine stops your program. You may throw
this Error to indicate a serious run-time problem in any subclass of the AWT
classes. Using AWTError is slightly preferable to creating your own Error because
you don’t have to provide another class file. Since it is part of Java, AWTError is
guaranteed to exist on the run-time platform.

Methods are not required to declare that they throw AWTError. If you throw an
error that is not caught, it will eventually propagate to the top level of the system.

13.3.1 AWTError Method
Constructor

public AWTError (String message)
The sole constructor creates an AWTError with a detail message of message.
This message can be retrieved using getMessage(), which it inherits from
Error (and is required by the Throwable inter face). If you do not want a
detailed message, message may be null.

10 July 2002 22:23

13.3.2 Throwing an AWTError
The code in Example 13-1 throws an AWTError if it is executed with this command:

java -Dawt.toolkit=foo throwme

The error occurs because the Java interpreter tries to use the toolkit foo, which
does not exist (assuming that class foo does not exist in your CLASSPATH). There-
fore, getDefaultToolkit() throws an AWTError, and the next statement never exe-
cutes.

Example 13–1: The throwme class

import java.awt.Toolkit;
public class throwme {

public static void main (String[] args) {
System.out.println (Toolkit.getDefaultToolkit());
System.out.println ("Never Gets Here");

}
}

13.3 AWTERROR 469

10 July 2002 22:23

14

And Then There
Were Applets

In this chapter:
• What’s a Java

Applet?
• AudioClip Interface
• AppletContext

Interface
• AppletStub Interface
• Audio in Applications

Although it is not part of the java.awt package, the java.applet package is
closely related. The java.applet package provides support for running an applet
in the context of a World Wide Web browser. It consists of one class (Applet) and
three interfaces (AppletContext, AudioClip, and AppletStub). The Applet class
supports the “applet life cycle” methods (init(), start(), stop(), destroy()) that
you override to write an applet. AudioClip provides support for audio within
applets. (Applications use the sun.audio package for audio support; sun.audio is
also covered in this chapter.) The AppletStub and AppletContext inter faces pro-
vide a way for the applet to interact with its run-time environment. Many of the
methods of AppletStub and AppletContext are duplicated in the Applet class.

14.1 What’s a Java Applet?
Much of the initial excitement about Java centered around applets. Applets are
small Java programs that can be embedded within HTML pages and downloaded
and executed by a web browser. Because executing code from random Internet
sites presents a security risk, Java goes to great lengths to ensure the integrity of
the program executing and to prevent it from performing any unauthorized tasks.

An applet is a specific type of Java Container. The class hierarchy of an applet is
shown in Figure 14-1.

When you are writing an applet, remember that you can use the features of its
ancestors. In particular, remember to check the methods of the Component, Con-
tainer, and Panel classes, which are inherited by the Applet class.

470

10 July 2002 22:23

java.awt.Componentjava.lang.Object java.awt.Container

java.awt.Panel java.applet.Applet

Figure 14–1: Applet class hierarchy

14.1.1 Applet Methods
All the methods of Applet, except setStub(), either need to be overridden or are
methods based on one of the java.applet inter faces. The system calls setStub()
to set up the context of the interfaces. The browser implements the AppletCon-

text and AppletStub inter faces.

Constructor

public Applet ()
The system calls the Applet constructor when the applet is loaded and before
it calls setStub(), which sets up the applet’s stub and context. When you sub-
class Applet, you usually do not provide a constructor. If you do provide a con-
structor, you do not have access to the AppletStub or AppletContext and,
therefore, may not call any of their methods.

AppletStub setup

public final void setStub (AppletStub stub)
The setStub() method of Applet is called by the browser when the applet is
loaded into the system. It sets the AppletStub of the applet to stub. In turn,
the AppletStub contains the applet’s AppletContext.

Applet information methods

Several methods of Applet provide information that can be used while the applet
is running.

public AppletContext getAppletContext ()
The getAppletContext() method returns the current AppletContext. This is
part of the applet’s stub, which is set by the system when setStub() is called.

14.1 WHAT’S A JAV A APPLET? 471

10 July 2002 22:23

472 CHAPTER 14: AND THEN THERE WERE APPLETS

public URL getCodeBase ()
The getCodeBase() method returns the complete URL of the .class file that
contains the applet. This method can be used with the getImage() or the
getAudioClip() methods, described later in this chapter, to load an image or
audio file relative to the .class file location.

public URL getDocumentBase ()
The getDocumentBase() method returns the complete URL of the .html file
that loaded the applet. This can be used with the getImage() or getAudio-
Clip() methods, described later in this chapter, to load an image or audio file
relative to the .html file.

public String getParameter (String name)
The getParameter() method allows you to get run-time parameters from
within the <APPLET> tag of the .html file that loaded the applet. Parameters are
defined by HTML <PARAM> tags, which have the form:

<PARAM name="parameter" value="value>

If the name parameter of getParameter() matches the name string of a <PARAM>
tag, getParameter() returns the tag’s value as a string. If name is not found
within the <PARAM> tags of the <APPLET>, getParameter() returns null. The
argument name is not case sensitive; that is, it matches parameter names
regardless of case. Remember that getParameter() always returns a string,
even though the parameter values might appear as integers or floating point
numbers in the HTML file. In some situations, it makes sense to pass multiple
values in a single parameter; if you do this, you have to parse the parameter
string manually. Using a StringTokenizer will make the job easier.

Enabling your applets to accept parameters allows them to be customized at
run-time by the HTML author, without providing the source code. This pro-
vides greater flexibility on the Web without requiring any recoding. Example
14-1 shows how an applet reads parameters from an HTML file. It contains
three parts: the HTML file that loads the applet, the applet source code, and
the output from the applet.

Example 14–1: Getting Parameters from an HTML File

<APPLET CODE=ParamApplet WIDTH=100 HEIGHT=100>
<PARAM NAME=one VALUE=1.0>
<PARAM name=TWO value=TOO>
</APPLET>

public class ParamApplet extends java.applet.Applet {
public void init () {

String param;
float one;
String two;

10 July 2002 22:23

Example 14–1: Getting Parameters from an HTML File (continued)

if ((param = getParameter ("ONE")) == null) {
one = -1.0f; // Not present

} else {
one = Float.valueOf (param).longValue();

}
if ((param = getParameter ("two")) == null) {

two = "two";
} else {

two = param.toUpperCase();
}
System.out.println (“One: “ + one);
System.out.println (“Two: “ + two);

}
}

One: 1
Two: TOO

public String getAppletInfo ()
The getAppletInfo() method lets an applet provide a short descriptive string
to the browser. This method is frequently overridden to return a string show-
ing the applet’s author and copyright information. How (or whether) to dis-
play this information is up to the browser. With appletviewer, this information is
displayed when the user selects the Info choice under the Applet menu. Nei-
ther Netscape Navigator nor Internet Explorer currently display this informa-
tion.

public String[][] getParameterInfo ()
The getParameterInfo() method lets an applet provide a two-dimensional
array of strings describing the parameters it reads from <PARAM> tags. It returns
an array of three strings for each parameter. In each array, the first String rep-
resents the parameter name, the second describes the data type, and the third
is a brief description or range of values. Like getAppletInfo(), how (or
whether) to display this information is up to the browser. With appletviewer,
this information is displayed when the user selects the Info choice under the
Applet menu. Neither Netscape Navigator nor Internet Explorer currently dis-
play this information. The following code shows how an applet might use get-
ParameterInfo() and getAppletInfo():

public String getAppletInfo() {
String whoami = "By John Zukowski (c) 1997";
return whoami;

}
public String[][] getParameterInfo() {

String[][] strings = {
{"parameter1", "String", "Background Color name"},
{"parameter2", "URL", "Image File"},
{"parameter3", "1-10", "Number in Series"}

14.1 WHAT’S A JAV A APPLET? 473

10 July 2002 22:23

474 CHAPTER 14: AND THEN THERE WERE APPLETS

};
return strings;

}

public void showStatus (String message)
The showStatus() method displays message on the browser’s status line, if it
has one. Again, how to display this string is up to the browser, and the browser
can overwrite it whenever it wants. You should only use showStatus() for mes-
sages that the user can afford to miss.

public boolean isActive ()
The isActive() method returns the current state of the applet. While an
applet is initializing, it is not active, and calls to isActive() return false. The
system marks the applet active just prior to calling start(); after this point,
calls to isActive() return true.

public Locale getLocale () �

The getLocale() method retrieves the current Locale of the applet, if it has
one. Using a Locale allows you to write programs that can adapt themselves to
different languages and different regional variants. If no Locale has been set,
getLocale() returns the default Locale. The default Locale has a user lan-
guage of English and no region. To change the default Locale, set the system
properties user.language and user.region, or call Locale.setDefault()

(setDefault() verifies access rights with the security manager).*

Applet life cycle

The browser calls four methods of the Applet class to execute the applet. These
methods constitute the applet’s life cycle. The default versions don’t do anything;
you must override at least one of them to create a useful applet.

public void init ()
The init() method is called once when the applet is first loaded. It should be
used for tasks that need to be done only once. init() is often used to load
images or sound files, set up the screen, get parameters out of the HTML file,
and create objects the applet will need later. You should not do anything that
might “hang” or wait indefinitely. In a sense, init() does things that might
other wise be done in an applet’s constructor.

public void start ()
The start() method is called every time the browser displays the web page
containing the applet. start() usually does the “work” of the applet. It often
starts threads, plays sound files, or does computation. start() may also be
called when the browser is de-iconified.

* For more on the Locale class, see Java Fundamental Classes Reference, by Mark Grand, from O’Reilly &
Associates.

10 July 2002 22:23

public void stop ()
The stop() method is called whenever the browser leaves the web page con-
taining the applet. It should stop or suspend anything that the applet is doing.
For example, it should suspend any threads that have been created and stop
playing any sound files. stop() may also be called when the browser is iconi-
fied.

public void destroy ()
The destroy() method is called when the browser determines that it no
longer needs to keep the applet around—in practice, when the browser
decides to remove the applet from its cache or the browser exits. After this
point, if the browser needs to display the applet again, it will reload the applet
and call the applet’s init() method. destroy() gives the applet a final oppor-
tunity to release any resources it is using (for example, close any open sock-
ets). Most applets don’t need to implement destroy(). It is always a good idea
to release resources as soon as they aren’t needed, rather than waiting for
destroy(). There are no guarantees about when destroy() will be called; if
your browser has a sufficiently large cache, the applet may stay around for a
ver y long time.

Applet-sizing methods

public void resize(int width, int height)
The resize() method changes the size of the applet space to width height.
The browser must support changing the applet space or else the sizing does
not change. Netscape Navigator does not allow an applet to change its size; the
applet is sized to the region allocated by the <APPLET> tag, period.

Because Applet is a subclass of Component, it inherits the Java 1.1 method set-

Size(), which has the same function.

public void resize (Dimension dim)
This resize() method calls the previous version of resize() with a width of
dim.width and a height of dim.height.

Images

We have discussed Image objects extensively in Chapter 2, Simple Graphics, and
Chapter 12, Image Processing, and used them in many of our examples. When writ-
ing an applet, you can use the getImage() method directly. In applications, you
must go through Toolkit (which the following methods call) to get images.

public Image getImage (URL url)
The getImage() method loads the image file located at url. url must be a
complete and valid URL. The method returns a system-specific object that sub-

14.1 WHAT’S A JAV A APPLET? 475

10 July 2002 22:23

476 CHAPTER 14: AND THEN THERE WERE APPLETS

classes Image and returns immediately. The Image is not loaded until needed,
either by prepareImage(), MediaTracker, or drawImage().

public Image getImage (URL url, String filename)
The getImage() method loads the image file located at url in filename. The
applet locates the file relative to the specified URL; that is, if the URL ends
with a filename, the applet removes the filename and appends the filename

argument to produce a new URL. getImage() returns a system-specific object
that subclasses Image and returns immediately. The Image is not loaded until
needed, either by prepareImage(), MediaTracker, or drawImage().

In most cases, the url argument is a call to getDocumentBase() or getCode-
Base(); most often, image files are located in the same directory as the HTML
file, the applet’s Java class file, or their own subdirectory.

Audio

Ever y Java platform is guaranteed to understand Sun’s AU file format, which con-
tains a single channel of 8000 Hz µLaw encoded audio data.* Java applets do not
require any helper applications to play audio; they use the browser’s audio capabil-
ities. You can use an independent application, like Sun’s audiotool, to control the
volume. Of course, the user’s workstation or PC needs audio hardware, but these
days, it’s hard to buy a computer that isn’t equipped for audio.

The Java Media Framework API is rumored to provide support for additional
audio formats, like Microsoft’s .wav files or Macintosh/SGI .aiff audio files. At pre-
sent, if you want your Java program to play audio files in other formats, you must
first convert the audio file to the .au format, using a utility like SOX (Sound
Exchange).† Once converted, your Java program can play the resulting .au file nor-
mally. (If you are interested in more information about audio, look in the alt.bina-
ries.sounds.d newsgroup.)

The Applet class provides two ways to play audio clips. The first mechanism pro-
vides a method to load and play an audio file once:

public void play (URL url)
The play() method downloads and plays the audio file located at url. url

must be a complete and valid URL. If url is invalid, no sound is played. Some
environments throw an exception if the URL is invalid, but not all. Calling
play() within an applet’s destroy() method usually has no effect; the applet

* The AU format is explained in the Audio File Format FAQ (version 3.10) located at
ftp://ftp.cwi.nl/pub/audio/index.html in files AudioFormats.part1 and AudioFormats.part2.

† SOX is available at http://www.spies.com/Sox. The current version of SOX is 10; version 11 is in
gamma release. The UNIX source is located in sox10.tar.gz , while the DOS executable is sox10dos.zip.

10 July 2002 22:23

and its resources will probably be deallocated before play() has time to down-
load the audio file.

public void play (URL url, String filename)
This version of play() downloads and plays the audio file located at url in the
file filename. The applet locates the file relative to the specified URL; that is,
if the URL ends with a filename, the applet removes the filename and appends
the filename argument to produce a new URL. If the resulting URL is invalid,
no sound is played. Some environments throw an exception if the URL is
invalid, but not all.

In most cases, the url argument is a call to getDocumentBase() or getCode-
Base(); most often, sound files are located in the same directory as the HTML
file or the applet’s Java class file. For some reason, you cannot have a double
dot (..) in the URL of an audio file; you can in the URL of an image file.
Putting a double dot in the URL of an audio file raises a security exception in
an applet causing play() to fail.

The following applet plays an audio file located relative to the HTML file from
which the applet was loaded:

import java.net.*;
import java.applet.*;
public class audioTest extends Applet {

public void init () {
System.out.println ("Before");
play (getDocumentBase(), "audio/flintstones.au");
System.out.println ("After");

}
}

The second way to play audio files splits the process into two steps: you get an
AudioClip object and then play it as necessary. This procedure eliminates a signifi-
cant drawback to play(): if you call play() repeatedly, it reloads the audio file
each time, making the applet much slower.

public AudioClip getAudioClip (URL url)
The getAudioClip() method loads the audio file located at url. url must be
a complete and valid URL. Upon success, getAudioClip() returns an instance
of a class that implements the AudioClip inter face. You can then call methods
in the AudioClip inter face (see Section 14.2) to play the clip. If an error
occurs during loading (e.g., because the file was not found or the URL was
invalid), getAudioClip() returns null.

getAudioClip() sounds similar to getImage(), and it is. However, Java cur-
rently loads audio clips synchronously; it does not start a separate thread as it
does for images. You may want to create a helper class that loads audio clips in
a separate thread.

14.1 WHAT’S A JAV A APPLET? 477

10 July 2002 22:23

478 CHAPTER 14: AND THEN THERE WERE APPLETS

The actual class of the AudioClip object depends on the platform you are
using; you shouldn’t need to know it. If you are curious, the appletviewer uses
the class sun.applet.AppletAudioClip; Netscape Navigator uses the class
netscape.applet.AppletAudioClip.

public AudioClip getAudioClip (URL url , String filename)
This version of the getAudioClip() method loads the audio file located at url
in the file filename. The applet locates the file relative to the specified URL;
that is, if the URL ends with a filename, the applet removes the filename and
appends the filename argument to produce a new URL. If the resulting URL
is invalid, the file is not loaded. Upon success, getAudioClip() returns an
instance of a class that implements the AudioClip inter face. You can then call
methods in the AudioClip inter face (see Section 14.2) to play the clip. If an
error occurs during loading (e.g., because the file was not found or the URL
was invalid), getAudioClip() returns null.

In most cases, the url argument is a call to getDocumentBase() or getCode-
Base(); most often, sound files are located in the same directory as the HTML
file or the applet’s Java class file.

14.2 AudioClip Interface
Once an audio file is loaded into memory with getAudioClip(), you use the
AudioClip inter face to work with it.

Methods
Three methods define the AudioClip inter face. The class that implements these
methods depends on the run-time environment; the class is probably
sun.applet.AppletAudioClip or netscape.applet.AppletAudioClip.

If you play an audio clip anywhere within your Applet, you should call the Audio-
Clip stop() method within the stop() method of the applet. This ensures that the
audio file will stop playing when the user leaves your web page. Stopping audio
clips is a must if you call loop() to play the sound continuously; if you don’t stop
an audio clip, the user will have to exit the browser to get the sound to stop
playing.

Applets can play audio clips simultaneously. Based upon the user’s actions, you
may want to play a sound file in the background continuously, while playing other
files.

void play ()
The play() method plays the audio clip once from the beginning.

10 July 2002 22:23

void loop ()
The loop() method plays the audio clip continuously. When it gets to the end-
of-file marker, it resets itself to the beginning.

void stop ()
The stop() method stops the applet from playing the audio clip.

14.2.1 Using an AudioClip
The applet in Example 14-2 loads three audio files in the init() method. The
start() method plays Dino barking in the background as a continuous loop.
Whenever the browser calls paint(), Fred yells “Wilma,” and when you click the
mouse anywhere, the call to mouseDown() plays Fred yelling, “Yabba-Dabba-Doo.” If
you try real hard, all three can play at once. Before playing any audio clip, the
applet makes sure that the clip is not null—that is, that the clip loaded correctly.
stop() stops all clips from playing; you should make sure that applets stop all
audio clips before the viewer leaves the web page.

Example 14–2: AudioClip Usage

import java.net.*;
import java.awt.*;
import java.applet.*;
public class AudioTestExample extends Applet{

AudioClip audio1, audio2, audio3;
public void init () {

audio1 = getAudioClip (getCodeBase(), "audio/flintstones.au");
audio2 = getAudioClip (getCodeBase(), "audio/dino.au");
audio3 = getAudioClip (getCodeBase(), "audio/wilma.au");

}
public boolean mouseDown (Event e, int x, int y) {

if (audio1 != null)
audio1.play();

return true;
}
public void start () {

if (audio2 != null)
audio2.loop();

}
public void paint (Graphics g) {

if (audio3 != null)
audio3.play();

}
public void stop () {

if (audio1 != null)
audio1.stop();

if (audio2 != null)
audio2.stop();

14.2 AUDIOCLIP INTERFACE 479

10 July 2002 22:23

480 CHAPTER 14: AND THEN THERE WERE APPLETS

Example 14–2: AudioClip Usage (continued)

if (audio3 != null)
audio3.stop();

}
}

14.3 AppletContext Interface
The AppletContext inter face provides the means to control the browser environ-
ment where the applet is running.

Methods
Some of these methods are so frequently used that they are also provided within
the Applet class.

public abstract AudioClip getAudioClip (URL url)
The getAudioClip() method loads the audio file located at url. url must be
a complete and valid URL. Upon success, getAudioClip() returns an instance
of a class that implements the AudioClip inter face. You can then call methods
in the AudioClip inter face (see Section 14.2) to play the clip. If an error
occurs during loading (e.g., because the file was not found or the URL was
invalid), getAudioClip() returns null.

public abstract Image getImage (URL url)
The getImage() method loads the image file located at url. url must be a
complete and valid URL. The method returns a system-specific object that sub-
classes Image and returns immediately. The Image is not loaded until needed.
A call to prepareImage(), MediaTracker, or drawImage() forces loading to
start.

public abstract Applet getApplet (String name)
The getApplet() method fetches the Applet from the current HTML page
named name, which can be the applet’s class name or the name provided in
the NAME parameter of the <APPLET> tag. getApplet() returns null if the
applet does not exist in the current context. This method allows you to call
methods of other applets within the same context, loaded by the same Class-
Loader. For example:

MyApplet who = (MyApplet)getAppletContext().getApplet("hey");
who.method();

10 July 2002 22:23

TIP Netscape Navigator 3.0 restricts which applets can communicate
with each other. Internet Explorer seems to have a similar
restriction. For applets to communicate, they must:

• Have the same CODEBASE.

• Have the same or no ARCHIVES tag.

• Have MAYSCRIPT tags and appear in the same frame; alterna-
tively, neither applet may have a MAYSCRIPT tag.

If these conditions are not met and you try to cast the return
value of getApplet() or getApplets() to the appropriate class,
either the cast will throw a ClassCastException; or nothing will
happen, and the method will not continue beyond the point of
the failure.

public abstract Enumeration getApplets ()
The getApplets() method gathers all the Applets in the current context,
loaded by the same ClassLoader, into a collection and returns the Enumera-

tion. You can then cycle through them to perform some operation collec-
tively. For example:

Enumeration e = getAppletContext().getApplets();
while (e.hasMoreElements()) {

Object o = e.nextElement();
if (o instance of MyApplet) {

MyApplet a = (Object)o;
a.MyAppletMethod();

}
}

TIP If you want communication between applets on one page, be
aware that there is no guarantee which applet will start first.
Communications must be synchronized by using a controlling
class or continual polling.

public abstract void showDocument (URL url)
The showDocument() method shows url in the current browser window. The
browser may ignore the request if it so desires.

public abstract void showDocument (URL url, String frame)
The showDocument() method shows url in a browser window specified by
frame. Different frame values and the results are shown in Table 14-1. The
browser may ignore the request, as appletviewer does.

14.3 APPLETCONTEXT INTERFACE 481

10 July 2002 22:23

482 CHAPTER 14: AND THEN THERE WERE APPLETS

try {
URL u = new URL (getDocumentBase(), (String) file);
getAppletContext().showDocument (u, "_blank");

} catch (Exception e) {
}

Table 14–1: Target Values

Target String Results

_blank Show url new browser window with no name.

_parent Show url in the parent frame of the current window.

_self Replace current url with url (i.e., display in the current window).

_top Show url in top-most frame.

name Show url in new browser window named name.

public abstract void showStatus (String message)
The showStatus() method displays message on the browser’s status line, if it
has one. How to display this string is up to the browser, and the browser can
over write it whenever it wants. You should use showStatus() only for messages
that the user can afford to miss.

14.4 AppletStub Interface
The AppletStub inter face provides a way to get information from the run-time
browser environment. The Applet class provides methods with similar names that
call these methods.

Methods
public abstract boolean isActive ()

The isActive() method returns the current state of the applet. While an
applet is initializing, it is not active, and calls to isActive() return false. The
system marks the applet active just prior to calling start(); after this point,
calls to isActive() return true.

public abstract URL getDocumentBase ()
The getDocumentBase() method returns the complete URL of the HTML file
that loaded the applet. This method can be used with the getImage() or
getAudioClip() methods to load an image or audio file relative to the HTML
file.

10 July 2002 22:23

public abstract URL getCodeBase ()
The getCodeBase() method returns the complete URL of the .class file that
contains the applet. This method can be used with the getImage() method or
the getAudioClip() method to load an image or audio file relative to the .class
file.

public abstract String getParameter (String name)
The getParameter() method allows you to get parameters from <PARAM> tags
within the <APPLET> tag of the HTML file that loaded the applet. The name

parameter of getParameter() must match the name string of the <PARAM> tag;
name is case insensitive. The return value of getParameter() is the value asso-
ciated with name; it is always a String regardless of the type of data in the tag.
If name is not found within the <PARAM> tags of the <APPLET>, getParameter()
returns null.

public abstract AppletContext getAppletContext ()
The getAppletContext() method returns the current AppletContext of the
applet. This is part of the stub that is set by the system when setStub() is
called.

public abstract void appletResize (int width, int height)
The appletResize() method is called by the resize method of the Applet

class. The method changes the size of the applet space to width height. The
browser must support changing the applet space; if it doesn’t, the size remains
unchanged.

14.5 Audio in Applications
The rest of this chapter describes how to use audio in your applications. Because
the audio support discussed so far has been provided by the browser, applications
that don’t run in the context of a browser must use a different set of classes to
work with audio. These classes are within the sun.audio package. Although the
sun.* package hierarchy is not necessarily included by other vendors, the
sun.audio classes discussed here are provided with Netscape Navigator 2.0/3.0
and Internet Explorer 3.0. Therefore, you can use these classes within applets, too.
This section ends by developing a SunAudioClip class that has an interface similar
to the applet’s audio interface; you can use it to minimize coding differences
between applets and applications.

14.5.1 AudioData
The AudioData class holds a clip of 8000 Hz µLaw audio data. This data can be
used to construct an AudioDataStream or ContinuousAudioDataStream, which can
then be played with the AudioPlayer.

14.5 AUDIO IN APPLICATIONS 483

10 July 2002 22:23

484 CHAPTER 14: AND THEN THERE WERE APPLETS

Constructor

public AudioData (byte buffer[])
The AudioData constructor accepts a byte array buffer and creates an instance
of AudioData. The buffer should contain 8000 Hz µLaw audio data.

Methods

There are no methods for AudioData.

14.5.2 AudioStream
AudioStream subclasses FilterInputStream, which extends InputStream. Using an
InputStream lets you move back and forth (rewind and fast forward) within an
audio file, in addition to playing the audio data from start to finish.

Constructors

public AudioStream (InputStream in) throws IOException
The AudioStream constructor has InputStream in as its parameter and can
throw IOException on error. In the following code, we get an input stream by
opening a .au file. Another common way to construct an AudioStream is to use
the stream associated with a URL through the URL’s openStream() method.

FileInputStream fis = new FileInputStream ("/usr/openwin/demo/sounds/1.au");
AudioStream audiostream = new AudioStream (fis);

or:

AudioStream audiostream = new AudioStream (savedUrl.openStream());

If you are constructing the audio data yourself, you would use a ByteArrayIn-
putStream. Whatever the source of the data, the input stream should provide
data in Sun’s .au format.

Methods

public int read (byte buffer[], int offset, int length) throws IOException
The read() method for AudioStream reads an array of bytes into buffer. off-
set is the first element of buffer that is used. length is the maximum number
of bytes to read. This method blocks until some input is available. read()
returns the actual number of bytes read. If the end of stream is encountered
and no bytes were read, read() returns -1. Ordinarily, you read() an
AudioStream only if you want to modify the audio data in some way.

10 July 2002 22:23

public int getLength()
The getLength() method returns the length of the audio data contained
within the AudioStream, excluding any header information in the file.

public AudioData getData () throws IOException
The getData() method of AudioStream is the most important and most fre-
quently used. It reads the data from the input stream and creates an Audio-

Data instance. As the following code shows, you can create an AudioStream

and get the AudioData with one statement.

AudioData audiodata = new AudioStream (aUrl.openStream()).getData();

14.5.3 AudioDataStream
Constructors

public AudioDataStream (AudioData data)
This constructor creates an AudioDataStream from an AudioData object data.
The resulting AudioDataStream is a subclass of ByteArrayInputStream and can
be played by the AudioPlayer.start() method.

Methods

There are no methods for AudioDataStream.

14.5.4 ContinuousAudioDataStream
Constructors

public ContinuousAudioDataStream (AudioData data)
This constructor creates a continuous stream of audio from data. The result-
ing ContinuousAudioDataStream is a subclass of AudioDataStream and, there-
fore, of ByteArrayInputStream. It can be played by AudioPlayer.start();
whenever the player reaches the end of the continuous audio data stream, it
restarts from the beginning.

Methods

public int read ()
This read() method of ContinuousAudioDataStream overrides the read()

method in ByteArrayInputStream to rewind back to the beginning of the
stream when end-of-file is reached. This method is used by the system when it
reads the InputStream; it is rarely called directly. read() never returns -1 since
it loops back to the beginning on end-of-file.

14.5 AUDIO IN APPLICATIONS 485

10 July 2002 22:23

486 CHAPTER 14: AND THEN THERE WERE APPLETS

public int read (byte buffer[], int offset, int length)
This read() method of ContinuousAudioDataStream overrides the read()

method in ByteArrayInputStream to rewind back to the beginning of the
stream when end-of-file is reached. This method is used by the system when it
reads the InputStream; it is rarely called directly. read() returns the actual
number of bytes read. read() never returns -1 since it loops back to the begin-
ning on end-of-file.

14.5.5 AudioStreamSequence
Constructors

public AudioStreamSequence (Enumeration e)
The constructor for AudioStreamSequence accepts an Enumeration e(normally
the elements of a Vector of AudioStreams) as its sole parameter. The construc-
tor converts the sequence of audio streams into a single stream to be played in
order. An example follows:

Vector v = new Vector ();
v.addElement (new AudioStream (url1.openStream ());
v.addElement (new AudioStream (url2.openStream ());
AudioStreamSequence audiostream = new AudioStreamSequence (v.elements ());

Methods

public int read ()
This read() method of AudioStreamSequence overrides the read() method in
InputStream to start the next stream when end-of-file is reached. This method
is used by the system when it reads the InputStream and is rarely called
directly. If the end of all streams is encountered and no bytes were read,
read() returns -1. Otherwise, read() returns the character read.

public int read (byte buffer[], int offset, int length)
This read() method of AudioStreamSequence overrides the read() method in
InputStream to start the next stream when end-of-file is reached. This method
is used by the system when it reads the InputStream and is rarely called
directly. read() returns the actual number of bytes read. If the end of all
streams is encountered and no bytes were read, read() returns -1.

14.5.6 AudioPlayer
The AudioPlayer class is the workhorse of the sun.audio package. It is used to play
all the streams that were created with the other classes. There is no constructor for
AudioPlayer; it just extends Thread and provides start() and stop() methods.

10 July 2002 22:23

Variable

public final static AudioPlayer player
player is the default audio player. This audio player is initialized automatically
when the class is loaded; you do not have to initialize it (in fact, you can’t
because it is final) or call the constructor yourself.

Methods

public synchronized void start (InputStream in)
The start() method starts a thread that plays the InputStream in. Stream in

continues to play until there is no more data or it is stopped. If in is a Contin-
uousAudioDataStream, the playing continues until stop() (described next) is
called.

public synchronized void stop (InputStream in)
The stop() method stops the player from playing InputStream in. Nothing
happens if the stream in is no longer playing or was never started.

14.5.7 SunAudioClip Class Definition
The class in Example 14-3 is all you need to play audio files in applications. It
implements the java.applet.AudioClip inter face, so the methods and functional-
ity will be familiar. The test program in main() demonstrates how to use the class.
Although the class itself can be used in applets, provided your users have the
sun.audio package available, it is geared towards application users.

Example 14–3: The SunAudioClip Class

import java.net.URL;
import java.io.FileInputStream;
import sun.audio.*;
public class SunAudioClip implements java.applet.AudioClip {

private AudioData audiodata;
private AudioDataStream audiostream;
private ContinuousAudioDataStream continuousaudiostream;
static int length;
public SunAudioClip (URL url) throws java.io.IOException {

audiodata = new AudioStream (url.openStream()).getData();
audiostream = null;
continuousaudiostream = null;

}
public SunAudioClip (String filename) throws java.io.IOException {

FileInputStream fis = new FileInputStream (filename);
AudioStream audioStream = new AudioStream (fis);
audiodata = audioStream.getData();
audiostream = null;
continuousaudiostream = null;

}
public void play () {

14.5 AUDIO IN APPLICATIONS 487

10 July 2002 22:23

488 CHAPTER 14: AND THEN THERE WERE APPLETS

Example 14–3: The SunAudioClip Class (continued)

audiostream = new AudioDataStream (audiodata);
AudioPlayer.player.start (audiostream);

}
public void loop () {

continuousaudiostream = new ContinuousAudioDataStream (audiodata);
AudioPlayer.player.start (continuousaudiostream);

}
public void stop () {

if (audiostream != null)
AudioPlayer.player.stop (audiostream);

if (continuousaudiostream != null)
AudioPlayer.player.stop (continuousaudiostream);

}
public static void main (String args[]) throws Exception {

URL url1 = new URL ("http://localhost:8080/audio/1.au");
URL url2 = new URL ("http://localhost:8080/audio/2.au");
SunAudioClip sac1 = new SunAudioClip (url1);
SunAudioClip sac2 = new SunAudioClip (url2);
SunAudioClip sac3 = new SunAudioClip ("1.au");
sac1.play ();
sac2.loop ();
sac3.play ();
try {// Delay for loop

Thread.sleep (2000);
} catch (InterruptedException ie) {}
sac2.stop();

}
}

10 July 2002 22:23

15

Toolkit and Peers

In this chapter:
• Toolkit
• The Peer Interfaces

This chapter describes the Toolkit class and the purposes it serves. It also
describes the java.awt.peer package of interfaces, along with how they fit in with
the general scheme of things. The most important advice I can give you about the
peer interfaces is not to worry about them. Unless you are porting Java to another
platform, creating your own Toolkit, or adding any native component, you can
ignore the peer interfaces.

15.1 Toolkit
The Toolkit object is an abstract class that provides an interface to platform-spe-
cific details like window size, available fonts, and printing. Every platform that sup-
ports Java must provide a concrete class that extends the Toolkit class. The Sun
JDK provides a Toolkit for Windows NT/95 (sun.awt.win32.MToolkit [Java1.0]
or sun.awt.windows.MToolkit [Java1.1]), Solaris/Motif
(sun.awt.motif.MToolkit), and Macintosh (sun.awt.macos.MToolkit). Although
the Toolkit is used frequently, both directly and behind the scenes, you would
never create any of these objects directly. When you need a Toolkit, you ask for it
with the static method getDefaultToolkit() or the Component.getToolkit()

method.

You might use the Toolkit object if you need to fetch an image in an application
(getImage()), get the font information provided with the Toolkit (getFontList()
or getFontMetrics()), get the color model (getColorModel()), get the screen
metrics (getScreenResolution() or getScreenSize()), get the system clipboard
(getSystemClipboard()), get a print job (getPrintJob()), or ring the bell
(beep()). The other methods of Toolkit are called for you by the system.

489

10 July 2002 22:23

490 CHAPTER 15: TOOLKIT AND PEERS

15.1.1 Toolkit Methods
Constructors

public Toolkit() — cannot be called by user
Because Toolkit is an abstract class, it has no usable constructor. To get a
Toolkit object, ask for your environment’s default toolkit by calling the static
method getDefaultToolkit() or call Component.getToolkit() to get the
toolkit of a component. When the actual Toolkit is created for the native envi-
ronment, the awt package is loaded, the AWT-Win32 and AWT-Callback-Win32

or AWT-Motif and AWT-Input threads (or the appropriate threads for your envi-
ronment) are created, and the threads go into infinite loops for screen main-
tenance and event handling.

Pseudo -Constructors

public static synchronized Toolkit getDefaultToolkit ()
The getDefaultToolkit() method returns the system’s default Toolkit

object. The default Toolkit is identified by the System property awt.toolkit,
which defaults to an instance of the sun.awt.motif.MToolkit class. On the
Windows NT/95 platforms, this is overridden by the Java environment to be
sun.awt.win32.MToolkit (Java1.0) or sun.awt.windows.MToolkit (Java1.1).
On the Macintosh platform, this is overridden by the environment to be
sun.awt.macos.MToolkit. Most browsers don’t let you change the system
property awt.toolkit. Since this is a static method, you don’t need to have a
Toolkit object to call it; just call Toolkit.getDefaultToolkit().

Currently, only one Toolkit can be associated with an environment. You are
more than welcome to try to replace the one provided with the JDK. This per-
mits you to create a whole new widget set, outside of Java, while maintaining
the standard AWT API.

System information

public abstract ColorModel getColorModel ()
The getColorModel() method returns the current ColorModel used by the sys-
tem. The default ColorModel is the standard RGB model, with 8 bits for each
of red, green, and blue. There are an additional 8 bits for the alpha compo-
nent, for pixel-level transparency.

10 July 2002 22:23

public abstract String[] getFontList ()
The getFontList() method returns a String array of the set Java fonts avail-
able with this Toolkit. Normally, these fonts will be understood on all the Java
platforms. The set provided with Sun’s JDK 1.0 (with Netscape Navigator and
Internet Explorer, on platforms other than the Macintosh) contains Times-
Roman, Dialog, Helvetica, Courier (the only fixed-width font), DialogInput,
and ZapfDingbat.

In Java 1.1, getFont() reports all the 1.0 font names. It also reports Serif,
which is equivalent to TimesRoman; San Serif, which is equivalent to Hel-
vetica; and Monospaced, which is equivalent to Courier. The names Times-
Roman, Helvetica, and Courier are still supported but should be avoided.
They have been deprecated and may disappear in a future release. Although
the JDK 1.1 reports the existence of the ZapfDingbat font, you can’t use it. The
characters in this font have been remapped to Unicode characters in the
range \u2700 to \u27ff.

public abstract FontMetrics getFontMetrics (Font font)
The getFontMetrics() method returns the FontMetrics for the given Font

object. You can use this value to compute how much space would be required
to display some text using this font. You can use this version of getFontMet-
rics() (unlike the similar method in the Graphics class) prior to drawing any-
thing on the screen.

public int getMenuShortcutKeyMask() �

The getMenuShortcutKeyMask() method identifies the accelerator key for
menu shortcuts for the user’s platform. The return value is one of the modi-
fier masks in the Event class, like Event.CTRL_MASK. This method is used inter-
nally by the MenuBar class to help in handling menu selection events. See
Chapter 10, Would You Like to Choose from the Menu? for more information
about dealing with menu accelerators.

public abstract PrintJob getPrintJob (Frame frame, String jobtitle, Properties props) �

The getPrintJob() method initiates a print operation, PrintJob, on the user’s
platform. After getting a PrintJob object, you can use it to print the current
graphics context as follows:

// Java 1.1 only
PrintJob p = getToolkit().getPrintJob (aFrame, "hi", aProps);
Graphics pg = p.getGraphics();
printAll (pg);
pg.dispose();
p.end();

With somewhat more work, you can print arbitrary content. See Chapter 17,

15.1 TOOLKIT 491

10 July 2002 22:23

492 CHAPTER 15: TOOLKIT AND PEERS

Printing, for more information about printing. The frame parameter serves as
the parent to any print dialog window, jobtitle ser ves as the identification
string in the print queue, and props ser ves as a means to provide platform-spe-
cific properties (default printer, page order, orientation, etc.). If props is
(Properties)null, no properties will be used. props is particularly interesting
in that it is used both for input and for output. When the environment creates
a print dialog, it can read default values for printing options from the proper-
ties sheet and use that to initialize the dialog. After getPrintJob() returns, the
properties sheet is filled in with the actual printing options that the user
requested. You can then use these option settings as the defaults for subse-
quent print jobs.

The actual property names are Toolkit specific and may be defined by the
environment outside of Java. Furthermore, the environment is free to ignore
the props parameter altogether; this appears to be the case with Windows
NT/95 platforms. (It is difficult to see how Windows NT/95 would use the
properties sheet, since these platforms don’t even raise the print dialog until
you call the method getGraphics().) Table 15-1 shows some of the properties
recognized on UNIX platforms; valid property values are shown in a fixed-
width font.

Table 15–1: UNIX Printing Properties

Property Name Meaning and Possible Values

awt.print.printer The name of the printer on your system to send the
job to.

awt.print.fileName The name of the file to save the print job to.

awt.print.numCopies The number of copies to be printed.

awt.print.options Other options to be used for the run-time system’s
print command.

awt.print.destination Whether the print job should be sent to a printer or
saved in a file.

awt.print.paperSize The size of the paper on which you want to print—
usually, letter.

awt.print.orientation Whether the job should be printed in portrait or
landscape orientation.

public static String getProperty (String key, String defaultValue) �

The getProperty() method retrieves the key property from the system’s
awt.properties file (located in the lib director y under the java.home director y). If
key is not a valid property, defaultValue is returned. This file is used to
provide localized names for various system resources.

10 July 2002 22:23

public abstract int getScreenResolution ()
The getScreenResolution() method retrieves the resolution of the screen in
dots per inch. The sharper the resolution of the screen, the greater number of
dots per inch. Values vary depending on the system and graphics mode. The
PrintJob.getPageResolution() method returns similar information for a
printed page.

public abstract Dimension getScreenSize ()
The getScreenSize() method retrieves the dimensions of the user’s screen in
pixels for the current mode. For instance, a VGA system in standard mode will
return 640 for the width and 480 for the height. This information is extremely
helpful if you wish to manually size or position objects based upon the physical
size of the user’s screen. The PrintJob.getPageDimension() method returns
similar information for a printed page.

public abstract Clipboard getSystemClipboard() �

The getSystemClipboard() method returns a reference to the system’s clip-
board. The clipboard allows your Java programs to use cut and paste opera-
tions, either internally or as an interface between your program and objects
outside of Java. For instance, the following code copies a String from a Java
program to the system’s clipboard:

// Java 1.1 only
Clipboard clipboard = getToolkit().getSystemClipboard();
StringSelection ss = new StringSelection("Hello");
clipboard.setContents(ss, this);

Once you have placed the string "Hello" on the clipboard, you can paste it
anywhere. The details of Clipboard, StringSelection, and the rest of the
java.awt.datatransfer package are described in Chapter 16, Data Transfer.

public final EventQueue getSystemEventQueue() �

After checking whether the security manager allows access, this method
returns a reference to the system’s event queue.

protected abstract EventQueue getSystemEventQueueImpl() �

getSystemEventQueueImpl() does the actual work of fetching the event queue.
The toolkit provider implements this method; only subclasses of Toolkit can
call it.

Images

The Toolkit provides a set of basic methods for working with images. These meth-
ods are similar to methods in the Applet class; Toolkit provides its own implemen-
tation for use by programs that don’t have access to an AppletContext (i.e.,

15.1 TOOLKIT 493

10 July 2002 22:23

494 CHAPTER 15: TOOLKIT AND PEERS

applications or applets that are run as applications). Remember that you need an
instance of Toolkit before you can call these methods; for example, to get an
image, you might call Toolkit.getDefaultToolkit().getImage("myImage.gif").

public abstract Image getImage (String filename)
The getImage() method with a String parameter allows applications to get an
image from the local filesystem. Its argument is either a relative or absolute
filename for an image in a recognized image file format. The method returns
immediately; the Image object that it returns is initially empty. When the image
is needed, the system attempts to get filename and convert it to an image. To
force the file to load immediately or to check for errors while loading, use the
MediaTracker class.

NOTE This version of getImage() is not usable within browsers since it will
throw a security exception because the applet is trying to access the
local filesystem.

public abstract Image getImage (URL url)
The getImage() method with the URL parameter can be used in either applets
or applications. It allows you to provide a URL for an image in a recognized
image file format. Like the other getImage() methods, this method returns
immediately; the Image object that it returns is initially empty. When the image
is needed, the system attempts to load the file specified by url and convert it
to an image. You can use the MediaTracker class to monitor loading and check
whether any errors occurred.

public abstract boolean prepareImage (Image image, int width, int height,
ImageObser ver obser ver)

The prepareImage() method is called by the system or a program to force
image to start loading. This method can be used to force an image to begin
loading before it is actually needed. The Image image will be scaled to be
width height. A width and height of -1 means image will be rendered
unscaled (i.e., at the size specified by the image itself). The observer is the
Component on which image will be rendered. As the image is loaded across the
network, the observer’s imageUpdate() method is called to inform the
obser ver of the image’s status.

public abstract int checkImage (Image image, int width, int height, ImageObserver observer)
The checkImage() method returns the status of the image that is being ren-
dered on observer. Calling checkImage() only provides information about
the image; it does not force the image to start loading. The image is being
scaled to be width height. Passing a width and height of –1 means the image
will be displayed without scaling. The return value of checkImage() is some

10 July 2002 22:23

combination of ImageObserver flags describing the data that is now available.
The ImageObserver flags are: WIDTH, HEIGHT, PROPERTIES, SOMEBITS,
FRAMEBITS, ALLBITS, ERROR, and ABORT. Once ALLBITS is set, the image is com-
pletely loaded, and the return value of checkImage() will not change. For
more information about these flags, see Chapter 12, Image Processing.

The following program loads an image; whenever paint() is called, it displays
what information about that image is available. When the ALLBITS flag is set,
checkingImages knows that the image is fully loaded, and that a call to draw-

Image() will display the entire image.

import java.awt.*;
import java.awt.image.*;
import java.applet.*;
public class checkingImages extends Applet {

Image i;
public void init () {

i = getImage (getDocumentBase(), "ora-icon.gif");
}
public void displayChecks (int i) {

if ((i & ImageObserver.WIDTH) != 0)
System.out.print ("Width ");

if ((i & ImageObserver.HEIGHT) != 0)
System.out.print ("Height ");

if ((i & ImageObserver.PROPERTIES) != 0)
System.out.print ("Properties ");

if ((i & ImageObserver.SOMEBITS) != 0)
System.out.print ("Some-bits ");

if ((i & ImageObserver.FRAMEBITS) != 0)
System.out.print ("Frame-bits ");

if ((i & ImageObserver.ALLBITS) != 0)
System.out.print ("All-bits ");

if ((i & ImageObserver.ERROR) != 0)
System.out.print ("Error-loading ");

if ((i & ImageObserver.ABORT) != 0)
System.out.print ("Loading-Aborted ");

System.out.println ();
}
public void paint (Graphics g) {

displayChecks (Toolkit.getDefaultToolkit().checkImage(i, -1, -1, this));
g.drawImage (i, 0, 0, this);

}
}

Here’s the output from running checkingImages under Java 1.0; it shows that
the width and height of the image are loaded first, followed by the image
properties and the image itself. Java 1.1 also displays Frame-bits once the
image is loaded.

Width Height
Width Height Properties Some-bits
Width Height Properties Some-bits All-bits

15.1 TOOLKIT 495

10 July 2002 22:23

496 CHAPTER 15: TOOLKIT AND PEERS

Width Height Properties Some-bits All-bits
Width Height Properties Some-bits All-bits
... (Repeated Forever More)

public abstract Image createImage (ImageProducer producer)
This createImage() method creates an Image object from an ImageProducer.
The producer parameter must be some class that implements the ImagePro-

ducer inter face. Image producers in the java.awt.graphics package are Fil-
teredImageSource (which, together with an ImageFilter, lets you modify an
existing image) and MemoryImageSource (which lets you turn an array of pixel
information into an image). The image filters provided with java.awt.image

are CropImageFilter, RGBImageFilter, AreaAveragingScaleFilter, and
ReplicateScaleFilter. You can also implement your own image producers
and image filters. These classes are all covered in detail in Chapter 12.

The following code uses this version of createImage() to create a modified
version of an original image:

Image i = Toolkit.getDefaultToolkit().getImage (u);
TransparentImageFilter tf = new TransparentImageFilter (.5f);

Image j = Toolkit.getDefaultToolkit().createImage (
new FilteredImageSource (i.getSource(), tf));

public Image createImage (byte[] imageData) �

This createImage() method converts the entire byte array in imageData into
an Image. This data must be in one of the formats understood by this AWT
Toolkit (GIF, JPEG, or XBM) and relies on the “magic number” of the data to
determine the image type.

public Image createImage (byte[] imageData, int offset, int length) �

This createImage() method converts a subset of the byte data in imageData

into an Image. Instead of starting at the beginning, this method starts at off-
set and goes to offset+length-1, for a total of length bytes. If offset is 0
and length is imageData.length, this method is equivalent to the previous
method and converts the entire array.

The data in imageData must be in one of the formats understood by this AWT
Toolkit (GIF, JPEG, or XBM) and relies on the “magic number” of the data to
determine the image type.

NOTE For those unfamiliar with magic numbers, most data files are
uniquely identified by the first handful or so of bytes. For instance,
the first three bytes of a GIF file are “GIF”. This is what createIm-
age() relies upon to do its magic.

10 July 2002 22:23

Miscellaneous methods

public abstract void beep () �

The beep() method attempts to play an audio beep. You have no control over
pitch, duration, or volume; it is like putting echo ˆG in a UNIX shell script.

public abstract void sync ()
The sync() method flushes the display of the underlying graphics context.
Normally, this is done automatically, but there are times (particularly when
doing animation) when you need to sync() the display yourself.

15.2 The Peer Interfaces
Each GUI component that AWT provides has a peer. The peer is the implementa-
tion of that component in the native environment. For example, the Choice com-
ponent in AWT corresponds to some native object that lets the user select one or
more items from a list. As a Java developer, you need to worry only about the inter-
face of the Choice object; when someone runs your program, the Choice object is
mapped to an appropriate native object, which is the Choice peer, that “does the
right thing.” You don’t really care what the peer is or how it’s implemented; in fact,
the peer may look (and to some extent, behave) differently on each platform.

The glue that allows an AWT component and its peer to work together is called a
peer interface. A peer interface is simply an interface that defines the methods that
the peer is required to support. These interfaces are collected in the package
java.awt.peer. For example, this package contains the ButtonPeer inter face,
which contains the single method setLabel(). This means that the native object
used to implement a Button must contain a method called setLabel() in order
for AWT to use it as a button peer. (It’s not quite that simple; since a button is also
a Component, the button’s peer must also implement the ComponentPeer inter face,
which is much more complicated.)

With one exception, there is a one-to-one correspondence between Component

classes and peer interfaces: a Window has a WindowPeer, a Checkbox has a Checkbox-
Peer, and so on. The one exception is a new peer interface that appears in Java
1.1: the LightweightPeer, which doesn’t have a corresponding component. The
LightweightPeer is used by components that exist purely in Java, don’t have a
native peer, and are displayed and managed by another container. Lightweight-
Peer makes it easier to create new components or containers that can behave like
other components, but don’t subclass Canvas or Panel and don’t correspond to
anything in the native environment. The best usage I can think of is to subclass
Container to create a lightweight Panel. If you are only using a Panel to manage

15.2 THE PEER INTERFACES 497

10 July 2002 22:23

498 CHAPTER 15: TOOLKIT AND PEERS

layout, there is no need for a peer to be created to process events. This should
result in substantial resource savings where multiple panels need to be created just
to help with layout. The following code is all you need to create a LightWeight-

Panel:

import java.awt.*;
public class LightWeightPanel extends Container {
}

There also tends to be a one-to-one relationship between the peer methods and
the methods of the Java component. That is, each method in the peer interface
corresponds to a method of the component. However, although a peer must
implement each method in its peer interface, it doesn’t necessarily have to do any-
thing in that method. It’s entirely possible for a platform to have a native button
object that doesn’t let you set the label. In this case, the button peer would imple-
ment the setLabel() method required by the ButtonPeer inter face, but it
wouldn’t do anything. Of course, the component may also have many methods
that don’t correspond to the peer methods. Methods that don’t correspond to any-
thing in the peer are handled entirely within Java.

The ComponentPeer inter face is the parent of all non-menu objects in the peer
package. The MenuComponentPeer is the parent of all menu objects. The trees mir-
ror the regular object hierarchies. Figure 15-1 shows the object hierarchy diagram.

Creating a Java component (e.g., Button b = new Button ("Foo")) does not
create the peer. An object’s peer is created when the object’s addNotify() method
is called. This is usually when the component’s container is added to the screen.
The call to a component’s addNotify() method in turn calls the appropriate
createxxxx() method of the Toolkit (for a Button, createButton()). Figure 15-2
shows the process.

When you remove a component from a container by calling remove(), the con-
tainer calls the component’s removeNotify() method. This usually results in a call
to the peer’s dispose() method. Depending on the particular component,
removeNotify() may be overridden to perform additional work. Removing a Com-
ponent from a Container does not destroy the Component. The next time the
method addNotify() is called, the component must be recreated by the peer, with
its previous characteristics. For instance, when a TextField is removed, the current
text, plus the start and stop points for the current selection, are saved. These will
be restored if you add the text field to its container again. For some components,
like a Label, there is no need to retain any additional information.

A component’s peer needs to exist only when the user is interacting with it. If you
are developing resource-intensive programs, you might want to consider drawing
the components manually when they do not have the focus and using the peer
only when they actually have input focus. This technique can save a considerable

10 July 2002 22:23

KEY extendsINTERFACE INFREQUENTLY USED

FontPeer

ComponentPeer

java.awt.peer ButtonPeer

CanvasPeer

CheckboxPeer

ChoicePeer

ContainerPeer

LabelPeer

ListPeer

ScrollbarPeer

TextComponentPeer

WindowPeer

ScrollPanePeer

FramePeer

DialogPeer FileDialogPeer

TextFieldPeer

TextAreaPeer

MenuComponentPeer

MenuBarPeer

MenuItemPeer

CheckboxMenuItemPeer

MenuPeer

LightweightPeer

PanelPeer

PopupMenuPeer

Figure 15–1: java.awt.peer object hierarchy

amount of memory resources but requires extra work on your part as a developer
and goes beyond the scope of this book. The LightweightPeer inter face appears
to be designed to make this process easier: you could create a dummy button that
doesn’t do anything and uses the LightweightPeer. Whenever the mouse enters
the button’s space, you could quickly remove the dummy button and add a real
button.

The peer interfaces are listed in their entirety in the reference section. We won’t
list them here, primarily because you don’t need to worry about them unless
you’re porting Java to a new platform. Each method in a peer interface corre-
sponds exactly to the similarly named method in the matching component.
LightweightPeer is the only exception, because it doesn’t have a matching compo-
nent, but that’s easy to take care of: as you’d expect, LightweightPeer doesn’t

15.2 THE PEER INTERFACES 499

10 July 2002 22:23

500 CHAPTER 15: TOOLKIT AND PEERS

Button
Native Button

(peer object)

Toolkit

createButton()

Java-Land

addNotify()

Real World

Figure 15–2: Creating a Button peer

define any methods. (Of course, a peer that implements LightweightPeer would
still need to implement the methods inherited from ComponentPeer, but those are
inherited when you subclass Component.)

10 July 2002 22:23

16

Data Transfer

In this chapter:
• DataFlavor
• Transferable

Interface
• ClipboardOwner

Interface
• Clipboard
• StringSelection
• UnsupportedFlavorException
• Reading and Writing

the Clipboard

One feature that was missing from Java 1.0 was the ability to access the system clip-
board. It was impossible to cut and paste data from one program into another. Java
1.1 includes a package called java.awt.datatransfer that supports clipboard
operations. Using this package, you can cut an arbitrary object from one program
and paste it into another. In theor y, you can cut and paste almost anything; in
practice, you usually want to cut and paste text strings, so the package provides
special support for string operations. The current version allows only one object to
be on the clipboard at a time.

java.awt.datatransfer consists of three classes, two interfaces, and one excep-
tion. Objects that can be transferred implement the Transferable inter face. The
Transferable inter face defines methods for working with different flavors of an
object. The concept of flavors is basic to Java’s clipboard model. Essentially, a fla-
vor is a MIME content type. Any object can be represented in several different ways,
each corresponding to a different MIME type. For example, a text string could be
represented by a Java String object, an array of Unicode character data, or some
kind of rich text that contains font information. The object putting the string on
the clipboard provides whatever flavors it is capable of; an object pasting the string
from the clipboard takes whatever flavor it can handle. Flavors are represented by
the DataFlavor class, and the UnsupportedFlavorException is used when an
object asks for a DataFlavor that is not available.

The Clipboard class represents the clipboard itself. There is a single system clip-
board, but you can create as many private clipboards as you want. The system clip-
board lets you cut and paste between arbitrary applications (for example,

501

10 July 2002 22:23

502 CHAPTER 16: DATA TRANSFER

Microsoft Word and some Java programs). Private clipboards are useful within a
single application, though you could probably figure out some way to export a
clipboard to another application using RMI.

To put data on the clipboard, you must implement the ClipboardOwner inter face,
which provides a means for you to be notified when the data you write is removed
from the clipboard. (There isn’t any ClipboardReader inter face; any object can
read from the clipboard.) The final component of the datatransfer package is a
special class called StringSelection that facilitates cutting and pasting text strings.

Cutting and pasting isn’t the whole story; JavaSoft has also promised drag-and-drop
capabilities, but this won’t be in the initial release of Java 1.1.

16.1 DataFlavor
A DataFlavor represents a format in which data can be transferred. The DataFla-
vor class includes two common data flavors; you can create other flavors by extend-
ing this class. Flavors are essentially MIME content types and are represented by the
standard MIME type strings. An additional content subtype has been added to rep-
resent Java classes; the content type of a Java object is:*

application/x-java-serialized-object
<classname>

For example, the content type of a Vector object would be:

application/x-java-serialized-object java.util.Vector

In addition to the content type, a DataFlavor also contains a presentable name. The
presentable name is intended to be more comprehensible to humans than the
MIME type. For example, the presentable name of a VectorFlavor object might
just be “Vector”, rather than the complex and lengthy MIME type given previously.
Presentable names are useful when a program needs to ask the user which data fla-
vor to use.

16.1.1 DataFlavor Methods
Variables

The DataFlavor class includes two public variables that hold “prebuilt” flavors rep-
resenting different kinds of text objects. These flavors are used in conjunction with
the StringSelection class. Although these flavors are variables for all practical
purposes, they are used as constants.

* The type name changed to x-java-serialized-object in the 1.1.1 release.

10 July 2002 22:23

public static DataFlavor stringFlavor �

The stringFlavor variable is the data flavor for textual data represented as a
Java String object. Its MIME type is application/x-javaserializedobject

String.

public static DataFlavor plainTextFlavor �

The plainTextFlavor variable is the data flavor for standard, Unicode-
encoded text. Its MIME type is text/plain; charset=unicode.

Constructors

The DataFlavor class has two constructors. One creates a DataFlavor given a
MIME content type; the other creates a DataFlavor given a Java class and builds the
MIME type from the class name.

public DataFlavor(String mimeType, String humanPresentableName) �

The first constructor creates an instance of DataFlavor for the mimeType flavor
of data. The humanPresentableName parameter should be a more user-friendly
name. It might be used in a menu to let the user select a flavor from several
possibilities. It might also be used to generate an error message when the
UnsupportedFlavorException occurs. The plainTextFlavor uses “Plain Text”
as its presentable name.

To read data from the clipboard, a program calls the Transferable.getTrans-
ferData() method. If the data is represented by a DataFlavor that doesn’t cor-
respond to a Java class (for example, plainTextFlavor), getTransferData()
returns an InputStream for you to read the data from.

public DataFlavor(Class representationClass, String humanPresentableName) �

The other constructor creates an instance of DataFlavor for the specific Java
class representationClass. Again, the humanPresentableName provides a
more user-friendly name for use in menus, error messages, or other interac-
tions with users. The stringFlavor uses “Unicode String” as its presentable
name.

A program calls Transferable.getTransferData() to read data from the clip-
board. If the data is represented by a Java class, getTransferData() returns an
instance of the representation class itself. It does not return a Class object.
For example, if the data flavor is stringFlavor, getTransferData() returns a
String.

16.1 DATAFLAVOR 503

10 July 2002 22:23

504 CHAPTER 16: DATA TRANSFER

Presentations

public String getHumanPresentableName() �

The getHumanPresentableName() method returns the data flavor’s presentable
name; for example, stringFlavor.getHumanPresentableName() returns the
string “Unicode String”.

public void setHumanPresentableName(String humanPresentableName) �

The setHumanPresentableName() method changes the data flavor’s pre-
sentable name to a new humanPresentableName. It is hard to imagine why you
would want to change a flavor’s name.

public String getMimeType() �

The getMimeType() method gets the MIME content type for the DataFlavor as
a String.

public Class getRepresentationClass() �

The getRepresentationClass() method returns the Java type that is used to
represent data of this flavor (i.e., the type that would be returned by the get-

TransferData()method). It returns the type as a Class object, not an instance
of the class itself. Note that all data flavors have a representation class, not just
those for which the class is specified explicitly in the constructor. For example,
the plainTextFlavor.getRepresentationClass() method returns the class
java.io.StringReader.

public boolean isMimeTypeEqual(String mimeType) �

The isMimeTypeEqual() method checks for string equality between mimeType

and the data flavor’s MIME type string. For some MIME types, this comparison
may be too simplistic because character sets may not be present on types like
text/plain. Therefore, this method would tell you that the MIME type
text/plain; charset=unicode is different from text/plain.

public final boolean isMimeTypeEqual(DataFlavor dataFlavor) �

The isMimeTypeEqual() method checks whether the MIME type of the
dataFlavor parameter equals the current data flavor’s MIME type. It calls the
previous method, and therefore has the same weaknesses.

Protected methods

protected String normalizeMimeType(String mimeType) �

The normalizeMimeType() method is used to convert a MIME type string into a
standard form. Its argument is a MIME type, as a String; it returns the new
normalized MIME type. You would never call normalizeMimeType() directly,
but you might want to override this method if you are creating a subclass of
DataFlavor and want to change the default normalization process. For
example, one thing you might do with this is add the string charset=US-ASCII
to the text/plain MIME type if it appears without a character set.

10 July 2002 22:23

protected String normalizeMimeTypeParameter(String parameterName, String parameter-
Value) �

The normalizeMimeTypeParameter() method is used to convert any parame-
ters associated with MIME types into a standard form. Its arguments are a
parameter name (for example, charset) and the parameter’s value (for exam-
ple, unicode). It returns parameterValue normalized. You would never call
normalizeMimeTypeParameter() directly, but you might want to override this
method if you are creating a subclass of DataFlavor and want to change the
default normalization process. For example, parameter values may be case sen-
sitive. You could write a method that would convert the value Unicode to the
more appropriate form unicode.

While it may be more trouble than it’s worth, carefully overriding these nor-
malization methods might help you to get more predictable results from meth-
ods like isMimeTypeEqual().

Miscellaneous methods

public boolean equals(DataFlavor dataFlavor) �

The equals() method defines equality for flavors. Two DataFlavor objects are
equal if their MIME type and representation class are equal.

16.2 Transferable Interface
Objects that can be placed on a clipboard must implement the Transferable

inter face. This interface defines a number of methods that let an object describe
how it presents itself to clipboard readers. That sounds complex, but it isn’t really;
these methods let a clipboard reader find out what data flavors are available and
what Java types they represent.

The significance of the Transferable inter face is that it provides a way to get infor-
mation about the object on the clipboard without knowing what the object actually
is. When you read the clipboard, you don’t necessarily know what kind of object is
there. It might be some kind of text string, but it could just as likely be something
bizarre. However, you shouldn’t have to care. If you’re looking for a String, you
care only that the object exists in a stringFlavor representation. These methods
let you ask the object what flavors it supports.

For text strings, the data transfer package provides a StringSelection class that
implements Transferable. At this point, if you want to transfer other kinds of
objects, you’ll have to create a class that implements Transferable yourself. It
wouldn’t be unreasonable for JavaSoft to provide other “selection” classes (for
example, ImageSelection) in the future.

16.2 TRANSFERABLE INTERFACE 505

10 July 2002 22:23

506 CHAPTER 16: DATA TRANSFER

Methods
public abstract DataFlavor[] getTransferDataFlavors() �

The getTransferDataFlavors() method should return a sorted array of
DataFlavors that you support. The most descriptive flavor should be the first
element in the array and the least descriptive, last. For example, a textual
object would place DataFlavor.plainTextFlavor last, because it has less infor-
mation than DataFlavor.stringFlavor (which includes information like the
length of the string) and much less information than a hypothetical flavor like
DataFlavor.richTextFlavor.

public abstract boolean isDataFlavorSupported(DataFlavor flavor) �

The isDataFlavorSupported() method should return true if the object sup-
ports the given flavor and false other wise.

public abstract Object getTransferData(DataFlavor flavor)
throws UnsupportedFlavorException, IOException �

The getTransferData() method is the most complicated to implement. It
should return an instance of the class representing the data in the given fla-

vor. If flavor is not supported by this object, getTransferData() must throw
the UnsupportedFlavorException. However, this method must be able to
return a class for each flavor the object supports (i.e., each data flavor listed by
getTransferDataFlavors()). The method could throw an IOException when
returning with a Reader as the representation class. For example, if some data
flavor required you to return a FileReader and the file doesn’t exist, this
method might throw an IOException.

16.3 ClipboardOwner Interface
Classes that need to place objects on a clipboard must implement the Clipboard-

Owner inter face. An object becomes the clipboard owner by placing something on
a Clipboard and remains owner as long as that object stays on the clipboard; it
loses ownership when someone else writes to the clipboard. The ClipboardOwner

inter face provides a way to receive notification when you lose ownership—that is,
when the object you placed on the clipboard is replaced by something else.

Methods
public abstract void lostOwnership(Clipboard clipboard, Transferable contents) �

The lostOwnership() method tells the owner of contents that it is no longer
on the given clipboard. It is usually implemented as an empty stub but is
available for situations in which you have to know.

10 July 2002 22:23

16.4 Clipboard
The Clipboard class is a repository for a Transferable object and can be used for
cut, copy, and paste operations. You can work with a private clipboard by creating
your own instance of Clipboard, or you can work with the system clipboard by ask-
ing the Toolkit for it:

Toolkit.getDefaultToolkit().getSystemClipboard()

When working with the system clipboard, native applications have access to infor-
mation created within Java programs and vice versa. Access to the system clipboard
is controlled by the SecurityManager and is restricted within applets.

16.4.1 Clipboard Methods
Variables

protected ClipboardOwner owner �

The owner instance variable represents the current owner of contents. When
something new is placed on the clipboard, the previous owner is notified by a
call to the lostOwnership() method. The owner usually ignores this notifica-
tion. However, the clipboard’s contents are passed back to owner in case some
special processing or comparison needs to be done.

protected Transferable contents �

The contents instance variable is the object currently on the clipboard; it was
placed on the clipboard by owner. To retrieve the current contents, use the
getContents() method.

Constructors

public Clipboard(String name) �

The constructor for Clipboard allows you to create a private clipboard named
name. This clipboard is not accessible outside of your program and has no
security constraints placed upon it.

Miscellaneous methods

public String getName() �

The getName() method fetches the clipboard’s name. For private clipboards,
this is the name given in the constructor. The name of the system clipboard is
“System”.

16.4 CLIPBOARD 507

10 July 2002 22:23

508 CHAPTER 16: DATA TRANSFER

public synchronized Transferable getContents(Object requester) �

The getContents() method allows you to retrieve the current contents of the
clipboard. This is the method you would call when the user selects Paste from
a menu.

Once you have the Transferable data, you try to get the data in whatever fla-
vor you want by calling the Transferable.getTransferData() method, possi-
bly after calling Transferable.isDataFlavorSupported(). The requester

represents the object that is requesting the clipboard’s contents; it is usually
just this, since the current object is making the request.

public synchronized void setContents(Transferable contents, ClipboardOwner owner) �

The setContents() method changes the contents of the clipboard to con-

tents and changes the clipboard’s owner to owner. You would call this
method when the user selects Cut or Copy from a menu. The owner parameter
represents the object that owns contents. This object must implement the
ClipboardOwner inter face; it will be notified by a call to lostOwnership()

when something else is placed on the clipboard.

16.5 StringSelection
StringSelection is a convenience class that can be used for copy and paste opera-
tions on Unicode text strings (String). It implements both the ClipboardOwner

and Transferable inter faces, so it can be used both as the contents of the clip-
board and as its owner. For example, if s is a StringSelection, you can call Clip-
board.setContents(s,s). StringSelection supports both stringFlavor and
plainTextFlavor and doesn’t do anything when it loses clipboard ownership.

16.5.1 StringSelection Methods
Constructors

public StringSelection(String data) �

The constructor creates an instance of StringSelection containing data. You
can use this object to place the data on a clipboard.

Miscellaneous methods

public DataFlavor[] getTransferDataFlavors() �

The getTransferDataFlavors() method returns a two-element DataFlavor

array consisting of DataFlavor.stringFlavor and DataFlavor.plainTextFla-

vor. This means that you can paste a StringSelection as either a Java String
or as plain text (i.e., the MIME type plain/text).

10 July 2002 22:23

public boolean isDataFlavorSupported(DataFlavor flavor) �

The isDataFlavorSupported() method is returns true if flavor is either
DataFlavor.stringFlavor or DataFlavor.plainTextFlavor; it returns false
for any other flavor.

public Object getTransferData(DataFlavor flavor)
throws UnsupportedFlavorException, IOException �

The getTransferData() method returns an object from which you can get the
data on the clipboard; the object’s type is determined by the flavor parame-
ter. This method returns a String containing the data on the clipboard if fla-
vor is DataFlavor.stringFlavor; it returns a StringBufferInputStream from
which you can read the data on the clipboard if you ask for DataFla-

vor.plainTextFlavor. Other wise, getTransferData() throws an Unsupport-

edFlavorException.

public void lostOwnership(Clipboard clipboard, Transferable contents) �

The lostOwnership() method of StringSelection is an empty stub; it does
nothing when you lose ownership. If you want to know when you’ve lost own-
ership of string data placed on the clipboard, write a subclass of StringSelec-
tion and override this method.

16.6 UnsupportedFlavorException
The UnsupportedFlavorException exception is thrown when you ask Transfer-

able.getTransferData() to give you data in a flavor that isn’t supported by the
object on the clipboard. For example, if the clipboard currently holds an image
and you ask for the data in the stringFlavor, you will almost certainly get an
UnsupportedFlavorException because it is unlikely that an image object will be
able to give you its data as a String. You can either ignore the exception or display
an appropriate message to the user.

16.6.1 UnsupportedFlavorException Method
Constructor

public UnsupportedFlavorException (DataFlavor flavor)
The sole constructor creates an UnsupportedFlavorException with a detail
message containing the human presentable name of flavor. To retrieve this
message, call getMessage(), which this exception inherits from the Exception
superclass (and which is required by the Throwable inter face).

16.6 UNSUPPORTEDFLAVOREXCEPTION 509

10 July 2002 22:23

510 CHAPTER 16: DATA TRANSFER

16.7 Reading and Writing the Clipboard
Now that you know about the different java.awt.datatransfer classes required to
use the clipboard, let’s put them all together in an example. Example 16-1 creates
a TextField for input (copying), a read-only TextArea for output (pasting), and a
couple of buttons to control its operation. Figure 16-1 shows the program’s user
inter face. When the user clicks on the Copy button or presses Return in the
TextField, the text in the TextField is copied to the Clipboard. When the user
clicks on the Paste button, the contents of the clipboard are drawn in the
TextArea. Since the clipboard is not private, you can copy or paste from anywhere
on your desktop, not just this program.

Example 16–1: Using the System Clipboard

// Java 1.1 only
import java.io.*;
import java.awt.*;
import java.awt.datatransfer.*;

public class ClipMe extends Frame {
TextField tf;
TextArea ta;
Button copy, paste;
Clipboard clipboard = null;
ClipMe() {

super ("Clipping Example");
add (tf = new TextField("Welcome"), "North");
add (ta = new TextArea(), "Center");
ta.setEditable(false);
Panel p = new Panel();
p.add (copy = new Button ("Copy"));
p.add (paste = new Button ("Paste"));
add (p, "South");
setSize (250, 250);

}
public static void main (String args[]) {

new ClipMe().show();
}
public boolean handleEvent (Event e) {

if (e.id == Event.WINDOW_DESTROY) {
System.exit(0);
return true; // never gets here

}
return super.handleEvent (e);

}
public boolean action (Event e, Object o) {

if (clipboard == null)
clipboard = getToolkit().getSystemClipboard();

if ((e.target == tf) || (e.target == copy)) {
StringSelection data;
data = new StringSelection (tf.getText());

10 July 2002 22:23

Example 16–1: Using the System Clipboard (continued)

clipboard.setContents (data, data);
} else if (e.target == paste) {

Transferable clipData = clipboard.getContents(this);
String s;
try {

s = (String)(clipData.getTransferData(
DataFlavor.stringFlavor));

} catch (Exception ee) {
s = ee.toString();

}
ta.setText(s);

}
return true;

}
}

Figure 16–1: Using the system clipboard

We won’t say anything about how the display is set up; that should be familiar. All
the interesting stuff happens in the action method, which is called in response to
a button click. We check which button the user clicked; if the user clicked the
Copy button, we read the text field tf and use it to create a new StringSelection

named data. If the user clicked the Paste button, we retrieve the data from the
clipboard by calling getContents(). This gives us an object about which (strictly
speaking) we know nothing, except that it implements Transferable. In this case,
we’re pretty sure that we’re getting text from the clipboard, so we call getTrans-
ferData() and ask for the data in the stringFlavor form. We catch the exception

16.7 READING AND WRITING THE CLIPBOARD 511

10 July 2002 22:23

512 CHAPTER 16: DATA TRANSFER

that might occur if we’re wrong about the data flavor. This program has no way of
placing anything but text on the clipboard, but there’s no guarantee that the user
didn’t cut some other kind of object from a native application.

Once we have our String, we call the setText() method of the TextArea to tell it
about the new string, and we are finished.

10 July 2002 22:23

17

Printing

In this chapter:
• PrintGraphics

Interface
• PrintJob Class
• Component Methods
• Printing Example
• Printing Arbitrary

Content

Java 1.1 introduces the ability to print, a capability that was sadly missing in Java
1.0, even though the Component class had print() and printAll() methods. How-
ever, it is possible to print arbitrary content, including multipage documents. The
printing facility in Java 1.1 is designed primarily to let a program print its display
area or any of the components within its display.

Printing is implemented with the help of one public interface, PrintGraphics, and
one public class, PrintJob, of AWT. The real work is hidden behind classes pro-
vided with the toolkit for your platform. On Windows NT/95 platforms, these
classes are sun.awt.windows.WPrintGraphics and sun.awt.windows.WPrintJob.
Other platforms have similarly named classes.

Printing from an applet has security implications and is restricted by the Secur-

ityManager. It is reasonable to suppose that a browser will make it possible to print
a page containing an applet; in fact, Netscape has done so ever since Navigator 3.0.
However, this ability might not take advantage of Java’s printing facility. It isn’t rea-
sonable to suppose that an applet will be able to initiate a print job on its own. You
might allow a signed applet coming from a trusted source to do so, but you
wouldn’t want to give any random applet access to your printer. (If you don’t
understand why, imagine the potential for abuse.)

17.1 PrintGraphics Interface
Printing is similar to drawing an object on the screen. Just as you draw onto a
graphics context to display something on the screen, you draw onto a “printing
context” to create an image for printing. Furthermore, the printing context and

513

10 July 2002 22:24

514 CHAPTER 17: PRINTING

graphics context are very closely related. The graphics context is an instance of the
class Graphics. The printing context is also an instance of Graphics, with the addi-
tional requirement that it implement the PrintGraphics inter face. Therefore, any
methods that you use to draw graphics can also be used for printing. Furthermore,
the paint() method (which a component uses to draw itself on the screen) is also
called when a component must draw itself for printing.

In short, to print, you get a special Graphics object that implements the Print-

Graphics inter face by calling the getGraphics() method of PrintJob (discussed
later in this chapter) through Toolkit. You then call a component’s print() or
printAll() method or a container’s printComponents() method, with this object
as the argument. These methods arrange for a call to paint(), which can draw on
the printing context to its heart’s content. In the simple case where you’re just ren-
dering the component on paper, you shouldn’t have to change paint() at all. Of
course, if you are doing something more complex (that is, printing something that
doesn’t look exactly like your component), you’ll have to modify paint() to deter-
mine whether it’s painting on screen or on paper, and act accordingly. The code
would look something like this:

public void paint(Graphics g) {
if (g instanceof PrintGraphics) {

// Printing
}else {

// Painting
}

}

If the graphics object you receive is an instance of PrintGraphics, you know that
paint() has been called for a print request and can do anything specific to print-
ing. As I said earlier, you can use all the methods of Graphics to draw on g. If
you’re printing, though, you might do anything from making sure that you print
in black and white to drawing something completely different. (This might be the
trick you use to print the contents of a component rather than the component
itself. However, as of Java 1.1, it’s impossible to prevent the component from draw-
ing itself. Remember that your paint() method was never responsible for drawing
the component; it only drew additions to the basic component. For the time being,
it’s the same with printing.)

When you call printComponents() on a Container, all the components within the
container will be printed. Early beta versions of 1.1 only painted the outline of
components within the container. The component should print as it appears on
the screen.

10 July 2002 22:24

17.1.1 Methods
public abstract PrintJob getPrintJob () �

The getPrintJob() method returns the PrintJob instance that created this
PrintGraphics instance.

This seems like circular logic: you need a PrintJob to create a PrintGraphics
object, but you can get a PrintJob only from a PrintGraphics object. To
break the circle, you can get an initial PrintJob by calling the getPrintJob()

method of Toolkit. getPrintJob() looks like it will be useful primarily within
paint(), where you don’t have access to the original PrintJob object and need
to get it from the graphics context.

System-provided PrintGraphics objects inherit their other methods from the
Graphics class, which is discussed in Chapter 2, Simple Graphics.* The one method
that’s worth noting here is dispose(). In a regular Graphics object, calling dis-

pose() frees any system resources the object requires. For a PrintGraphics object,
dispose() sends the current object to the printer prior to deallocating its
resources. Calling dispose() is therefore equivalent to sending a form feed to
eject the current page.

17.2 PrintJob Class
The abstract PrintJob class provides the basis for the platform-specific printing
subclasses. Through PrintJob, you have access to properties like page size and
resolution.

17.2.1 Constructor and Pseudo -Constructor
public PrintJob () �

The PrintJob() constructor is public; however, the class is abstract, so you
would never create a PrintJob instance directly.

Since you can’t call the PrintJob constructor directly, you need some other way of
getting a print job to work with. The proper way to get an instance of PrintJob is
to ask the Toolkit, which is described in Chapter 15, Toolkit and Peers. The get-

PrintJob() method requires a Frame as the first parameter, a String as the second
parameter, and a Properties set as the third parameter. Here’s how you might call
it:

* Anything can implement the PrintGraphics inter face, not just subclasses of Graphics. However, in
order for paint() and print() to work, it must be a subclass of Graphics.

17.2 PRINTJOB CLASS 515

10 July 2002 22:24

516 CHAPTER 17: PRINTING

PrintJob pjob = getToolkit().getPrintJob(aFrame, "Job Title",
(Properties)null);

The Frame is used to hold a print dialog box, asking the user to confirm or cancel
the print job. (Whether or not you get the print dialog may be platform specific,
but your programs should always assume that the dialog may appear.) The String
is the job’s title; it will be used to identify the job in the print queue and on the
job’s header page, if there is one.

The Properties parameter is used to request printing options, like page reversal.
The property names, and whether the requested properties are honored at all, are
platform specific. UNIX systems use the following properties:

awt.print.printer

awt.print.paperSize

awt.print.destination

awt.print.orientation

awt.print.options

awt.print.fileName

awt.print.numCopies

Windows NT/95 ignores the properties sheet. If the properties sheet is null, as in
the previous example, you get the system’s default printing options. If the proper-
ties sheet is non-null, getPrintJob() modifies it to show the actual options used
to print the job. You can use the modified properties sheet to find out what prop-
erties are recognized on your system and to save a set of printing options for use
on a later print job.

If you are printing multiple pages, each page should originate from the same print
job.

According to Sun’s documentation, getPrintJob() ought to return null if the
user cancels the print job. However, this is a problem. On some platforms (notably
Windows NT/95), the print dialog box doesn’t even appear until you call the get-
Graphics() method. In this case, getPrintJob() still returns a print job and never
returns null. If the user cancels the job, getGraphics() returns null.

17.2.2 Methods
public abstract Graphics getGraphics () �

The getGraphics() method returns an instance of Graphics that also imple-
ments PrintGraphics. This graphics context can then be used as the parame-
ter to methods like paint(), print(), update(), or printAll() to print a sin-
gle page. (All of these methods result in calls to paint(); in paint(), you draw
whatever you want to print on the Graphics object.)

10 July 2002 22:24

On Windows NT/95 platforms, getGraphics() returns null if the user cancels
the print job.

public abstract Dimension getPageDimension () �

The getPageDimension() method returns the dimensions of the page in pix-
els, as a Dimension object. Since getGraphics() returns a graphics context
only for a single page, it is the programmer’s responsibility to decide when the
current page is full, print the current page, and start a new page with a new
Graphics object. The page size is chosen to roughly represent a screen but has
no relationship to the page size or orientation.

public abstract int getPageResolution () �

The getPageResolution() method returns the number of pixels per inch for
drawing on the page. It is completely unclear what this means, since the num-
ber returned has no relationship to the printer resolution. It appears to be
similar to the screen resolution.

public abstract boolean lastPageFirst () �

The lastPageFirst() method lets you know if the user configured the printer
to print pages in reverse order. If this returns true, you need to generate the
last page first. If false, you should print the first page first. This is relevant
only if you are trying to print a multipage document.

public abstract void end () �

The end() method terminates the print job. This is the last method you
should call when printing; it does any cleaning up that’s necessar y.

public void finalize () �

The finalize() method is called by the garbage collector. In the event you
forget to call end(), finalize() calls it for you. However, it is best to call
end() as soon as you know you have finished printing; don’t rely on final-

ize().

17.3 Component Methods
The methods that start the printing process come from either the Component or
Container class and are inherited by all their children. All components inherit the
printAll() and print() methods. Containers also inherit the printComponents()
method, in addition to printAll() and print(). A container should call print-
Components() to print itself if it contains any components. Otherwise, it is suffi-
cient to call printAll().

These methods end up calling paint(), which does the actual drawing.

17.3 COMPONENT METHODS 517

10 July 2002 22:24

518 CHAPTER 17: PRINTING

17.4 Printing Example
Now that you know about the different classes necessary to print, let’s put it all
together. Printing takes four steps:

1. Get the PrintJob:

PrintJob pjob = getToolkit().getPrintJob(this, "Job Title", (Properties)null);

2. Get the graphics context from the PrintJob:

Graphics pg = pjob.getGraphics();

3. Print by calling printAll() or print(). When this method returns, you can
call dispose() to send the page to the printer:

printAll(pg);
pg.dispose(); // This is like sending a form feed

4. Clean up after yourself:

pjob.end();

The following code summarizes how to print:

// Java 1.1 only
PrintJob pjob = getToolkit().getPrintJob(this, "Print?", (Properties)null);
if (pjob != null) {

Graphics pg = pjob.getGraphics();
if (pg != null) {

printAll(pg);
pg.dispose();

}
pjob.end();

}

This code prints the current component: what you get from the printer should be
a reasonable rendition of what you see on the screen. Note that we didn’t need to
modify paint() at all. That should always be the case if you want your printer out-
put to look like your onscreen component.

17.5 Printing Arbitrary Content
Of course, in many situations, you want to do more than print the appearance of a
component. You often want to print the contents of some component, rather than
the component itself. For example, you may want to print the text the user has
typed into a text area, rather than the text area itself. Or you may want to print the
contents of a spreadsheet, rather than the collection of components that compose
the spreadsheet.

10 July 2002 22:24

Java 1.1 lets you print arbitrary content, which may include multipage documents.
You aren’t restricted to printing your components’ appearance. In many ways, the
steps required to print arbitrary content are similar to those we outlined previ-
ously. However, a few tricks are involved:

1. Get the PrintJob:

PrintJob pjob = getToolkit().getPrintJob(this, "Job Title", (Properties)null);

2. Get the graphics context from the PrintJob:

Graphics pg = pjob.getGraphics();

3. Don’t call printAll() or print(). These methods will try to draw your compo-
nent on the page, which you don’t want. Instead, get the dimensions of the
page by calling getPageDimension():

pjob.getPageDimension();

4. Set the font for your graphics context; then get the font metrics from your
graphics context.

Font times = new Font ("SansSerif", Font.PLAIN, 12);
pg.setFont(times);
FontMetrics tm = pg.getFontMetrics(times);

5. Draw whatever you want into the graphics context, using the methods of the
Graphics class. If you are drawing text, it’s your responsibility to do all the
positioning, making sure that your text falls within the page boundaries. By
the time you’re through with this, you’ll have the FontMetrics class memo-
rized.

6. When you’ve finished drawing the current page, call dispose(); this sends the
page to the printer and releases the resources tied up by the PrintGraphics

object.

pg.dispose(); // This is like sending a form feed

7. If you want to print more pages, return to step 2.

8. Clean up after yourself:

pjob.end();

Remember to set a font for the PrintGraphics object explicitly! It doesn’t have a
default font.

An example that loads and prints a text file is available from this book’s Web page.

17.5 PRINTING ARBITRAR Y CONTENT 519

10 July 2002 22:24

18

java.applet Reference

In this chapter:
• Introduction to the

Reference Chapters
• Package diagrams

Introduction to the Reference Chapters
The preceding seventeen chapters cover just about all there is to know about AWT.
We have tried to organize them logically, and provide all the information that you
would expect in a reference manual—plus much more in the way of examples and
practical information about how to do things effectively. However, there are many
times when you just need a reference book, pure and simple: one that’s organized
alphabetically, and where you can find any method if you know the class and pack-
age that it belongs to, without having to second guess the author’s organizational
approach. That’s what the rest of this book provides. It’s designed to help you if
you need to look something up quickly, and find a brief but accurate summary of
what it does. In these sections, the emphasis is on brief; if you want a longer
description, look in the body of the book.

The reference sections describe the following packages:

• java.applet (Chapter 18, java.applet Reference)
• java.awt (Chapter 1, java.awt Reference)
• java.awt.datatransfer (Chapter 20, java.awt.datatransfer Reference)
• java.awt.event (Chapter 21, java.awt.event Reference)
• java.awt.image (Chapter 22, java.awt.image Reference)
• java.awt.peer (Chapter 23, java.awt.peer Reference)

Within each package, classes and interfaces are listed alphabetically. There is a
description and a pseudo-code definition for each class or interface. Each variable
and method is listed and described. New Java 1.1 classes are marked with a black

520

10 July 2002 22:24

star (�), as are new methods and new variables. Of course, if a class is new, all its
methods are new. We didn’t mark individual methods in new classes. Methods that
are deprecated in Java 1.1 are marked with a white star (✩).

Inheritance presents a significant problem with documenting object-oriented
libraries, because the bulk of a class’s methods tend to be hiding in the super-
classes. Even if you’re very familiar with object-oriented software development,
when you’re trying to look up a method under the pressure of some deadline, it’s
easy to forget that you need to look at the superclasses in addition to the class
you’re interested in itself. Nowhere is this problem worse than in AWT, where
some classes (in particular, components and containers) inherit well over 100
methods, and provide few methods of their own. For example, the Button class
contains seven public methods, none of which happens to be setFont(). The
font used to display a button’s label is certainly settable—but to find it, you have to
look in the superclass Component.

So far, we haven’t found a way around this problem. The description of each class
has an abbreviated class hierarchy diagram, showing superclasses (all the way back
to Object), immediate subclasses, and the interfaces that the class implements.
Ideally, it would be nice to have a list of all the inherited methods—and in other
parts of Java, that’s possible. For AWT, the lists would be longer than the rest of this
book, much too long to be practical, or even genuinely useful. Someday, electronic
documentation may be able to solve this problem, but we’re not there yet.

Package diagrams
The following figures provide a visual representation of the relationships between
the classes in the AWT packages.

java.awt, as the mother of all AWT packages, is better represented by two dia-
grams, one for the graphics classes and one for the component and layout classes.

INTRODUCTION 521

10 July 2002 22:24

implements

extends

INTERFACE

CLASS ABSTRACT CLASS

java.lang

Button

Canvas

Checkbox

Choice

Container

Label

List

Scrollbar

TextComponent

Window

MenuBar

MenuItem Menu

CheckboxMenuItem

Dialog

Frame

MenuContainer

FileDialog

TextArea

TextField

LayoutManager

Component

GridBagConstraints

MenuComponent

Adjustable

MenuShortcut

CheckboxGroup

java.awt.image

ImageObserver

LayoutManager2

ScrollPane

PopupMenu

java.io

Serializeable

Object

Cloneable

ItemSelectable

java.awt

KEY

Panel

BorderLayout

CardLayout

GridBagLayout

FlowLayout

GridLayout

Figure 18–1: Component and Layout classes of the java.awt package.

522 java.applet Reference

10 July 2002 22:24

FINAL CLASS implements

extends

INTERFACE

CLASS ABSTRACT CLASSKEY

Object

java.lang
Color

FontMetrics

java.util

Cloneable

Error

Exception

IllegalStateException

Cursor

Dimension

Font

Graphics

Image

Insets

MediaTracker

Point

Polygon

Rectangle

Toolkit

AWTEvent

AWTEventMulticaster

Event

EventQueue

PrintJob

java.io

Serializeable

EventObject

AWTError

IllegalComponentStateException

ActionListener

AdjustmentListener

ComponentListener

ContainerListener

FocusListener

ItemListener

KeyListener

MouseListener

MouseMotionListener

TextListener

WindowListener

SystemColor

Shape

AWTException

java.awt.eventjava.awt

PrintGraphics

Figure 18–2: Graphics classes of java.awt package

INTRODUCTION 523

10 July 2002 22:24

implements

extendsCLASS

INFREQUENTLY USED

ABSTRACT CLASS

INTERFACE

Cloneable

java.awt.image

ImageFilter

FilteredImageSource

MemoryImageSource

ColorModel

java.lang

ImageConsumer

DirectColorModel

IndexColorModel

PixelGrabber
RGBImageFilter

CropImageFilter

Object

ImageObserver

ImageProducer

ReplicateScaleFilter AreaAveragingScaleFilter

KEY

Figure 18–3: The java.awt.image package

implements

extends

INTERFACE

CLASS

java.awt.datatransfer

Clipboard

DataFlavor

java.lang

StringSelection

Object
ClipboardOwner

UnsupportedFlavorExceptionException

KEY

Transferable

Figure 18–4: The java.awt.datatransfer package

524 java.applet Reference

10 July 2002 22:24

implements

extends

INTERFACE

CLASS ABSTRACT CLASS

Object

java.lang

ActionEvent

java.util

AWTEvent

ComponentListener

ContainerListener

FocusListener

KeyListener

MouseListener

MouseMotionListener

TextListener

ItemListener

WindowListener

java.awt.event

KEY

ActionListener

AdjustmentListener

java.awt

ComponentAdapter

ContainerAdapter

FocusAdapter

KeyAdapter

MouseAdapter

MouseMotionAdapter

WindowAdapter

AdjustmentEvent

ComponentEvent

ItemEvent

TextEvent

ContainerEvent

FocusEvent

InputEvent

PaintEvent

WindowEvent

KeyEvent

MouseEvent

EventListener

Figure 18–5: The java.awt.event package

INTRODUCTION 525

10 July 2002 22:24

KEY extendsINTERFACE INFREQUENTLY USED

FontPeer

ComponentPeer

java.awt.peer ButtonPeer

CanvasPeer

CheckboxPeer

ChoicePeer

ContainerPeer

LabelPeer

ListPeer

ScrollbarPeer

TextComponentPeer

WindowPeer

ScrollPanePeer

FramePeer

DialogPeer FileDialogPeer

TextFieldPeer

TextAreaPeer

MenuComponentPeer

MenuBarPeer

MenuItemPeer

CheckboxMenuItemPeer

MenuPeer

LightweightPeer

PanelPeer

PopupMenuPeer

Figure 18–6: The java.awt.peer package

CLASS

INTERFACE

ABSTRACT CLASS

INFREQUENTLY USED implements

extends

Component Container Panel Applet

AudioClip

AppletStub

AppletContextjava.appletjava.awtjava.lang

KEY

Object

Figure 18–7: The java.applet package

526 java.applet Reference

10 July 2002 22:24

18.1 Applet

java.awt.Componentjava.lang.Object java.awt.Container

java.awt.Panel java.applet.Applet

Description
The Applet class provides the framework for delivering Java programs within web
pages.

Class Definition
public class java.applet.Applet

extends java.awt.Panel {

// Constructors

public Applet();

// Instance Methods

public void destroy();

public AppletContext getAppletContext();

public String getAppletInfo();

public AudioClip getAudioClip (URL url);

public AudioClip getAudioClip (URL url, String filename);

public URL getCodeBase();

public URL getDocumentBase();

public Image getImage (URL url);

public Image getImage (URL url, String filename);

public Locale getLocale(); �
public String getParameter (String name);

public String[][] getParameterInfo();

public void init();

public boolean isActive();

public void play (URL url);

public void play (URL url, String filename);

public void resize (int width, int height);

public void resize (Dimension dim);

public final void setStub (AppletStub stub);

public void showStatus (String message);

APPLET 527

10 July 2002 22:24

public void start();

public void stop();

}

Constructors
Applet

public Applet()

Description Constructs an Applet object.

Instance Methods
destroy

public void destroy()

Description Called when the browser determines that it doesn’t need to
keep the applet around anymore.

getAppletContext

public AppletContext getAppletContext()

Returns The current AppletContext of the applet.

getAppletInfo

public String getAppletInfo()

Returns A short information string about the applet to be shown to the
user.

getAudioClip

public AudioClip getAudioClip (URL url)

Parameters url URL of an audio file.
Returns Object that implements the AudioClip inter face for playing

audio files.
Description Fetches an audio file to play with the AudioClip inter face.

public AudioClip getAudioClip (URL url , String filename)

Parameters url Base URL of an audio file.
filename Specific file, relative to url, that contains an

audio file.
Returns Object that implements AudioClip inter face for playing audio

file.

528 APPLET

10 July 2002 22:24

Description Fetches an audio file to play with the AudioClip inter face.

getCodeBase

public URL getCodeBase()

Returns The complete URL of the .class file that contains the applet.

getDocumentBase

public URL getDocumentBase()

Returns The complete URL of the .html file that loaded the applet.

getImage

public Image getImage (URL url)

Parameters url URL of an image file.
Returns Image to be displayed.
Description Initiates the image loading process for the file located at the

specified location.

public Image getImage (URL url, String filename)

Parameters url Base URL of an image file.
filename Specific file, relative to url, that contains an

image file.
Returns Image to be displayed.
Description Initiates the image loading process for the file located at the

specified location.

getLocale

public Locale getLocale() �

Returns Applet’s locale.
Overrides Component.getLocale()

Description Used for internationalization support.

getParameter

public String getParameter (String name)

Parameters name Name of parameter to get.
Returns The value associated with the given parameter in the HTML

file, or null.
Description Allows you to get parameters from within the <APPLET> tag of

the .html file that loaded the applet.

APPLET 529

10 July 2002 22:24

getParameterInfo

public String[][] getParameterInfo()

Returns Overridden to provide a series of three-string arrays that
describes the parameters this applet reads.

init

public void init()

Description Called by the system when the applet is first loaded.

isActive

public boolean isActive()

Returns true if the applet is active, false other wise.

play

public void play (URL url)

Parameters url URL of an audio file .
Description Plays an audio file once.

public void play (URL url, String filename)

Parameters url Base URL of an audio file .
filename Specific file, relative to url, that contains an

audio file.
Description Plays an audio file once.

resize

public void resize(int width, int height)

Parameters width New width for the Applet.

height New height for the Applet.
Description Changes the size of the applet.

public void resize (Dimension dim)

Parameters dim New dimensions for the applet.
Description Changes the size of the applet.

530 APPLET

10 July 2002 22:24

setStub

public final void setStub (AppletStub stub)

Parameters stub Platform specific stubfor environment.
Description Called by the system to setup AppletStub.

showStatus

public void showStatus (String message)

Parameters message Message to display to user.
Description Displays a message on the status line of the browser.

start

public void start()

Description Called by the system every time the applet is displayed.

stop

public void stop()

Description Called by the system when it wants the applet to stop execution;
typically, ever y time the user leaves the page that includes the
applet.

See Also
AppletContext, AppletStub, AudioClip, Container, Dimension, Image,
Locale, Panel, String, URL

18.2 AppletContext

java.applet.AppletContext

Description
AppletContext is an interface that provides the means to control the browser
environment in which the applet is running.

Interface Definition
public abstract interface java.applet.AppletContext {

// Interface Methods

public abstract Applet getApplet (String name);

APPLETCONTEXT 531

10 July 2002 22:24

public abstract Enumeration getApplets();

public abstract AudioClip getAudioClip (URL url);

public abstract Image getImage (URL url);

public abstract void showDocument (URL url);

public abstract void showDocument (URL url, String frame);

public abstract void showStatus (String message);

}

Interface Methods
getApplet

public abstract Applet getApplet (String name)

Parameters name Name of applet to locate.
Returns Applet fetched.
Description Gets a reference to another executing applet.

getApplets

public abstract Enumeration getApplets()

Returns List of applets executing.
Description Gets references to all executing applets.

getAudioClip

public abstract AudioClip getAudioClip (URL url)

Parameters url Location of an audio file.
Returns AudioClip fetched.
Description Loads an audio file.

getImage

public abstract Image getImage (URL url)

Parameters url Location of an image file.
Returns Image fetched.
Description Loads an image file.

showDocument

public abstract void showDocument (URL url)

Parameters url New web page to display.
Description Changes the displayed web page.

532 APPLETCONTEXT

10 July 2002 22:24

public abstract void showDocument (URL url, String frame)

Parameters url New web page to display.
frame Name of the frame in which to display the new

page.
Description Displays a web page in another frame.

showStatus

public abstract void showStatus (String message)

Parameters message Message to display.
Description Displays a message on the status line of the browser.

See Also
Applet, AudioClip, Enumeration, Image, Object, String, URL

18.3 AppletStub

java.applet.AppletStub

Description
AppletStub is an interface that provides the means to get information from the
run-time browser environment.

Interface Definition
public abstract interface java.applet.AppletStub {

// Interface Methods

public abstract void appletResize (int width, int height);

public abstract AppletContext getAppletContext();

public abstract URL getCodeBase();

public abstract URL getDocumentBase();

public abstract String getParameter (String name);

public abstract boolean isActive();

}

APPLETSTUB 533

10 July 2002 22:24

Interface Methods
appletResize

public abstract void appletResize (int width, int height)

Parameters width Requested new width for applet.
height Requested new height for applet.

Description Changes the size of the applet.

getAppletContext

public abstract AppletContext getAppletContext()

Returns Current AppletContext of the applet.

getCodeBase

public abstract URL getCodeBase()

Returns Complete URL for the applet’s .class file.

getDocumentBase

public abstract URL getDocumentBase()

Returns Complete URL for the applet’s .html file.

getParameter

public abstract String getParameter (String name)

Parameters name Name of a <PARAM> tag.
Returns Value associated with the parameter.
Description Gets a parameter value from the <PARAM> tag(s) of the applet.

isActive

public abstract boolean isActive()

Returns true if the applet is active, false other wise
Description Returns current state of the applet.

See Also
AppletContext, Object, String, URL

534 APPLETSTUB

10 July 2002 22:24

18.4 AudioClip

java.applet.AudioClip

Description
AudioClip is an interface for playing audio files.

Interface Definition
public abstract interface java.applet.AudioClip {

// Interface Methods

public abstract void loop();

public abstract void play();

public abstract void stop();

}

Interface Methods
loop

public abstract void loop()

Description Plays an audio clip continuously.

play

public abstract void play()

Description Plays an audio clip once from the beginning.

stop

public abstract void stop()

Description Stops playing an audio clip.

See Also
Object

AUDIOCLIP 535

10 July 2002 22:24

19

java.awt Reference

19.1 AWTError

java.lang.Object java.lang.Throwable java.lang.Error java.awt.AWTError

Description
An AWTError; thrown to indicate a serious runtime error.

Class Definition
public class java.awt.AWTError

extends java.lang.Error {

// Constructors

public AWTError (String message);

}

536

10 July 2002 22:24

Constructors
AWTError

public AWTError (String message)

Parameters message Detail message

See Also
Error, String

19.2 AWTEvent �

java.lang.Object java.util.EventObject java.awt.AWTEvent

java.awt.event.TextEvent

java.awt.event.ItemEvent

java.awt.event.ComponentEvent

java.awt.event.AdjustmentEvent

java.awt.event.ActionEvent

Description
The root class of all AWT events. Subclasses of this class are the replacement for
java.awt.Event, which is only used for the Java 1.0.2 event model. In Java 1.1,
event objects are passed from event source components to objects implementing a
corresponding listener interface. Some event sources have a corresponding inter-
face, too. For example, AdjustmentEvents are passed from Adjustable objects
to AdjustmentListeners. Some event types do not have corresponding inter-
faces; for example, ActionEvents are passed from Buttons to ActionListen-

ers, but there is no “Actionable” interface that Button implements.

Class Definition
public abstract class java.awt.AWTEvent

extends java.util.EventObject {

// Constants

public final static long ACTION_EVENT_MASK;

public final static long ADJUSTMENT_EVENT_MASK;

public final static long COMPONENT_EVENT_MASK;

AWTEVENT 537

10 July 2002 22:24

public final static long CONTAINER_EVENT_MASK;

public final static long FOCUS_EVENT_MASK;

public final static long ITEM_EVENT_MASK;

public final static long KEY_EVENT_MASK;

public final static long MOUSE_EVENT_MASK;

public final static long MOUSE_MOTION_EVENT_MASK;

public final static long RESERVED_ID_MAX;

public final static long TEXT_EVENT_MASK;

public final static long WINDOW_EVENT_MASK;

// Variables

protected boolean consumed;

protected int id;

// Constructors

public AWTEvent (Event event);

public AWTEvent (Object source, int id);

// Instance Methods

public int getID();

public String paramString();

public String toString();

// Protected Instance Methods

protected void consume();

protected boolean isConsumed();

}

Constants
ACTION_EVENT_MASK

public static final long ACTION_EVENT_MASK

The mask for action events.

ADJUSTMENT_EVENT_MASK

public static final long ADJUSTMENT_EVENT_MASK

The mask for adjustment events.

COMPONENT_EVENT_MASK

public static final long COMPONENT_EVENT_MASK

The mask for component events.

538 AWTEVENT

10 July 2002 22:24

CONTAINER_EVENT_MASK

public static final long CONTAINER_EVENT_MASK

The mask for container events.

FOCUS_EVENT_MASK

public static final long FOCUS_EVENT_MASK

The mask for focus events.

ITEM_EVENT_MASK

public static final long ITEM_EVENT_MASK

The mask for item events.

KEY_EVENT_MASK

public static final long KEY_EVENT_MASK

The mask for key events.

MOUSE_EVENT_MASK

public static final long MOUSE_EVENT_MASK

The mask for mouse events.

MOUSE_MOTION_EVENT_MASK

public static final long MOUSE_MOTION_EVENT_MASK

The mask for mouse motion events.

RESERVED_ID_MAX

public static final int

The maximum reserved event id.

TEXT_EVENT_MASK

public static final long TEXT_EVENT_MASK

The mask for text events.

WINDOW_EVENT_MASK

public static final long WINDOW_EVENT_MASK

The mask for window events.

AWTEVENT 539

10 July 2002 22:24

Variables
consumed

protected boolean consumed

If consumed is true, the event will not be sent back to the peer. Semantic
events will never be sent back to a peer; thus consumed is always true for
semantic events.

id

protected int id

The type ID of this event.

Constructors
AWTEvent

public AWTEvent (Event event)

Parameters event A version 1.0.2 java.awt.Event object.
Description Constructs a 1.1 java.awt.AWTEvent derived from a 1.0.2

java.awt.Event object.

public AWTEvent (Object source, int id)

Parameters source The object that the event originated from.
id An event type ID.

Description Constructs an AWTEvent object.

Instance Methods
getID

public int getID()

Returns The type ID of the event.

paramString

public String paramString()

Returns A string with the current settings of AWTEvent.
Description Helper method for toString() that generates a string of cur-

rent settings.

540 AWTEVENT

10 July 2002 22:24

toString

public String toString()

Returns A string representation of the AWTEvent object.
Overrides Object.toString()

Protected Instance Methods
consume

protected void consume()

Description Consumes the event so it is not sent back to its source.

isConsumed

public boolean isConsumed()

Returns A flag indicating whether this event has been consumed.

See Also
ActionEvent, AdjustmentEvent, ComponentEvent, Event, EventObject,
FocusEvent, ItemEvent, KeyEvent, MouseEvent, WindowEvent

19.3 AWTEventMulticaster �

Description
This class multicasts events to event listeners. Each multicaster has two listeners,
cunningly named a and b. When an event source calls one of the listener methods
of the multicaster, the multicaster calls the same listener method on both a and b.
Multicasters are built into trees using the static add() and remove() methods. In
this way a single event can be sent to many listeners.

Static methods make it easy to implement event multicasting in component sub-
classes. Each time an add<type>Listener() function is called in the component
subclass, call the corresponding AWTEventMulticaster.add() method to chain
together (or “tree up”) listeners. Similarly, when a remove<type>Listener()

function is called, AWTEventMulticaster.remove() can be called to remove a
chained listener.

Class Definition
public class java.awt.AWTEventMulticaster

extends java.lang.Object

implements java.awt.event.ActionListener, java.awt.event.AdjustmentListener,

java.awt.event.ComponentListener, java.awt.event.ContainerListener,

java.awt.event.FocusListener, java.awt.event.ItemListener,

java.awt.event.KeyListener, java.awt.event.MouseListener,

AWTEVENTMULTICASTER 541

10 July 2002 22:24

java.lang.Object

java.awt.event.AdjustmentListener

java.awt.event.ActionListener

java.awt.event.ComponentListener

java.awt.event.ContainerListener

java.awt.event.FocusListener

java.awt.event.ItemListener

java.awt.event.KeyListener

java.awt.event.MouseListener

java.awt.event.MouseMotionListener

java.awt.event.TextListener

java.awt.event.WindowListener

java.awt.AWTEventMulticaster

java.awt.event.MouseMotionListener, java.awt.event.TextListener,

java.awt.event.WindowListener {

// Variables

protected EventListener a;

protected EventListener b;

// Constructors

protected AWTEventMulticaster(EventListener a, EventListener b);

// Class Methods

public static ActionListener add(ActionListener a, ActionListener b);

public static AdjustmentListener add(AdjustmentListener a,

AdjustmentListener b);

public static ComponentListener add(ComponentListener a,

ComponentListener b);

public static ContainerListener add(ContainerListener a,

ContainerListener b);

public static FocusListener add(FocusListener a, FocusListener b);

public static ItemListener add(ItemListener a, ItemListener b);

public static KeyListener add(KeyListener a, KeyListener b);

public static MouseListener add(MouseListener a, MouseListener b);

public static MouseMotionListener add(MouseMotionListener a,

MouseMotionListener b);

542 AWTEVENTMULTICASTER

10 July 2002 22:24

public static TextListener add(TextListener a, TextListener b);

public static WindowListener add(WindowListener a, WindowListener b);

protected static EventListener addInternal(EventListener a, EventListener b);

public static ActionListener remove(ActionListener l, ActionListener oldl);

public static AdjustmentListener remove(AdjustmentListener l,

AdjustmentListener oldl);

public static ComponentListener remove(ComponentListener l,

ComponentListener oldl);

public static ContainerListener remove(ContainerListener l,

ContainerListener oldl);

public static FocusListener remove(FocusListener l, FocusListener oldl);

public static ItemListener remove(ItemListener l, ItemListener oldl);

public static KeyListener remove(KeyListener l, KeyListener oldl);

public static MouseListener remove(MouseListener l, MouseListener oldl);

public static MouseMotionListener remove(MouseMotionListener l,

MouseMotionListener oldl);

public static TextListener remove(TextListener l, TextListener oldl);

public static WindowListener remove(WindowListener l, WindowListener;

protected static EventListener removeInternal(EventListener l,

EventListener oldl);

// Instance Methods

public void actionPerformed(ActionEvent e);

public void adjustmentValueChanged(AdjustmentEvent e);

public void componentAdded(ContainerEvent e);

public void componentHidden(ComponentEvent e);

public void componentMoved(ComponentEvent e);

public void componentRemoved(ContainerEvent e);

public void componentResized(ComponentEvent e);

public void componentShown(ComponentEvent e);

public void focusGained(FocusEvent e);

public void focusLost(FocusEvent e);

public void itemStateChanged(ItemEvent e);

public void keyPressed(KeyEvent e);

public void keyReleased(KeyEvent e);

public void keyTyped(KeyEvent e);

public void mouseClicked(MouseEvent e);

public void mouseDragged(MouseEvent e);

public void mouseEntered(MouseEvent e);

public void mouseExited(MouseEvent e);

public void mouseMoved(MouseEvent e);

public void mousePressed(MouseEvent e);

public void mouseReleased(MouseEvent e);

public void textValueChanged(TextEvent e);

public void windowActivated(WindowEvent e);

public void windowClosed(WindowEvent e);

public void windowClosing(WindowEvent e);

public void windowDeactivated(WindowEvent e);

public void windowDeiconified(WindowEvent e);

AWTEVENTMULTICASTER 543

10 July 2002 22:24

public void windowIconified(WindowEvent e);

public void windowOpened(WindowEvent e);

// Protected Instance Methods

protected EventListener remove(EventListener oldl);

protected void saveInternal(ObjectOutputStream s, String k) throws IOException;

}

Variables
a

protected EventListener a

One of the EventListeners this AWTEventMulticaster sends events to.

b

protected EventListener b

One of the EventListeners this AWTEventMulticaster sends events to.

Constructors
AWTEventMulticaster

protected AWTEventMulticaster (EventListener a,
EventListener b)

Parameters a A listener that receives events.
b A listener that receives events.

Description Constructs an AWTEventMulticaster that sends events it
receives to the supplied listeners. The constructor is protected
because it is only the class methods of AWTEventMulticaster
that ever instantiate this class.

Class Methods
add

public static ActionListener add (ActionListener a,
ActionListener b)

Parameters a An event listener.
b An event listener.

Returns A listener object that passes events to a and b.

public static AdjustmentListener add (AdjustmentListener
a, AdjustmentListener b)

Parameters a An event listener.

544 AWTEVENTMULTICASTER

10 July 2002 22:24

b An event listener.
Returns A listener object that passes events to a and b.

public static ComponentListener add (ComponentListener a,
ComponentListener b)

Parameters a An event listener.
b An event listener.

Returns A listener object that passes events to a and b.

public static ContainerListener add (ContainerListener a,
ContainerListener b)

Parameters a An event listener.
b An event listener.

Returns A listener object that passes events to a and b.

public static FocusListener add (FocusListener a,
FocusListener b)

Parameters a An event listener.
b An event listener.

Returns A listener object that passes events to a and b.

public static ItemListener add (ItemListener a,
ItemListener b)

Parameters a An event listener.
b An event listener.

Returns A listener object that passes events to a and b.

public static KeyListener add (KeyListener a, KeyListener
b)

Parameters a An event listener.
b An event listener.

Returns A listener object that passes events to a and b.

public static MouseListener add (MouseListener a,
MouseListener b)

Parameters a An event listener.
b An event listener.

Returns A listener object that passes events to a and b.

public static MouseMotionListener add (MouseMotionListener
a, MouseMotionListener b)

AWTEVENTMULTICASTER 545

10 July 2002 22:24

Parameters a An event listener.
b An event listener.

Returns A listener object that passes events to a and b.

public static TextListener add (TextListener a,
TextListener b)

Parameters a An event listener.
b An event listener.

Returns A listener object that passes events to a and b.

public static WindowListener add (WindowListener a,
WindowListener b)

Parameters a An event listener.
b An event listener.

Returns A listener object that passes events to a and b.

addInternal

public static EventListener addInternal (EventListener a,
EventListener b)

Parameters a An event listener.
b An event listener.

Returns A listener object that passes events to a and b.
Description This method is a helper for the add() methods.

remove

public static ActionListener remove (ActionListener l,
ActionListener oldl)

Parameters l An event listener.
oldl An event listener.

Returns A listener object that multicasts to l but not oldl.

public static AdjustmentListener remove
(AdjustmentListener l, AdjustmentListener oldl)

Parameters l An event listener.
oldl An event listener.

Returns A listener object that multicasts to l but not oldl.

public static ComponentListener remove (ComponentListener
l, ComponentListener oldl)

Parameters l An event listener.

546 AWTEVENTMULTICASTER

10 July 2002 22:24

oldl An event listener.
Returns A listener object that multicasts to l but not oldl.

public static ContainerListener remove (ContainerListener
l, ContainerListener oldl)

Parameters l An event listener.
oldl An event listener.

Returns A listener object that multicasts to l but not oldl.

public static FocusListener remove (FocusListener l,
FocusListener oldl)

Parameters l An event listener.
oldl An event listener.

Returns A listener object that multicasts to l but not oldl.

public static ItemListener remove (ItemListener l,
ItemListener oldl)

Parameters l An event listener.
oldl An event listener.

Returns A listener object that multicasts to l but not oldl.

public static KeyListener remove (KeyListener l,
KeyListener oldl)

Parameters l An event listener.
oldl An event listener.

Returns A listener object that multicasts to l but not oldl.

public static MouseListener remove (MouseListener l,
MouseListener oldl)

Parameters l An event listener.
oldl An event listener.

Returns A listener object that multicasts to l but not oldl.

public static MouseMotionListener remove
(MouseMotionListener l, MouseMotionListener oldl)

Parameters l An event listener.
oldl An event listener.

Returns A listener object that multicasts to l but not oldl.

public static TextListener remove (TextListener l,
TextListener oldl)

AWTEVENTMULTICASTER 547

10 July 2002 22:24

Parameters l An event listener.
oldl An event listener.

Returns A listener object that multicasts to l but not oldl.

public static WindowListener remove (WindowListener l,
WindowListener oldl)

Parameters l An event listener.
oldl An event listener.

Returns A listener object that multicasts to l but not oldl.

public static WindowListener remove (WindowListener l,
WindowListener oldl)

Parameters l An event listener.
oldl An event listener.

Returns A listener object that multicasts to l but not oldl.

removeInternal

public static EventListener removeInternal (EventListener
l, EventListener oldl)

Parameters l An event listener.
oldl An event listener.

Returns A listener object that multicasts to l but not oldl.
Description This method is a helper for the remove() methods.

Instance Methods
actionPerformed

public void actionPerformed (ActionEvent e)

Parameters e The action event that occurred.
Description Handles the event by passing it on to listeners a and b.

adjustmentValueChanged

public void adjustmentValueChanged (AdjustmentEvent e)

Parameters e The adjustment event that occurred.
Description Handles the event by passing it on to listeners a and b.

componentAdded

548 AWTEVENTMULTICASTER

10 July 2002 22:24

public void componentAdded (ContainerEvent e)

Parameters e The container event that occurred.
Description Handles the event by passing it on to listeners a and b.

componentHidden

public void componentHidden (ComponentEvent e)

Parameters e The component event that occurred.
Description Handles the event by passing it on to listeners a and b.

componentMoved

public void componentMoved (ComponentEvent e)

Parameters e The component event that occurred.
Description Handles the event by passing it on to listeners a and b.

componentRemoved

public void componentRemoved (ContainerEvent e)

Parameters e The container event that occurred.
Description Handles the event by passing it on to listeners a and b.

componentResized

public void componentResized (ComponentEvent e)

Parameters e The component event that occurred.
Description Handles the event by passing it on to listeners a and b.

componentShown

public void componentShown (ComponentEvent e)

Parameters e The component event that occurred.
Description Handles the event by passing it on to listeners a and b.

focusGained

public void focusGained (FocusEvent e)

Parameters e The focus event that occurred.
Description Handles the event by passing it on to listeners a and b.

AWTEVENTMULTICASTER 549

10 July 2002 22:24

focusLost

public void focusLost (FocusEvent e)

Parameters e The focus event that occurred.
Description Handles the event by passing it on to listeners a and b.

itemStateChanged

public void itemStateChanged (ItemEvent e)

Parameters e The item event that occurred.
Description Handles the event by passing it on to listeners a and b.

keyPressed

public void keyPressed (KeyEvent e)

Parameters e The key event that occurred.
Description Handles the event by passing it on to listeners a and b.

keyReleased

public void keyReleased (KeyEvent e)

Parameters e The key event that occurred.
Description Handles the event by passing it on to listeners a and b.

keyTyped

public void keyTyped (KeyEvent e)

Parameters e The key event that occurred.
Description Handles the event by passing it on to listeners a and b.

mouseClicked

public void mouseClicked (MouseEvent e)

Parameters e The mouse event that occurred.
Description Handles the event by passing it on to listeners a and b.

mouseDragged

public void mouseDragged (MouseEvent e)

Parameters e The mouse event that occurred.
Description Handles the event by passing it on to listeners a and b.

550 AWTEVENTMULTICASTER

10 July 2002 22:24

mouseEntered

public void mouseEntered (MouseEvent e)

Parameters e The mouse event that occurred.
Description Handles the event by passing it on to listeners a and b.

mouseExited

public void mouseExited (MouseEvent e)

Parameters e The mouse event that occurred.
Description Handles the event by passing it on to listeners a and b.

mouseMoved

public void mouseMoved (MouseEvent e)

Parameters e The mouse event that occurred.
Description Handles the event by passing it on to listeners a and b.

mousePressed

public void mousePressed (MouseEvent e)

Parameters e The mouse event that occurred.
Description Handles the event by passing it on to listeners a and b.

mouseReleased

public void mouseReleased (MouseEvent e)

Parameters e The mouse event that occurred.
Description Handles the event by passing it on to listeners a and b.

textValueChanged

public void textValueChanged (TextEvent e)

Parameters e The text event that occurred.
Description Handles the event by passing it on to listeners a and b.

windowActivated

public void windowActivated (WindowEvent e)

Parameters e The window event that occurred.
Description Handles the event by passing it on to listeners a and b.

AWTEVENTMULTICASTER 551

10 July 2002 22:24

windowClosed

public void windowClosed (WindowEvent e)

Parameters e The window event that occurred.
Description Handles the event by passing it on to listeners a and b.

windowClosing

public void windowClosing (WindowEvent e)

Parameters e The window event that occurred.
Description Handles the event by passing it on to listeners a and b.

windowDeactivated

public void windowDeactivated (WindowEvent e)

Parameters e The window event that occurred.
Description Handles the event by passing it on to listeners a and b.

windowDeiconified

public void windowDeiconified (WindowEvent e)

Parameters e The window event that occurred.
Description Handles the event by passing it on to listeners a and b.

windowIconified

public void windowIconified (WindowEvent e)

Parameters e The window event that occurred.
Description Handles the event by passing it on to listeners a and b.

windowOpened

public void windowOpened (WindowEvent e)

Parameters e The window event that occurred.
Description Handles the event by passing it on to listeners a and b.

Protected Instance Methods
remove

protected EventListener remove(EventListener oldl)

Parameters oldl The listener to remove.
Returns The resulting EventListener.

552 AWTEVENTMULTICASTER

10 July 2002 22:24

Description This method removes oldl from the AWTEventMulticaster

and returns the resulting listener.

See Also
ActionEvent, AdjustmentEvent, ComponentEvent, Event, EventListener,
EventObject, FocusEvent, ItemEvent, KeyEvent, MouseEvent, Window-
Event

19.4 AWTException

java.awt.AWTExceptionjava.lang.Object java.lang.Throwable java.lang.Exception

Description
An AWTException; thrown to indicate an exceptional condition; must be caught
or declared in a throws clause.

Class Definition
public class java.awt.AWTException

extends java.lang.Exception {

// Constructors

public AWTException (String message);

}

Constructors
AWTException

public AWTException (String message)

Parameters message Detailed message.

See Also
Exception, String

AWTEXCEPTION 553

10 July 2002 22:24

19.5 Adjustable �

java.awt.Adjustablejava.awt.Scrollbar

Description
The Adjustable inter face is useful for scrollbars, sliders, dials, and other compo-
nents that have an adjustable numeric value. Classes that implement the
Adjustable inter face should send AdjustmentEvent objects to listeners that
have registered via addAdjustmentListener(AdjustmentListener).

Interface Definition
public abstract interface java.awt.Adjustable {

// Constants

public final static int HORIZONTAL = 0;

public final static int VERTICAL = 1;

// Interface Methods

public abstract void addAdjustmentListener (AdjustmentListener l);

public abstract int getBlockIncrement();

public abstract int getMaximum();

public abstract int getMinimum();

public abstract int getOrientation();

public abstract int getUnitIncrement();

public abstract int getValue();

public abstract int getVisibleAmount();

public abstract void removeAdjustmentListener (AdjustmentListener l);

public abstract void setBlockIncrement (int b);

public abstract void setMaximum (int max);

public abstract void setMinimum (int min);

public abstract void setUnitIncrement (int u);

public abstract void setValue (int v);

public abstract void setVisibleAmount (int v);

}

Constants
HORIZONTAL

554 ADJUSTABLE

10 July 2002 22:24

public static final int HORIZONTAL

A constant representing horizontal orientation.

VERTICAL

public static final int VERTICAL

A constant representing vertical orientation.

Interface Methods
addAdjustmentListener

public abstract void addAdjustmentListener (ActionListener
l)

Parameters l An object that implements the Adjust-

mentListener inter face.
Description Add a listener for adjustment event.

getBlockIncrement

public abstract int getBlockIncrement()

Returns The amount to scroll when a paging area is selected.

getMaximum

public abstract int getMaximum()

Returns The maximum value that the Adjustable object can take.

getMinimum

public abstract int getMinimum()

Returns The minimum value that the Adjustable object can take.

getOrientation

public abstract int getOrientation()

Returns A value representing the direction of the Adjustable object.

getUnitIncrement

public abstract int getUnitIncrement()

Returns The unit amount to scroll.

ADJUSTABLE 555

10 July 2002 22:24

getValue

public abstract int getValue()

Returns The current setting for the Adjustable object.

getVisibleAmount

public abstract int getVisibleAmount()

Returns The current visible setting (i.e., size) for the Adjustable

object.

removeAdjustmentListener

public abstract void removeAdjustmentListener
(AdjustmentListener l)

Parameters l One of the object’s AdjustmentListeners.
Description Remove an adjustment event listener.

setBlockIncrement

public abstract void setBlockIncrement (int b)

Parameters b New block increment amount.
Description Changes the block increment amount for the Adjustable

object.

setMaximum

public abstract void setMaximum (int max)

Parameters max New maximum value.
Description Changes the maximum value for the Adjustable object.

setMinimum

public abstract void setMinimum (int min)

Parameters min New minimum value.
Description Changes the minimum value for the Adjustable object.

setUnitIncrement

public abstract void setUnitIncrement (int u)

Parameters u New unit increment amount.
Description Changes the unit increment amount for the Adjustable

object.

556 ADJUSTABLE

10 July 2002 22:24

setValue

public abstract void setValue (int v)

Parameters v New value.
Description Changes the current value of the Adjustable object.

setVisibleAmount

public abstract void setVisibleAmount (int v)

Parameters v New amount visible.
Description Changes the current visible amount of the Adjustable object.

See Also
AdjustmentEvent, AdjustmentListener, Scrollbar

19.6 BorderLayout

java.lang.Object

java.awt.LayoutManager

java.awt.LayoutManager2

java.awt.BorderLayout java.io.Serializable

Description
BorderLayout is a LayoutManager that provides the means to lay out compo-
nents along the edges of a container. It divides the container into five regions,
named North, East, South, West, and Center. Normally you won’t call the Layout-
Manager’s methods yourself. When you add() a Component to a Container, the
Container calls the addLayoutComponent() method of its LayoutManager.

Class Definition
public class java.awt.BorderLayout

extends java.lang.Object

implements java.awt.LayoutManager2, java.io.Serializable {

// Constants

public final static String CENTER; �
public final static String EAST; �
public final static String NORTH; �
public final static String SOUTH; �
public final static String WEST; �

BORDERLAYOUT 557

10 July 2002 22:24

// Constructors

public BorderLayout();

public BorderLayout (int hgap, int vgap);

// Instance Methods

public void addLayoutComponent (Component comp, Object constraints); �
public void addLayoutComponent (String name, Component component); ✩
public int getHgap(); �
public abstract float getLayoutAlignmentX(Container target); �
public abstract float getLayoutAlignmentY(Container target); �
public int getVgap(); �
public abstract void invalidateLayout(Container target); �

public void layoutContainer (Container target);

public abstract Dimension maximumLayoutSize(Container target); �
public Dimension minimumLayoutSize (Container target);

public Dimension preferredLayoutSize (Container target);

public void removeLayoutComponent (Component component);

public void setHgap (int hgap); �
public void setVgap (int vgap); �
public String toString();

}

Constants
CENTER

public final static String CENTER

A constant representing center orientation.

EAST

public final static String EAST

A constant representing east orientation.

NORTH

public final static String NORTH

A constant representing north orientation.

SOUTH

public final static String SOUTH

A constant representing south orientation.

558 BORDERLAYOUT

10 July 2002 22:24

WEST

public final static String WEST

A constant representing west orientation.

Constructors
BorderLayout

public BorderLayout()

Description Constructs a BorderLayout object.

public BorderLayout (int hgap, int vgap)

Parameters hgap Horizontal space between each component in
the container.

vgap Vertical space between each component in the
container.

Description Constructs a BorderLayout object with the values specified as
the gaps between each component in the container managed
by this instance of BorderLayout.

Instance Methods
addLayoutComponent

public void addLayoutComponent (Component comp,
Object constraints) �

Parameters comp The component being added.
constraints An object describing the constraints on this com-

ponent.
Implements LayoutManager2.addLayoutComponent()

Description Adds the component comp to a container subject to the given
constraints. This is a more general version of addLayout-
Component(String, Component) method. It corresponds to
java.awt.Container’s add(Component, Object) method.
In practice, it is used the same in version 1.1 as in Java 1.0.2,
except with the parameters swapped:

Panel p = new Panel(new BorderLayout());

p.add(new Button(“OK”), BorderLayout.SOUTH);

addLayoutComponent

BORDERLAYOUT 559

10 July 2002 22:24

public void addLayoutComponent (String name,
Component component) ✩

Parameters name Name of region to add component to.
component Actual component being added.

Implements LayoutManager.addLayoutComponent()

Description Adds a component to a container in region name. This has
been replaced in version 1.1 with the more general addLay-
outComponent(Component, Object).

getHgap

public int getHgap() �

Returns The horizontal gap for this BorderLayout instance.

getLayoutAlignmentX

public abstract float getLayoutAlignmentX (Container
target) �

Parameters target The container to inspect.
Returns The value .5 for all containers.
Description This method returns the preferred alignment of the given con-

tainer target. A return value of 0 is left aligned, .5 is cen-
tered, and 1 is right aligned.

getLayoutAlignmentY

public abstract float getLayoutAlignmentY (Container
target) �

Parameters target The container to inspect.
Returns The value .5 for all containers.
Description This method returns the preferred alignment of the given con-

tainer target. A return value of 0 is top aligned, .5 is cen-
tered, and 1 is bottom aligned.

getVgap

public int getVgap() �

Returns The vertical gap for this BorderLayout instance.

560 BORDERLAYOUT

10 July 2002 22:24

invalidateLayout

public abstract void invalidateLayout (Container target)
�

Parameters target The container to invalidate.
Description Does nothing.

layoutContainer

public void layoutContainer (Container target)

Parameters target The container that needs to be redrawn.
Implements LayoutManager.layoutContainer()

Description Draws components contained within target.

maximumLayoutSize

public abstract Dimension maximumLayoutSize (Container
target) �

Parameters target The container to inspect.
Returns A Dimension whose horizontal and vertical

components are Integer.MAX_VALUE.
Description For BorderLayout, a maximal Dimension is always returned.

minimumLayoutSize

public Dimension minimumLayoutSize (Container target)

Parameters target The container whose size needs to be calculated.
Returns Minimum Dimension of the container target.
Implements LayoutManager.minimumLayoutSize()

Description Calculates minimum size of target. container.

preferredLayoutSize

public Dimension preferredLayoutSize (Container target)

Parameters target The container whose size needs to be calculated.
Returns Preferred Dimension of the container target.
Implements LayoutManager.preferredLayoutSize()

Description Calculates preferred size of target container.

removeLayoutComponent

BORDERLAYOUT 561

10 July 2002 22:24

public void removeLayoutComponent (Component component)

Parameters component Component to stop tracking.
Implements LayoutManager.removeLayoutComponent()

Description Removes component from any internal tracking systems.

setHgap

public void setHgap (int hgap) �

Parameters hgap The horizontal gap value.
Description Sets the horizontal gap between components.

setVgap

public void setVgap (int vgap) �

Parameters vgap The vertical gap value.
Description Sets the vertical gap between components.

toString

public String toString()

Returns A string representation of the BorderLayout object.
Overrides Object.toString()

See Also
Component, Container, Dimension, LayoutManager, LayoutManager2,
Object, String

19.7 Button

java.lang.Object java.awt.Buttonjava.awt.Component

Description
The Button is the familiar labeled button object. It inherits most of its functional-
ity from Component. For example, to change the font of the Button, you would
use Component’s setFont() method. The Button sends
java.awt.event.ActionEvent objects to its listeners when it is pressed.

562 BORDERLAYOUT

10 July 2002 22:24

Class Definition
public class java.awt.Button

extends java.awt.Component {

// Constructors

public Button();

public Button (String label);

// Instance Methods

public void addActionListener (ActionListener l); �
public void addNotify();

public String getActionCommand(); �
public String getLabel();

public void removeActionListener (ActionListener l); �
public void setActionCommand (String command); �
public synchronized void setLabel (String label);

// Protected Instance Methods

protected String paramString();

protected void processActionEvent (ActionEvent e); �
protected void processEvent (AWTEvent e); �

}

Constructors
Button

public Button()

Description Constructs a Button object with no label.

public Button (String label)

Parameters label The text for the label on the button
Description Constructs a Button object with text of label.

Instance Methods
addActionListener

public void addActionListener (ActionListener l) �

Parameters l An object that implements the ActionLis-

tener inter face.
Description Add a listener for the action event.

addNotify

BUTTON 563

10 July 2002 22:24

public void addNotify()

Overrides Component.addNotify()

Description Creates Button’s peer.

getActionCommand

public String getActionCommand() �

Returns Current action command string.
Description Returns the string used for the action command.

getLabel

public String getLabel()

Returns Text of the Button’s label.

removeActionListener

public void removeActionListener (ActionListener l) �

Parameters l One of this Button’s ActionListeners.
Description Remove an action event listener.

setActionCommand

public void setActionCommand (String command) �

Parameters command New action command string.
Description Specify the string used for the action command.

setLabel

public synchronized void setLabel (String label)

Parameters label New text for label of Button.
Description Changes the Button’s label to label.

Protected Instance Methods
paramString

protected String paramString()

Returns String with current settings of Button.
Overrides Component.paramString()

Description Helper method for toString() used to generate a string of
current settings.

564 BUTTON

10 July 2002 22:24

processActionEvent

protected void processActionEvent (ActionEvent e) �

Parameters e The action event to process.
Description Action events are passed to this method for processing. Nor-

mally, this method is called by processEvent().

processEvent

protected void processEvent (AWTEvent e) �

Parameters e The event to process.
Description Low level AWTEvents are passed to this method for processing.

See Also
ActionListener, Component, String

19.8 Canvas

java.lang.Object java.awt.Canvasjava.awt.Component

Description
Canvas is a Component that provides a drawing area and is often used as a base
class for new components.

Class Definition
public class java.awt.Canvas

extends java.awt.Component {

// Constructors

public Canvas();

// Instance Methods

public void addNotify();

public void paint (Graphics g);

}

CANVAS 565

10 July 2002 22:24

Constructors
Canvas

public Canvas()

Description Constructs a Canvas object.

Instance Methods
addNotify

public void addNotify()

Overrides Component.addNotify()

Description Creates Canvas’s peer.

paint

public void paint (Graphics g)

Parameters g Graphics context of component.
Description Empty method to be overridden in order to draw something in

graphics context.

See Also
Component, Graphics

19.9 CardLayout

java.lang.Object

java.awt.LayoutManager

java.awt.LayoutManager2

java.awt.CardLayout java.io.Serializable

Description
The CardLayout LayoutManager provides the means to manage multiple com-
ponents, displaying one at a time. Components are displayed in the order in which
they are added to the layout, or in an arbitrary order by using an assignable name.

566 CANVAS

10 July 2002 22:24

Class Definition
public class java.awt.CardLayout

extends java.lang.Object

implements java.awt.LayoutManager2, java.io.Serializable {

// Constructors

public CardLayout();

public CardLayout (int hgap, int vgap);

// Instance Methods

public void addLayoutComponent (Component comp,

Object constraints); �
public void addLayoutComponent (String name, Component component); ✩
public void first (Container parent);

public int getHgap(); �
public abstract float getLayoutAlignmentX(Container target); �
public abstract float getLayoutAlignmentY(Container target); �
public int getVgap(); �
public abstract void invalidateLayout(Container target); �
public void last (Container parent);

public void layoutContainer (Container target);

public abstract Dimension maximumLayoutSize(Container target); �
public Dimension minimumLayoutSize (Container target);

public void next (Container parent);

public Dimension preferredLayoutSize (Container target);

public void previous (Container parent);

public void removeLayoutComponent (Component component);

public void setHgap (int hgap); �
public void setVgap (int vgap); �

CARDLAYOUT 567

10 July 2002 22:24

public void show (Container parent, String name);

public String toString();

}

Constructors
CardLayout

public CardLayout()

Description Constructs a CardLayout object.

public CardLayout (int hgap, int vgap)

Parameters hgap Horizontal space around left and right of con-
tainer

vgap Vertical space around top and bottom of con-
tainer

Description Constructs a CardLayout object with the values specified as
the gaps around the container managed by this instance of
CardLayout.

Instance Methods
addLayoutComponent

public void addLayoutComponent (Component comp,
Object constraints) �

Parameters comp The component being added.
constraints An object describing the constraints on this com-

ponent.
Implements LayoutManager2.addLayoutComponent()

Description Adds the component comp to a container subject to the given
constraints. This is a more generalized version of addLay-
outComponent(String, Component). It corresponds to
java.awt.Container's add(Component, Object). In
practice, it is used the same in Java 1.1 as in Java 1.0.2, except
with the parameters swapped:

Panel p = new Panel();

p.setLayoutManager(new CardLayout());

p.add(new Button("OK"), "Don Julio");

568 CARDLAYOUT

10 July 2002 22:24

addLayoutComponent

public void addLayoutComponent (String name,
Component component) ✩

Parameters name Name of the component to add.
component The actual component being added.

Implements LayoutManager.addLayoutComponent()

Description Places component under the layout’s management, assigning it
the given name. This has been replaced in version 1.1 with the
more general addLayoutComponent(Component, Object).

first

public void first (Container parent)

Parameters parent The container whose displayed component is
changing.

Throws IllegalArgumentException

If the LayoutManager of parent is not Card-
Layout.

Description Sets the container to display the first component in parent.

getHgap

public int getHgap() �

Returns The horizontal gap for this CardLayout instance.

getLayoutAlignmentX

public abstract float getLayoutAlignmentX (Container
target) �

Parameters target The container to inspect.
Returns The value .5 for all containers.
Description This method returns the preferred alignment of the given con-

tainer target. A return value of 0 is left aligned, .5 is cen-
tered, and 1 is right aligned.

getLayoutAlignmentY

public abstract float getLayoutAlignmentY (Container
target) �

Parameters target The container to inspect.
Returns The value .5 for all containers.

CARDLAYOUT 569

10 July 2002 22:24

Description This method returns the preferred alignment of the given con-
tainer target. A return value of 0 is top aligned, .5 is cen-
tered, and 1 is bottom aligned.

getVgap

public int getVgap() �

Returns The vertical gap for this CardLayout instance.

invalidateLayout

public abstract void invalidateLayout (Container target)
�

Parameters target The container to invalidate.
Description Does nothing.

last

public void last (Container parent)

Parameters parent The container whose displayed component is
changing.

Throws IllegalArgumentException

If the LayoutManager of parent is not Card-
Layout.

Description Sets the container to display the final component in parent.

layoutContainer

public void layoutContainer (Container target)

Parameters target The container that needs to be redrawn.
Implements LayoutManager.layoutContainer()

Description Displays the currently selected component contained within
target.

maximumLayoutSize

public abstract Dimension maximumLayoutSize .hw Container
(Container target) �

Parameters target The container to inspect.
Returns A Dimension whose horizontal and vertical components are

Integer.MAX_VALUE.
Description For CardLayout, a maximal Dimension is always returned.

570 CARDLAYOUT

10 July 2002 22:24

minimumLayoutSize

public Dimension minimumLayoutSize (Container target)

Parameters target The container whose size needs to be calculated.
Returns Minimum Dimension of the container target.
Implements LayoutManager.minimumLayoutSize()

Description Calculates minimum size of the target container.

next

public void next (Container parent)

Parameters parent The container whose displayed component is
changing.

Throws IllegalArgumentException

If the LayoutManager of parent is not Card-
Layout.

Description Sets the container to display the following component in the
parent.

preferredLayoutSize

public Dimension preferredLayoutSize (Container target)

Parameters target The container whose size needs to be calculated.
Returns Preferred Dimension of the container target.
Implements LayoutManager.preferredLayoutSize()

Description Calculates preferred size of the target container.

previous

public void previous (Container parent)

Parameters parent The container whose displayed component is
changing.

Throws IllegalArgumentException

If the LayoutManager of parent is not Card-
Layout.

Description Sets the container to display the prior component in parent.

removeLayoutComponent

public void removeLayoutComponent (Component component)

Parameters component Component to stop tracking.

CARDLAYOUT 571

10 July 2002 22:24

Implements LayoutManager.removeLayoutComponent()

Description Removes component from the layout manager’s internal tables.

setHgap

public void setHgap (int hgap) �

Parameters hgap The horizontal gap value.
Description Sets the horizontal gap for the left and right of the container.

setVgap

public void setVgap (int vgap) �

Parameters vgap The vertical gap value.
Description Sets the vertical gap for the top and bottom of the container.

show

public void show (Container parent, String name)

Parameters parent The container whose displayed component is
changing.

name Name of component to display.
Throws IllegalArgumentException

If LayoutManager of parent is not CardLay-
out.

Description Sets the container to display the component name in parent.

toString

public String toString()

Returns A string representation of the CardLayout object.
Overrides Object.toString()

See Also
Component, Container, Dimension, LayoutManager, LayoutManager2,
Object, String

19.10 Checkbox

572 CARDLAYOUT

10 July 2002 22:24

java.awt.Componentjava.lang.Object java.awt.ItemSelectablejava.awt.Checkbox

Description
The Checkbox is a Component that provides a true or false toggle switch for user
input.

Class Definition
public class java.awt.Checkbox

extends java.awt.Component

implements java.awt.ItemSelectable {

// Constructors

public Checkbox();

public Checkbox (String label);

public Checkbox (String label, boolean state); �
public Checkbox (String label, boolean state, CheckboxGroup group); �
public Checkbox (String label, CheckboxGroup group, boolean state);

// Instance Methods

public void addItemListener (ItemListener l); �
public void addNotify();

public CheckboxGroup getCheckboxGroup();

public String getLabel();

public Object[] getSelectedObjects(); �
public boolean getState();

public void removeItemListener (ItemListener l); �
public void setCheckboxGroup (CheckboxGroup group);

public synchronized void setLabel (String label);

public void setState (boolean state);

// Protected Instance Methods

protected String paramString();

protected void processEvent (AWTEvent e); �
protected void processItemEvent (ItemEvent e); �

}

Constructors
Checkbox

CHECKBOX 573

10 July 2002 22:24

public Checkbox()

Description Constructs a Checkbox object with no label that is initially
false.

public Checkbox (String label)

Parameters label Text to display with the Checkbox.
Description Constructs a Checkbox object with the given label that is ini-

tially false.

public Checkbox (String label, boolean state) �

Parameters label Text to display with the Checkbox.
state Intial value of the Checkbox.

Description Constructs a Checkbox with the given label, initialized to the
given state.

public Checkbox (String label, boolean state,
CheckboxGroup group) �

Parameters label Text to display with the Checkbox.
state Intial value of the Checkbox.
group The CheckboxGroup this Checkbox should

belong to.
Description Constructs a Checkbox with the given label, initialized to the

given state and belonging to group.

public Checkbox (String label, CheckboxGroup group,
boolean state)

Parameters label Text to display with the Checkbox.
group The CheckboxGroup this Checkbox should

belong to.
state Intial value of the Checkbox.

Description Constructs a Checkbox object with the given settings.

Instance Methods
addItemListener

public void addItemListener (ItemListener l) �

Parameters l The listener to be added.
Implements ItemSelectable.addItemListener(ItemListener l)

Description Adds a listener for the ItemEvent objects this Checkbox gen-
erates.

574 CHECKBOX

10 July 2002 22:24

addNotify

public void addNotify()

Overrides Component.addNotify()

Description Creates Checkbox peer.

getCheckboxGroup

public CheckboxGroup getCheckboxGroup()

Returns The current CheckboxGroup associated with the Checkbox, if
any.

getLabel

public String getLabel()

Returns The text associated with the Checkbox.

getSelectedObjects

public Object[] getSelectedObjects() �

Implements ItemSelectable.getSelectedObjects()

Description If the Checkbox is checked, returns an array with length 1 con-
taining the label of the Checkbox; other wise returns null.

getState

public boolean getState()

Returns The current state of the Checkbox.

removeItemListener

public void removeItemListener (ItemListener l) �

Parameters l The listener to be removed.
Implements ItemSelectable.removeItemListener (ItemListener

l)

Description Removes the specified ItemListener so it will not receive
ItemEvent objects from this Checkbox.

setCheckboxGroup

public void setCheckboxGroup (CheckboxGroup group)

Parameters group New group in which to place the Checkbox.
Description Associates the Checkbox with a different CheckboxGroup.

CHECKBOX 575

10 July 2002 22:24

setLabel

public synchronized void setLabel (String label)

Parameters label New text to associate with Checkbox.
Description Changes the text associated with the Checkbox.

setState

public void setState (boolean state)

Parameters state New state for the Checkbox.
Description Changes the state of the Checkbox.

Protected Instance Methods
paramString

protected String paramString()

Returns String with current settings of Checkbox.
Overrides Component.paramString()

Description Helper method for toString() to generate string of current
settings.

processEvent

protected void processEvent(AWTEvent e) �

Parameters e The event to process.
Description Low level AWTEvents are passed to this method for processing.

processItemEvent

protected void processItemEvent(ItemEvent e) �

Parameters e The item event to process.
Description Item events are passed to this method for processing. Normally,

this method is called by processEvent().

See Also
CheckboxGroup, Component, ItemEvent, ItemSelectable, String

576 CHECKBOX

10 July 2002 22:24

19.11 CheckboxGroup

java.lang.Object java.awt.CheckboxGroup java.io.Serializable

Description
The CheckboxGroup class provides the means to group multiple Checkbox items
into a mutual exclusion set, so that only one checkbox in the set has the value
true at any time. The checkbox with the value true is the currently selected
checkbox. Mutually exclusive checkboxes usually have a different appearance from
regular checkboxes and are also called “radio buttons.”

Class Definition
public class java.awt.CheckboxGroup

extends java.lang.Object

implements java.io.Serializable {

// Constructors

public CheckboxGroup();

// Instance Methods

public Checkbox getCurrent(); ✩
public Checkbox getSelectedCheckbox() �
public synchronized void setCurrent (Checkbox checkbox); ✩
public synchronized void setSelectedCheckbox (Checkbox checkbox); �
public String toString();

}

Constructors
CheckboxGroup

public CheckboxGroup()

Description Constructs a CheckboxGroup object.

Instance Methods
getCurrent

public Checkbox getCurrent() ✩

Returns The currently selected Checkbox within the CheckboxGroup.
Description Replaced by the more aptly named getSelectedCheckbox().

CHECKBOXGROUP 577

10 July 2002 22:24

getSelectedCheckbox

public Checkbox getSelectedCheckbox() �

Returns The currently selected Checkbox within the CheckboxGroup.

setCurrent

public synchronized void setCurrent (Checkbox checkbox) ✩

Parameters checkbox The Checkbox to select.
Description Changes the currently selected Checkbox within the Check-

boxGroup.
Description Replaced by setSelectedCheckbox(Checkbox).

setSelectedCheckbox

public synchronized void setSelectedCheckbox (Checkbox
checkbox) �

Parameters checkbox The Checkbox to select.
Description Changes the currently selected Checkbox within the Check-

boxGroup.

toString

public String toString()

Returns A string representation of the CheckboxGroup object.
Overrides Object.toString()

See Also
Checkbox, Object, String

19.12 CheckboxMenuItem

java.lang.Object java.awt.MenuItem

java.awt.CheckboxMenuItem java.awt.ItemSelectable

java.awt.MenuComponent

578 CHECKBOXGROUP

10 July 2002 22:24

Description
The CheckboxMenuItem class represents a menu item with a boolean state.

Class Definition
public class java.awt.CheckboxMenuItem

extends java.awt.MenuItem

implements java.awt.ItemSelectable {

// Constructors

public CheckboxMenuItem(); �
public CheckboxMenuItem (String label);

public CheckboxMenuItem (String label, boolean state); �

// Instance Methods

public void addItemListener (ItemListener l); �
public void addNotify();

public Object[] getSelectedObjects(); �
public boolean getState();

public String paramString();

public void removeItemListener (ItemListener l); �
public synchronized void setState (boolean condition);

// Protected Instance Methods

protected void processEvent (AWTEvent e); �
protected void processItemEvent (ItemEvent e); �

}

Constructors
CheckboxMenuItem

public CheckboxMenuItem() �

Description Constructs a CheckboxMenuItem object with no label.

public CheckboxMenuItem (String label)

Parameters label Text that appears on CheckboxMenuItem.
Description Constructs a CheckboxMenuItem object whose value is initially

false.

public CheckboxMenuItem (String label, boolean state) �

Parameters label Text that appears on CheckboxMenuItem.
state The initial state of the menu item.

Description Constructs a CheckboxMenuItem object with the specified
label and state.

CHECKBOXMENUITEM 579

10 July 2002 22:24

Instance Methods
addItemListener

public void addItemListener (ItemListener l) �

Parameters l The listener to be added.
Implements ItemSelectable.addItemListener(ItemListener l)

Description Adds a listener for the ItemEvent objects this CheckboxMe-
nuItem fires off.

addNotify

public void addNotify()

Overrides MenuItem.addNotify()

Description Creates CheckboxMenuItem’s peer.

getSelectedObjects

public Object[] getSelectedObjects() �

Implements ItemSelectable.getSelectedObjects()

Description If the CheckboxMenuItem is checked, returns an array with
length 1 containing the label of the CheckboxMenuItem; oth-
er wise returns null.

getState

public boolean getState()

Returns The current state of the CheckboxMenuItem.

paramString

public String paramString()

Returns A string with current settings of CheckboxMenuItem.
Overrides MenuItem.paramString()

Description Helper method for toString() to generate string of current
settings.

removeItemListener

public void removeItemListener (ItemListener l) �

Parameters l The listener to be removed.
Implements ItemSelectable.removeItemListener (ItemListener

l)

580 CHECKBOXMENUITEM

10 July 2002 22:24

Description Removes the specified ItemListener so it will not receive
ItemEvent objects from this CheckboxMenuItem.

setState

public synchronized void setState (boolean condition)

Parameters condition New state for the CheckboxMenuItem.
Description Changes the state of the CheckboxMenuItem.

Protected Instance Methods
processEvent

protected void processEvent(AWTEvent e) �

Parameters e The event to process.
Overrides MenuItem.processEvent(AWTEvent)

Description Low level AWTEvents are passed to this method for processing.

processItemEvent

protected void processItemEvent(ItemEvent e) �

Parameters e The item event to process.
Description Item events are passed to this method for processing. Normally,

this method is called by processEvent().

See Also
ItemEvent, ItemSelectable, MenuItem, String

19.13 Choice

java.awt.ItemSelectablejava.awt.Choicejava.lang.Object java.awt.Component

Description
The Choice is a Component that provides a drop-down list of choices to choose
from.

Class Definition
public class java.awt.Choice

extends java.awt.Component

implements java.awt.ItemSelectable {

CHOICE 581

10 July 2002 22:24

// Constructors

public Choice();

// Instance Methods

public synchronized void add (String item); �
public synchronized void addItem (String item); ✩
public void addItemListener (ItemListener l); �
public void addNotify();

public int countItems(); ✩
public String getItem (int index);

public int getItemCount(); �
public int getSelectedIndex();

public synchronized String getSelectedItem();

public synchronized Object[] getSelectedObjects(); �
public synchronized void insert (String item, int index); �
public synchronized void remove (int position); �
public synchronized void remove (String item); �
public synchronized void removeAll(); �
public void removeItemListener (ItemListener l); �
public synchronized void select (int pos);

public synchronized void select (String str);

// Protected Instance Methods

protected String paramString();

protected void processEvent (AWTEvent e); �
protected void processItemEvent (ItemEvent e); �

}

Constructors
Choice

public Choice()

Description Constructs a Choice object.

Instance Methods
add

public synchronized void add (String item) �

Parameters item Text for new entry.
Throws NullPointerException

If item is null.
Description Adds a new entry to the available choices.

582 CHOICE

10 July 2002 22:24

addItem

public synchronized void addItem (String item) ✩

Parameters item Text for new entry.
Throws NullPointerException

If item is null.
Description Replaced by add(String).

addItemListener

public void addItemListener (ItemListener l) �

Parameters l The listener to be added.
Implements ItemSelectable.addItemListener(ItemListener l)

Description Adds a listener for the ItemEvent objects this Choice gener-
ates.

addNotify

public void addNotify()

Overrides Component.addNotify()

Description Creates Choice’s peer.

countItems

public int countItems() ✩

Returns Number of items in the Choice.
Description Replaced by getItemCount().

getItem

public String getItem (int index)

Parameters index Position of entry.
Returns A string for an entry at a given position.
Throws ArrayIndexOutOfBoundsException

If index is invalid; indices start at zero.

getItemCount

public int getItemCount() �

Returns Number of items in the Choice.

CHOICE 583

10 July 2002 22:24

getSelectedIndex

public int getSelectedIndex()

Returns Position of currently selected entry.

getSelectedItem

public synchronized String getSelectedItem()

Returns Currently selected entry as a String.

getSelectedObjects

public synchronized Object[] getSelectedObjects() �

Implements ItemSelectable.getSelectedObjects()

Description A single-item array containing the current selection.

insert

public synchronized void insert (String item, int index)
�

Parameters item The string to add.
index The position for the new string.

Throws IllegalArgumentException

If index is less than zero.
Description Inserts item in the given position.

remove

public synchronized void remove (int position) �

Parameters position The index of an entry in the Choice compo-
nent.

Description Removes the entry in the given position.

public synchronized void remove (String string) �

Parameters string Text of an entry within the Choice component.
Throws IllegalArgumentException

If string is not in the Choice.
Description Makes the first entry that matches string the selected item.

removeAll

584 CHOICE

10 July 2002 22:24

public synchronized void removeAll() �

Description Removes all the entries from the Choice.

removeItemListener

public void removeItemListener (ItemListener l) �

Parameters l The listener to be removed.
Implements ItemSelectable.removeItemListener (ItemListener

l)

Description Removes the specified ItemListener so it will not receive
ItemEvent objects from this Choice.

select

public synchronized void select (int pos)

Parameters pos The index of an entry in the Choice compo-
nent.

Throws IllegalArgumentException

If the position is not valid.
Description Makes the entry in the given position.

public synchronized void select (String str)

Parameters str Text of an entry within the Choice component.
Description Makes the first entry that matches str the selected item for the

Choice.

Protected Instance Methods
paramString

protected String paramString()

Returns A string with current settings of Choice.
Overrides Component.paramString()

Description Helper method for toString() to generate string of current
settings.

processEvent

protected void processEvent (AWTEvent e) �

Parameters e The event to process.
Description Low level AWTEvents are passed to this method for processing.

CHOICE 585

10 July 2002 22:24

processItemEvent

protected void processItemEvent (ItemEvent e) �

Parameters e The item event to process.
Description Item events are passed to this method for processing. Normally,

this method is called by processEvent().

See Also
Component, ItemSelectable, String

19.14 Color

java.lang.Object java.awt.Color java.awt.SystemColor

java.io.Serializable

Description
The Color class represents a specific color to the system.

Class Definition
public final class java.awt.Color

extends java.lang.Object

implements java.io.Serializable {

// Constants

public static final Color black;

public static final Color blue;

public static final Color cyan;

public static final Color darkGray;

public static final Color gray;

public static final Color green;

public static final Color lightGray;

public static final Color magenta;

public static final Color orange;

public static final Color pink;

public static final Color red;

public static final Color white;

public static final Color yellow;

// Constructors

public Color (int rgb);

public Color (int red, int green, int blue);

public Color (float red, float green, float blue);

586 CHOICE

10 July 2002 22:24

// Class Methods

public static Color decode (String name); �
public static Color getColor (String name);

public static Color getColor (String name, Color defaultColor);

public static Color getColor (String name, int defaultColor);

public static Color getHSBColor (float hue, float saturation,

float brightness);

public static int HSBtoRGB (float hue, float saturation, float brightness);

public static float[] RGBtoHSB (int red, int green, int blue,

float hsbvalues[]);

// Instance Methods

public Color brighter();

public Color darker();

public boolean equals (Object object);

public int getBlue();

public int getGreen();

public int getRed();

public int getRGB();

public int hashCode();

public String toString();

}

Constants
black

public static final Color black

The color black.

blue

public static final Color blue

The color blue.

cyan

public static final Color cyan

The color cyan.

darkGray

public static final Color darkGray

The color dark gray.

COLOR 587

10 July 2002 22:24

gray

public static final Color gray

The color gray.

green

public static final Color green

The color green.

lightGray

public static final Color lightGray

The color light gray.

magenta

public static final Color magenta

The color magenta.

orange

public static final Color orange

The color orange.

pink

public static final Color pink

The color pink.

red

public static final Color red

The color red.

white

public static final Color white

The color white.

yellow

public static final Color yellow

The color yellow.

588 COLOR

10 July 2002 22:24

Constructors
Color

public Color (int rgb)

Parameters rgb Composite color value
Description Constructs a Color object with the given rgb value.

public Color (int red, int green, int blue)

Parameters red Red component of color in the range[0, 255]
green Green component of color in the range[0, 255]
blue Blue component of color in the range[0, 255]

Description Constructs a Color object with the given red, green, and
blue values.

public Color (float red, float green, float blue)

Parameters red Red component of color in the range[0.0, 1.0]
green Green component of color in the range[0.0, 1.0]
blue Blue component of color in the range[0.0, 1.0]

Description Constructs a Color object with the given red, green, and
blue values.

Class Methods
decode

public static Color decode (String nm) �

Parameters nm A String representing a color as a 24-bit inte-
ger.

Returns The color requested.
Throws NumberFormatException

If nm cannot be converted to a number.
Description Gets color specified by the given string.

getColor

public static Color getColor (String name)

Parameters name The name of a system property indicating which
color to fetch.

Returns Color instance of name requested, or null if the name is
invalid.

Description Gets color specified by the system property name.

COLOR 589

10 July 2002 22:24

public static Color getColor (String name, Color
defaultColor)

Parameters name The name of a system property indicating which
color to fetch.

defaultColor Color to return if name is not found in proper-
ties, or invalid.

Returns Color instance of name requested, or defaultColor if the
name is invalid.

Description Gets color specified by the system property name.

public static Color getColor (String name, int
defaultColor)

Parameters name The name of a system property indicating which
color to fetch.

defaultColor Color to return if name is not found in proper-
ties, or invalid.

Returns Color instance of name requested, or defaultColor if the
name is invalid.

Description Gets color specified by the system property name. The default
color is specified as a 32-bit RGB value.

getHSBColor

public static Color getHSBColor (float hue, float
saturation, float brightness)

Parameters hue Hue component of Color to create, in the
range[0.0, 1.0].

saturation Saturation component of Color to create, in the
range[0.0, 1.0].

brightness Brightness component of Color to create, in the
range[0.0, 1.0].

Returns Color instance for values provided.
Description Create an instance of Color by using hue, saturation, and

brightness instead of red, green, and blue values.

HSBtoRGB

public static int HSBtoRGB (float hue, float saturation,
float brightness)

Parameters hue Hue component of Color to convert, in the
range[0.0, 1.0].

590 COLOR

10 July 2002 22:24

saturation Saturation component of Color to convert, in
the range[0.0, 1.0].

brightness Brightness component of Color to convert, in
the range[0.0, 1.0].

Returns Color value for hue, saturation, and brightness provided.
Description Converts a specific hue, saturation, and brightness to a Color

and returns the red, green, and blue values in a composite inte-
ger value.

RGBtoHSB

public static float[] RGBtoHSB (int red, int green, int
blue, float[] hsbvalues)

Parameters red Red component of Color to convert, in the
range[0, 255].

green Green component of Color to convert, in the
range[0, 255].

blue Blue component of Color to convert, in the
range[0, 255].

hsbvalues Three element array in which to put the result.
This array is used as the method’s return object.
If null, a new array is allocated.

Returns Hue, saturation, and brightness values for Color provided, in
elements 0, 1, and 2 (respectively) of the returned array.

Description Allows you to convert specific red, green, blue value to the hue,
saturation, and brightness equivalent.

Instance Methods
brighter

public Color brighter()

Returns Brighter version of current color.
Description Creates new Color that is somewhat brighter than current.

darker

public Color darker()

Returns Darker version of current color.
Description Creates new Color that is somewhat darker than current.

COLOR 591

10 July 2002 22:24

equals

public boolean equals (Object object)

Parameters object The object to compare.
Returns true if object represents the same color, false other wise.
Overrides Object.equals(Object)

Description Compares two different Color instances for equivalence.

getBlue

public int getBlue()

Returns Blue component of current color.

getGreen

public int getGreen()

Returns Green component of current color.

getRed

public int getRed()

Returns Red component of current color.

getRGB

public int getRGB()

Returns Current color as a composite value.
Description Gets integer value of current color.

hashCode

public int hashCode()

Returns A hashcode to use when storing Color in a Hashtable.
Overrides Object.hashCode()

Description Generates a hashcode for the Color.

toString

public String toString()

Returns A string representation of the Color object.
Overrides Object.toString()

592 COLOR

10 July 2002 22:24

See Also
Object, Properties, Serializable, String

19.15 Component

java.awt.List

java.awt.event.TextEventjava.awt.Scrollbar

java.awt.TextComponent

java.awt.Label

java.awt.image.ImageObserverjava.lang.Object

java.awt.Choice

java.awt.Checkbox

java.awt.Canvas

java.awt.Button

java.awt.Container

java.awt.Component

java.awt.MenuContainer

java.io.Serializable

Description
The Component class is the parent of all non-menu GUI components.

Class Definition
public abstract class java.awt.Component

extends java.lang.Object

implements java.awt.image.ImageObserver

implements java.awt.MenuContainer

implements java.io.Serializable {

// Constants

public final static float BOTTOM_ALIGNMENT; �
public final static float CENTER_ALIGNMENT; �
public final static float LEFT_ALIGNMENT; �
public final static float RIGHT_ALIGNMENT; �
public final static float TOP_ALIGNMENT; �

// Variables

protected Locale locale; �

COMPONENT 593

10 July 2002 22:24

// Constructors

protected Component(); �

// Instance Methods

public boolean action (Event e, Object o); ✩
public synchronized void add (PopupMenu popup); �
public synchronized void addComponentListener

(ComponentListener l); �
public synchronized void addFocusListener (FocusListener l); �
public synchronized void addKeyListener (KeyListener l); �
public synchronized void addMouseListener (MouseListener l); �
public synchronized void addMouseMotionListener

(MouseMotionListener l); �
public void addNotify();

public Rectangle bounds(); ✩
public int checkImage (Image image, ImageObserver observer);

public int checkImage (Image image, int width, int height,

ImageObserver observer);

public boolean contains (int x, int y); �
public boolean contains (Point p); �
public Image createImage (ImageProducer producer);

public Image createImage (int width, int height);

public void deliverEvent (Event e); ✩
public void disable(); ✩
public final void dispatchEvent (AWTEvent e) �
public void doLayout(); �
public void enable(); ✩
public void enable (boolean condition); ✩
public float getAlignmentX(); �
public float getAlignmentY(); �
public Color getBackground();

public Rectangle getBounds(); �
public synchronized ColorModel getColorModel();

public Component getComponentAt (int x, int y); �
public Component getComponentAt (Point p); �
public Cursor getCursor(); �
public Font getFont();

public FontMetrics getFontMetrics (Font f);

public Color getForeground();

public Graphics getGraphics();

public Locale getLocale(); �
public Point getLocation(); �
public Point getLocationOnScreen(); �
public Dimension getMaximumSize(); �
public Dimension getMinimumSize(); �
public String getName(); �
public Container getParent();

public ComponentPeer getPeer(); ✩
public Dimension getPreferredSize(); �

594 COMPONENT

10 July 2002 22:24

public Dimension getSize(); �
public Toolkit getToolkit();

public final Object getTreeLock(); �
public boolean gotFocus (Event e, Object o); ✩
public boolean handleEvent (Event e); ✩
public void hide(); ✩
public boolean imageUpdate (Image image, int infoflags, int x, int y,

int width, int height);

public boolean inside (int x, int y); ✩
public void invalidate();

public boolean isEnabled();

public boolean isFocusTraversable(); �
public boolean isShowing();

public boolean isValid();

public boolean isVisible();

public boolean keyDown (Event e, int key); ✩
public boolean keyUp (Event e, int key); ✩
public void layout(); ✩
public void list();

public void list (PrintStream out);

public void list (PrintStream out, int indentation);

public void list (PrintWriter out); �
public void list (PrintWriter out, int indentation); �
public Component locate (int x, int y); ✩
public Point location(); ✩
public boolean lostFocus (Event e, Object o); ✩
public Dimension minimumSize(); ✩
public boolean mouseDown (Event e, int x, int y); ✩
public boolean mouseDrag (Event e, int x, int y); ✩
public boolean mouseEnter (Event e, int x, int y); ✩
public boolean mouseExit (Event e, int x, int y); ✩
public boolean mouseMove (Event e, int x, int y); ✩
public boolean mouseUp (Event e, int x, int y); ✩
public void move (int x, int y); ✩
public void nextFocus(); ✩
public void paint (Graphics g);

public void paintAll (Graphics g);

public boolean postEvent (Event e); ✩
public Dimension preferredSize(); ✩
public boolean prepareImage (Image image, ImageObserver observer);

public boolean prepareImage (Image image, int width, int height,

ImageObserver observer);

public void print (Graphics g);

public void printAll (Graphics g);

public synchronized void remove (MenuComponent popup); �
public synchronized void removeComponentListener

(ComponentListener l); �
public synchronized void removeFocusListener (FocusListener l); �
public synchronized void removeKeyListener (KeyListener l); �

COMPONENT 595

10 July 2002 22:24

public synchronized void removeMouseListener (MouseListener l); �
public synchronized void removeMouseMotionListener

(MouseMotionListener l); �
public void removeNotify();

public void repaint();

public void repaint (long tm);

public void repaint (int x, int y, int width, int height);

public void repaint (long tm, int x, int y, int width, int height);

public void requestFocus();

public void reshape (int x, int y, int width, int height); ✩
public void resize (Dimension d); ✩
public void resize (int width, int height); ✩
public void setBackground (Color c);

public void setBounds (int x, int y, int width, int height); �
public void setBounds (Rectangle r); �
public synchronized void setCursor (Cursor cursor); �
public void setEnabled (boolean b); �
public synchronized void setFont (Font f);

public void setForeground (Color c);

public void setLocale (Locale l); �
public void setLocation (int x, int y); �
public void setLocation (Point p); �
public void setName (String name); �
public void setSize (int width, int height); �
public void setSize (Dimension d); �
public void setVisible (boolean b); �
public void show(); ✩
public void show (boolean condition); ✩
public Dimension size(); ✩
public String toString();

public void transferFocus(); �
public void update (Graphics g);

public void validate();

// Protected Instance Methods

protected final void disableEvents (long eventsToDisable); �
protected final void enableEvents (long eventsToEnable); �
protected String paramString();

protected void processComponentEvent (ComponentEvent e); �
protected void processEvent (AWTEvent e); �
protected void processFocusEvent (FocusEvent e); �
protected void processKeyEvent (KeyEvent e); �
protected void processMouseEvent (MouseEvent e); �
protected void processMouseMotionEvent (MouseEvent e); �

}

596 COMPONENT

10 July 2002 22:24

Constants
BOTTOM_ALIGNMENT

public final static float BOTTOM_ALIGNMENT �

Constant representing bottom alignment in getAlignmentY().

CENTER_ALIGNMENT

public final static float CENTER_ALIGNMENT �

Constant representing center alignment in getAlignmentX() and getAl-

ignmentY().

LEFT_ALIGNMENT

public final static float LEFT_ALIGNMENT �

Constant representing left alignment in getAlignmentX().

RIGHT_ALIGNMENT

public final static float RIGHT_ALIGNMENT �

Constant representing right alignment in getAlignmentX().

TOP_ALIGNMENT

public final static float TOP_ALIGNMENT �

Constant representing top alignment in getAlignmentY().

Variables
locale

protected Locale locale �

Description The locale for the component. Used for internationalization
support.

Constructors
Component

protected Component() �

Description This constructor creates a “lightweight” component. This con-
structor allows Component to be directly subclassed using code
written entirely in Java.

COMPONENT 597

10 July 2002 22:24

Instance Methods
action

public boolean action (Event e, Object o) ✩

Parameters e Event instance identifying what triggered the
call to this method.

o Argument specific to the component subclass
that generated the event.

Returns true if event handled, false to propagate it to parent con-
tainer.

Description Method called when user performs some action in Component.
This method is a relic of the old 1.0.2 event model and is
replaced by the process . . . Event() methods.

add

public synchronized void add (PopupMenu popup) �

Parameters popup The menu to add.
Description After the PopupMenu is added to a component, it can be shown

in the component’s coordinate space.

addComponentListener

public void addComponentListener (ComponentListener l) �

Description Adds a listener for the ComponentEvent objects this Compo-
nent generates.

addFocusListener

public void addFocusListener (FocusListener l) �

Description Adds a listener for the FocusEvent objects this Component

generates.

addKeyListener

public void addKeyListener (KeyListener l) �

Description Adds a listener for the KeyEvent objects this Component gen-
erates.

598 COMPONENT

10 July 2002 22:24

addMouseListener

public void addMouseListener (MouseListener l) �

Description Adds a listener for the MouseEvent objects this Component

generates.

addMouseMotionListener

public void addMouseMotionListener (MouseMotionListener l)
�

Description Adds a listener for the motion MouseEvent objects this Com-
ponent generates.

addNotify

public void addNotify()

Description Creates peer of Component’s subclass.

bounds

public Rectangle bounds() ✩

Returns Gets bounding rectangle of Component.
Description A Rectangle that returns the outer limits of the Component.

Replaced by getBounds() in 1.1.

checkImage

public int checkImage (Image image, ImageObserver
observer)

Parameters image Image to check.
obser ver The object an image will be rendered onto.

Returns ImageObserver Flags ORed together indicating the image’s
status.

Description Checks status of image construction.

public int checkImage (Image image, int width, int height,
ImageObserver observer)

Parameters image Image to check.
width Horizontal size image will be scaled to.
height Vertical size image will be scaled to.
obser ver Object image will be rendered onto.

Returns ImageObserver flags ORed together indicating the image’s
status.

COMPONENT 599

10 July 2002 22:24

Description Checks status of image construction.

contains

public boolean contains (int x, int y) �

Parameters x The x coordinate, in this Component’s coordi-
nate system.

y The y coordinate, in this Component’s coordi-
nate system.

Returns true if the Component contains the point; false other wise.

public boolean contains (Point p) �

Parameters p The point to be tested, in this Component’s
coordinate system.

Returns true if the Component contains the point; false other wise.

createImage

public Image createImage (ImageProducer producer)

Parameters producer Class that implements ImageProducer inter-
face to create the new image.

Returns Newly created image instance.
Description Creates an Image based upon an ImageProducer.

public Image createImage (int width, int height)

Parameters width Horizontal size for in-memory Image.
height Vertical size for in-memory Image.

Returns Newly created image instance.
Description Creates an empty in-memory Image for double buffering; to

draw on the image, use its graphics context.

deliverEvent

public void deliverEvent (Event e) ✩

Parameters e Event instance to deliver.
Description Delivers event to the component for processing.

disable

public void disable() ✩

Description Disables component so that it is unresponsive to user interac-
tions. Replaced by setEnabled(false).

600 COMPONENT

10 July 2002 22:24

dispatchEvent

public final void dispatchEvent (AWTEvent e) �

Parameters e The AWTEvent to process.
Description Tells the component to deal with the AWTEvent e.

doLayout

public void doLayout() �

Description Lays out component. This method is a replacement for lay-

out().

enable

public void enable() ✩

Description Enables component so that it is responsive to user interactions.
Use setEnabled(true) instead.

public void enable (boolean condition) ✩

Parameters condition true to enable the component; false to dis-
able it.

Description Enables or disables the component based upon condition.
Use setEnabled(boolean) instead.

getAlignmentX

public float getAlignmentX() �

Returns A number between 0 and 1 representing the horizontal align-
ment of this component.

Description One of the constants LEFT_ALIGNMENT, CENTER_ALIGNMENT,
or RIGHT_ALIGNMENT may be returned. CENTER_ALIGNMENT
is returned by default.

getAlignmentY

public float getAlignmentY() �

Returns A number between 0 and 1 representing the vertical alignment
of this component.

Description One of the constants TOP_ALIGNMENT, CENTER_ALIGNMENT,
or BOTTOM_ALIGNMENT may be returned. CENTER_ALIGNMENT
is returned by default.

COMPONENT 601

10 July 2002 22:24

getBackground

public Color getBackground()

Returns Background color of the component.

getBounds

public Rectangle getBounds() �

Returns Gets bounding rectangle of Component.
Description Returns a Rectangle that returns the outer limits of the Com-

ponent.

getColorModel

public synchronized ColorModel getColorModel()

Returns ColorModel used to display the current component.

getComponentAt

public Component getComponentAt (int x, int y) �

Parameters x The x coordinate, in this Component’s coordi-
nate system.

y The y coordinate, in this Component’s coordi-
nate system.

Returns Returns the Component containing the given point.

public Component getComponentAt (Point p) �

Parameters p The point to be tested, in this Component’s
coordinate system.

Returns Returns the Component containing the given point.

getCursor

public Cursor getCursor() �

Returns Current cursor of the component.

getFont

public Font getFont()

Returns Current font of the component.

602 COMPONENT

10 July 2002 22:24

getFontMetrics

public FontMetrics getFontMetrics (Font f)

Parameters f A Font object, whose platform specific informa-
tion is desired.

Returns Size information for the given Font.

getForeground

public Color getForeground()

Returns Foreground color of component.

getGraphics

public Graphics getGraphics()

Throws InternalException

If acquiring graphics context is unsupported.
Returns Component’s graphics context.

getLocale

public Locale getLocale() �

Throws IllegalComponentStateException

If the component does not have a locale or it has
not been added to a hierarchy that does.

Returns Component’s locale.

getLocation

public Point getLocation() �

Returns Position of component.
Description Gets the current position of this Component in its parent’s

coordinate space.

getLocationOnScreen

public Point getLocationOnScreen() �

Returns Position of component.
Description Gets the current position of this Component in the screen’s

coordinate space.

COMPONENT 603

10 July 2002 22:24

getMaximumSize

public Dimension getMaximumSize() �

Returns The maximum dimensions of the component.
Description By default, a maximal Dimension is returned.

getMinimumSize

public Dimension getMinimumSize() �

Returns The minimum dimensions of the component.

getName

public String getName() �

Returns This component’s name.

getParent

public Container getParent()

Returns Parent Container of Component.
Description Gets container that this Component is held in.

getPeer

public ComponentPeer getPeer() ✩

Returns Peer of Component.

getPreferredSize

public Dimension getPreferredSize() �

Returns The preferred dimensions of the component.

getSize

public Dimension getSize() �

Returns Dimensions of component.
Description Gets width and height of component.

getToolkit

public Toolkit getToolkit()

Returns Toolkit of Component.

604 COMPONENT

10 July 2002 22:24

getTreeLock

public final Object getTreeLock() �

Returns The AWT tree locking object.
Description Returns the object used for tree locking and layout operations.

gotFocus

public boolean gotFocus (Event e, Object o) ✩

Parameters e Event instance identifying what triggered the
call to this method.

o Argument specific to the component subclass
that generated the event.

Returns true if event handled, false to propagate it to parent con-
tainer.

Description Called when Component gets input focus. This method is not
used in the 1.1 event model.

handleEvent

public boolean handleEvent (Event e) ✩

Parameters e Event instance identifying what triggered the
call to this method.

Returns true if event handled, false to propagate it to parent con-
tainer.

Description High-level event handling routine that calls helper routines.
Replaced by processEvent(AWTEvent).

hide

public void hide() ✩

Description Hides component from view. Replaced by setVisi-

ble(false).

imageUpdate

public boolean imageUpdate (Image image, int infoflags,
int x,
int y, int width, int height)

Parameters image Image being loaded.
infoflags ImageObserver flags ORed together of avail-

able information.

COMPONENT 605

10 July 2002 22:24

x x coordinate of upper-left corner of Image.
y y coordinate of upper-left corner of Image.
width Horizontal dimension of Image.
height Vertical dimension of Image.

Returns true if Image fully loaded, false other wise.
Implements ImageObserver.imageUpdate()

Description An asynchronous update interface for receiving notifications
about Image information as it is loaded. Meaning of parame-
ters changes with values of flags.

inside

public boolean inside (int x, int y) ✩

Parameters x Horizontal position.
y Vertical position.

Returns true if the point (x, y) falls within the component’s bounds,
false other wise.

Description Checks if coordinates are within bounding box of Component.
Replaced by contains(int, int).

invalidate

public void invalidate()

Description Sets the component’s valid state to false.

isEnabled

public boolean isEnabled()

Returns true if enabled, false other wise.
Description Checks to see if the Component is currently enabled.

isFocusTraversable

public boolean isFocusTraversable() �

Returns true if this Component can be traversed using Tab and Shift-
Tab, false other wise.

Description Checks to see if the Component is navigable using the key-
board.

isShowing

606 COMPONENT

10 July 2002 22:24

public boolean isShowing()

Returns true if showing, false other wise.
Description Checks to see if the Component is currently showing.

isValid

public boolean isValid()

Returns true if valid, false other wise.
Description Checks to see if the Component is currently valid.

isVisible

public boolean isVisible()

Returns true if visible, false other wise.
Description Checks to see if the Component is currently visible.

keyDown

public boolean keyDown (Event e, int key) ✩

Parameters e Event instance identifying what triggered the
call to this method.

key Integer representation of key pressed.
Returns true if event handled, false to propagate it to parent con-

tainer.
Description Method called whenever the user presses a key. Replaced by

processKeyEvent(KeyEvent).

keyUp

public boolean keyUp (Event e, int key) ✩

Parameters e Event instance identifying what triggered the
call to this method.

key Integer representation of key released.
Returns true if event handled, false to propagate it to parent con-

tainer.
Description Method called whenever the user releases a key. Replaced by

processKeyEvent(KeyEvent).

layout

COMPONENT 607

10 July 2002 22:24

public void layout() ✩

Description Lays out component. Replaced by doLayout().

list

public void list()

Description Prints the contents of the Component to System.out.

public void list (PrintStream out)

Parameters out Output stream to send results to.
Description Prints the contents of the Component to a PrintStream.

public void list (PrintStream out, int indentation)

Parameters out Output stream to send results to.
indentation Indentation to use when printing.

Description Prints the contents of the Component indented to a
PrintStream.

public void list (PrintWriter out)

Parameters out Output stream to send results to.
Description Prints the contents of the Component to a PrintWriter.

public void list (PrintWriter out, int indentation)

Parameters out Output stream to send results to.
indentation Indentation to use when printing.

Description Prints the contents of the Component indented to a Print-

Writer.

locate

public Component locate (int x, int y) ✩

Parameters x Horizontal position.
y Vertical position.

Returns Component if the point (x, y) falls within the component,
null other wise.

Description Replaced by getComponentAt(int, int).

location

public Point location() ✩

Returns Position of component.

608 COMPONENT

10 July 2002 22:24

Description Gets the current position of this Component in its parent’s
coordinate space. Replaced by getLocation().

lostFocus

public boolean lostFocus (Event e, Object o) ✩

Parameters e Event instance identifying what triggered the
call to this method.

o Argument specific to the component subclass
that generated the event.

Returns true if event handled, false to propagate it to parent con-
tainer.

Description Method called when Component loses input focus. Replaced by
processFocusEvent(FocusEvent).

minimizeSize

public Dimension minimumSize() ✩

Returns The minimum dimensions of the component. Replaced by
getMinimumSize().

mouseDown

public boolean mouseDown (Event e, int x, int y) ✩

Parameters e Event instance identifying what triggered the
call to this method.

x Horizontal position of the mouse within Compo-

nent when Event initiated
y Vertical position of the mouse within Compo-

nent when Event initiated
Returns true if event handled, false to propagate it to parent con-

tainer.
Description Method called when the user presses a mouse button over Com-

ponent. Replaced by processMouseEvent(MouseEvent).

mouseDrag

public boolean mouseDrag (Event e, int x, int y) ✩

Parameters e Event instance identifying what triggered the
call to this method.

x Horizontal position of the mouse within Compo-

nent when Event initiated

COMPONENT 609

10 July 2002 22:24

y Vertical position of the mouse within Compo-

nent when Event initiated
Returns true if event handled, false to propagate it to parent con-

tainer.
Description Method called when the user is pressing a mouse button and

moves the mouse. Replaced by processMouseMotion-

Event(MouseEvent).

mouseEnter

public boolean mouseEnter (Event e, int x, int y) ✩

Parameters e Event instance identifying what triggered the
call to this method.

x Horizontal position of the mouse within Compo-

nent when Event initiated
y Vertical position of the mouse within Compo-

nent when Event initiated
Returns true if event handled, false to propagate it to parent con-

tainer.
Description Method called when the mouse enters Component. Replaced

by processMouseEvent(MouseEvent).

mouseExit

public boolean mouseExit (Event e, int x, int y) ✩

Parameters e Event instance identifying what triggered the
call to this method.

x Horizontal position of the mouse within Compo-

nent when Event initiated
y Vertical position of the mouse within Compo-

nent when Event initiated
Returns true if event handled, false to propagate it to parent con-

tainer.
Description Method called when the mouse exits Component. Replaced by

processMouseEvent(MouseEvent).

mouseMove

public boolean mouseMove (Event e, int x, int y) ✩

Parameters e Event instance identifying what triggered the
call to this method.

610 COMPONENT

10 July 2002 22:24

x Horizontal position of the mouse within Compo-

nent when Event initiated
y Vertical position of the mouse within Compo-

nent when Event initiated
Returns true if event handled, false to propagate it to parent con-

tainer.
Description Method called when the user is not pressing a mouse button

and moves the mouse. Replaced by processMouseMotion-

Event(MouseEvent).

mouseUp

public boolean mouseUp (Event e, int x, int y) ✩

Parameters e Event instance identifying what triggered the
call to this method.

x Horizontal position of the mouse within Compo-

nent when Event initiated
y Vertical position of the mouse within Compo-

nent when Event initiated
Returns true if event is handled, false to propagate it to the parent

container.
Description Method called when user releases mouse button over Compo-

nent. Replaced by processMouseEvent(MouseEvent).

move

public void move (int x, int y) ✩

Parameters x New horizontal position for component.
y New vertical position for component.

Description Relocates component. Replaced by setLocation(int, int).

nextFocus

public void nextFocus() ✩

Description Moves focus from current component to next one in parent
container. Replaced by transferFocus().

paint

COMPONENT 611

10 July 2002 22:24

public void paint (Graphics g)

Parameters g Graphics context of component.
Description Empty method to be overridden to draw something in the

graphics context.

paintAll

public void paintAll (Graphics g)

Parameters g Graphics context of component.
Description Method to validate component and paint its peer if it is visible.

postEvent

public boolean postEvent (Event e) ✩

Parameters e Event instance to post to component
Returns If Event is handled, true is returned. Otherwise, false is

returned.
Description Tells Component to deal with Event.

preferredSize

public Dimension preferredSize() ✩

Returns The preferred dimensions of the component. Replaced by
getPreferredSize().

prepareImage

public boolean prepareImage (Image image, ImageObserver
observer)

Parameters image Image to start loading.
obser ver Component on which image will be rendered.

Returns true if Image is fully loaded, false other wise.
Description Forces Image to start loading.

public boolean prepareImage (Image image, int width, int
height, ImageObserver observer)

Parameters image Image to start loading.
width Horizontal size of the Image after scaling.
height Vertical size of the Image after scaling.
obser ver Component on which image will be rendered.

Returns true if Image is fully loaded, false other wise.

612 COMPONENT

10 July 2002 22:24

Description Forces Image to start loading.

print

public void print (Graphics g)

Parameters g Graphics context.
Description Empty method to be overridden to print something into the

graphics context.

printAll

public void printAll (Graphics g)

Parameters g Graphics context.
Description Method to print this component and its children.

remove

public void remove (MenuComponent popup) �

Parameters popup The menu to remove.
Description After adding a PopupMenu, you can use this method to remove

it.

removeComponentListener

public void removeComponentListener (ComponentListener l)
�

Description Removes the specified ComponentListener from this Compo-
nent.

removeFocusListener

public void removeFocusListener (FocusListener l) �

Description Removes the specified FocusListener from this Component.

removeKeyListener

public void removeKeyListener (KeyListener l) �

Description Removes the specified KeyListener from this Component.

removeMouseListener

COMPONENT 613

10 July 2002 22:24

public void removeMouseListener (MouseListener l) �

Description Removes the specified MouseListener from this Component.

removeMouseMotionListener

public void removeMouseMotionListener (MouseMotionListener
l) �

Description Removes the specified MouseMotionListener from this Com-
ponent.

removeNotify

public void removeNotify()

Description Removes peer of Component’s subclass.

repaint

public void repaint()

Description Requests scheduler to redraw the component as soon as pos-
sible.

public void repaint (long tm)

Parameters tm Millisecond delay allowed before repaint.
Description Requests scheduler to redraw the component within a time

period.

public void repaint (int x, int y, int width, int height)

Parameters x Horizontal origin of bounding box to redraw.
y Vertical origin of bounding box to redraw.
width Width of bounding box to redraw.
height Height of bounding box to redraw.

Description Requests scheduler to redraw a portion of component as soon
as possible.

public void repaint (long tm, int x, int y, int width, int
height)

Parameters tm Millisecond delay allowed before repaint.
x Horizontal origin of bounding box to redraw.
y Vertical origin of bounding box to redraw.
width Width of bounding box to redraw.
height Height of bounding box to redraw.

614 COMPONENT

10 July 2002 22:24

Description Requests scheduler to redraw a portion of component within a
time period.

requestFocus

public void requestFocus()

Description Requests the input focus for this Component.

reshape

public void reshape (int x, int y, int width, int height)
✩

Parameters x New horizontal position for component.
y New vertical position for component.
width New width for component.
height New height for component.

Description Relocates and resizes component. Replaced by set-

Bounds(int, int, int, int).

resize

public void resize (Dimension d) ✩

Parameters d New dimensions for the component.
Description Resizes component. Replaced by setSize(Dimension).

public void resize (int width, int height) ✩

Parameters width New width for component.
height New height for component.

Description Resizes component. Replaced by setSize(int, int).

setBackground

public void setBackground (Color c)

Parameters c New background color.
Description Changes the component’s background color.

setBounds

public void setBounds (int x, int y, int width, int
height) �

Parameters x New horizontal position for component.
y New vertical position for component.

COMPONENT 615

10 July 2002 22:24

width New width for component.
height New height for component.

Description Relocates and resizes the component.

public void setBounds (Rectangle r) �

Parameters r New coordinates for component.
Description Relocates and resizes component.

setCursor

public synchronized void setCursor (Cursor cursor) �

Parameters cursor The new cursor for the component.
Description Changes the component’s cursor.

setEnabled

public void setEnabled (boolean b) �

Parameters b true to enable the component, false to dis-
able it.

Description Enables or disables the component. Replaces enable(),
enable(boolean), and disable().

setFont

public synchronized void setFont (Font f)

Parameters f Font to change component to.
Description Changes the font of the component.

setForeground

public void setForeground (Color c)

Parameters c New foreground color.
Description Changes the foreground color of component’s area.

setLocale

public void setLocale (Locale l) �

Parameters l The locale object for the component.
Description Sets the Component’s locale.

616 COMPONENT

10 July 2002 22:24

setLocation

public void setLocation (int x, int y) �

Parameters x New horizontal position for component.
y New vertical position for component.

Description Relocates the component.

public void setLocation (Point p) �

Parameters p New position for component.
Description Relocates the component.

setName

public void setName (String name) �

Parameters name New name for component.
Description Sets the component’s name.

setSize

public void setSize (int width, int height) �

Parameters width New width for component.
height New height for component.

Description Resizes the component.

public void setSize (Dimension d) �

Parameters d New dimensions for the component.
Description Resizes the component.

setVisible

public void setVisible (boolean b) �

Parameters b true to show component, false to hide it.
Description Shows or hides the component based on the b parameter.

show

public void show() ✩

Description Replaced by setVisible(true).

public void show (boolean condition) ✩

Parameters condition true to show the component, false to hide it.
Description Replaced by setVisible(boolean).

COMPONENT 617

10 July 2002 22:24

size

public Dimension size() ✩

Returns Dimensions of the component.
Description Gets width and height of the component. Replaced by get-

Size().

toString

public String toString()

Returns A string representation of the Component object.
Overrides Object.toString()

transferFocus

public void transferFocus() �

Description Transfers focus to the next component in the container
hierarchy.

update

public void update (Graphics g)

Parameters g Graphics context of component.
Description Called to update the component’s display area.

validate

public void validate()

Description Sets the component’s valid state to true.

Protected Instance Methods
disableEvents

protected final void disableEvents (long eventsToDisable)
�

Parameters eventsToDisable
A value representing certain kinds of events.
This can be constructed by ORing the event
mask constants defined in
java.awt.AWTEvent.

Description By default, a component receives events corresponding to the
event listeners that have registered. If a component should not
receive events of a certain type, even if there is a listener regis-
tered for that type of event, this method can be used to disable
that event type.

618 COMPONENT

10 July 2002 22:24

enableEvents

protected final void enableEvents (long eventsToEnable) �

Parameters eventsToEnable A value representing certain kinds of events.
This can be constructed by ORing the event
mask constants defined in
java.awt.AWTEvent.

Description By default, a component receives events corresponding to the
event listeners that have registered. If a component should
receive other types of events as well, this method can be used to
request them.

paramString

protected String paramString()

Returns A String with the current settings of the Component.
Description Helper method for toString() to generate a string of current

settings.

processComponentEvent

protected void processComponentEvent(ComponentEvent e) �

Parameters e The event to process.
Description Component events are passed to this method for processing.

Normally, this method is called by processEvent().

processEvent

protected void processEvent(AWTEvent e) �

Parameters e The event to process.
Description Low level AWTEvents are passed to this method for processing.

processFocusEvent

protected void processFocusEvent(FocusEvent e) �

Parameters e The event to process.
Description Focus events are passed to this method for processing. Nor-

mally, this method is called by processEvent().

COMPONENT 619

10 July 2002 22:24

processKeyEvent

protected void processKeyEvent(KeyEvent e) �

Parameters e The event to process.
Description Key events are passed to this method for processing. Normally,

this method is called by processEvent().

processMouseEvent

protected void processMouseEvent(MouseEvent e) �

Parameters e The event to process.
Description Mouse events are passed to this method for processing. Nor-

mally, this method is called by processEvent().

processMouseMotionEvent

protected void processMouseMotionEvent(MouseEvent e) �

Parameters e The event to process.
Description Mouse motion events are passed to this method for processing.

Normally, this method is called by processEvent().

See Also
Button, Canvas, Checkbox, Choice, Color, ColorModel, ComponentPeer,
Container, Dimension, Event, Font, FontMetrics, Graphics, ImageOb-
server, ImageProducer, Label, List, MenuContainer, Object, Point,
PrintStream, Rectangle, Scrollbar, Serializable, String, TextCompo-
nent, Toolkit

19.16 Container

Description
The Container class serves as a general purpose holder of other Component

objects.

Class Definition
public abstract class java.awt.Container

extends java.awt.Component {

// Constructors

protected Container(); �

// Instance Methods

public Component add (Component component);

public Component add (Component component, int position);

620 COMPONENT

10 July 2002 22:24

java.lang.Object

java.awt.Window

java.awt.ScrollPane

java.awt.Panel

java.awt.Component java.awt.Container

public void add (Component comp, Object constraints); �
public void add (Component comp, Object constraints,

int position); �
public Component add (String name, Component component); ✩
public synchronized void addContainerListener (ContainerListener l); �
public void addNotify();

public int countComponents();

public void deliverEvent (Event e); �
public void doLayout(); �
public float getAlignmentX(); �
public float getAlignmentY(); �
public Component getComponent (int n);

public Component getComponentAt (int x, int y); �
public Component getComponentAt (Point p); �
public int getComponentCount(); �
public Component[] getComponents();

public Insets getInsets(); �
public LayoutManager getLayout();

public Dimension getMaximumSize(); �
public Dimension getMinimumSize(); �
public Dimension getPreferredSize(); �
public Insets insets();

public void invalidate(); �
public boolean isAncestorOf (Component c); �
public void layout(); ✩
public void list (PrintStream out, int indentation);

public void list (PrintWriter out, int indentation); �
public Component locate (int x, int y); ✩
public Dimension minimumSize(); ✩
public void paint (Graphics g); �
public void paintComponents (Graphics g);

public Dimension preferredSize(); ✩
public void print (Graphics g); �
public void printComponents (Graphics g);

public void remove (int index); �
public void remove (Component component);

public void removeAll();

public void removeContainerListener (ContainerListener l); �

CONTAINER 621

10 July 2002 22:24

public void removeNotify();

public void setLayout (LayoutManager manager);

public void validate();

// Protected Instance Methods

protected void addImpl (Component comp, Object constraints,

int index); �
protected String paramString();

protected void processContainerEvent (ContainerEvent e); �
protected void processEvent (AWTEvent e); �
protected void validateTree(); �

}

Constructors
Container

protected Container() �

Description This constructor creates a “lightweight” container. This con-
structor allows Container to be subclassed using code written
entirely in Java.

Instance Methods
add

public Component add (Component component)

Parameters component Component to add to container.
Returns Component just added.
Throws IllegalArgumentException if you add component to itself.
Description Adds component as the last component in the container.

public Component add (Component component, int position)

Parameters component Component to add to container.
position Position of component; -1 adds the component

as the last in the container.
Returns Component just added.

Throws ArrayIndexOutOfBoundsException

If position invalid.
IllegalArgumentException

If you add Component to itself.
Description Adds component to container at a certain position.

622 CONTAINER

10 July 2002 22:24

public void add (Component component, Object constraints)
�

Parameters component Component to add to container.
constraints An object describing constraints on the compo-

nent being added.
Description Adds component to container subject to contraints.

public void add (Component component, Object constraints,
int index) �

Parameters component Component to add to container.
constraints An object describing constraints on the compo-

nent being added.
index The position of the component in the con-

tainer’s list.
Description Adds component to container subject to contraints at posi-

tion index.

public Component add (String name, Component component) ✩

Parameters name Name of component being added. This parame-
ter is often significant to the layout manager of
the container (e.g “North”, “Center”).

component Component to add to container.
Returns Component just added.
Throws IllegalArgumentException

If you add component to itself.
Description Adds the component to the container with the given name.

Replaced by the more general add(Component, Object).

addContainerListener

public synchronized void addContainerListener (ContainerListener l) �

Parameters l An object that implements the ContainerLis-

tener inter face.
Description Add a listener for the container events.

addNotify

public void addNotify()

Overrides Component.addNotify()

Description Creates Container’s peer and peers of contained components.

CONTAINER 623

10 July 2002 22:24

countComponents

public int countComponents()

Returns Number of components within Container.

deliverEvent

public void deliverEvent (Event e) ✩

Parameters e Event instance to deliver.
Overrides Component.deliverEvent(Event)

Description Tries to locate the component contained in the container that
should receive the event.

doLayout

public void doLayout() �

Description Lays out the container. This method is a replacement for lay-
out().

getAlignmentX

public float getAlignmentX() �

Returns A number between 0 and 1 representing the horizontal align-
ment of this component.

Overrides Component.getAlignmentX()

Description If the container’s layout manager implements LayoutMan-

ager2, this method returns the getLayoutAlignmentX()

value of the layout manager. Other wise the getAlignmentX()

value of Component is returned.

getAlignmentY

public float getAlignmentY() �

Returns A number between 0 and 1 representing the vertical alignment
of this component.

Overrides Component.getAlignmentY()

Description If the container’s layout manager implements LayoutMan-

ager2, this method returns the getLayoutAlignmentY()

value of the layout manager. Other wise the getAlignmentY()

value of Component is returned.

624 CONTAINER

10 July 2002 22:24

getComponent

public synchronized Component getComponent (int position)

Parameters position Position of component to get.
Throws ArrayIndexOutOfBoundsException

If position is invalid.
Returns Component at designated position within Container.

getComponentAt

public Component getComponentAt (int x, int y) �

Parameters x The x coordinate, in this Container’s coordi-
nate system.

y The y coordinate, in this Container’s coordi-
nate system.

Returns Returns the Component containing the give point.

public Component getComponentAt (Point p) �

Parameters p The point to be tested, in this Container’s
coordinate system.

Returns Returns the Component containing the give point.

getComponentCount

public int getComponentCount() �

Returns Returns the number of components in the container.

getComponents

public Component[] getComponents()

Returns Array of components within the container.

getInsets

public Insets getInsets()

Returns The insets of the container.

getLayout

public LayoutManager getLayout()

Returns LayoutManager of Container.

CONTAINER 625

10 July 2002 22:24

getMaximumSize

public Dimension getMaximumSize() �

Overrides Component.getMaximumSize()

Returns The maximum dimensions of the component.

getMinimumSize

public Dimension getMinimumSize() �

Overrides Component.getMinimumSize()

Returns The minimum dimensions of the component.

getPreferredSize

public Dimension getPreferredSize() �

Returns The preferred dimensions of the component.

insets

public Insets insets() ✩

Returns Current Insets of Container. Replaced by getInsets().

invalidate

public void invalidate()

Overrides Component.invalidate()

Description Sets the container’s valid state to false.

isAncestorOf

public boolean isAncestorOf (Component c) �

Parameters c The component in question.
Returns If c is contained in the container’s hierarchy, returns true; oth-

er wise false.

layout

public void layout() ✩

Overrides Component.layout()

Description Replaced by doLayout().

626 CONTAINER

10 July 2002 22:24

list

public void list (PrintStream out, int indentation)

Parameters out Output Stream to send results to.
indentation Indentation to use when printing.

Overrides Component.list(PrintStream, int)

Description Recursively lists all components in Container.

public void list (PrintWriter out, int indentation)

Parameters out Output Writer to send results to.
indentation Indentation to use when printing.

Overrides Component.list(PrintWriter, int)

Description Recursively lists all components in Container.

locate

public Component locate (int x, int y) ✩

Parameters x Horizontal position to check.
y Vertical position to check.

Returns Component within Container at given coordinates, or Con-

tainer.
Overrides Component.locate(int, int)

Description Replaced by getComponentAt(int, int).

minimizeSize

public Dimension minimumSize() ✩

Returns Minimum dimensions of contained objects.
Overrides Component.minimumSize()

Description Replaced by getMinimumSize().

paint

public void paint (Graphics g)

Parameters g Graphics context of container.
Overrides Component.paint()

Description This method tells any lightweight components that are children
of this container to paint themselves.

CONTAINER 627

10 July 2002 22:24

paintComponents

public void paintComponents (Graphics g)

Parameters g Graphics context of Container.
Description Paints the different components in Container.

preferredSize

public Dimension preferredSize() ✩

Returns Preferred dimensions of contained objects.
Overrides Component.preferredSize()

Description Replaced by getPreferredSize().

print

public void print (Graphics g)

Parameters g Graphics context of container.
Overrides Component.print()

Description This method tells any lightweight components that are children
of this container to print themselves.

printComponents

public void printComponents (Graphics g)

Parameters g Graphics context of Container.
Description Prints the different components in Container.

remove

public void remove (int index) �

Parameters index Index of the component to remove.
Description Removes the component in position index from Container.

public void remove (Component component)

Parameters component Component to remove.
Description Removes component from Container.

removeAll

public void removeAll()

Description Removes all components from Container.

628 CONTAINER

10 July 2002 22:24

removeContainerListener

public void removeContainerListener (ContainerListener l)
�

Parameters l One of this Container’s ContainerListen-

ers.
Description Remove a container event listener.

removeNotify

public void removeNotify()

Overrides Component.removeNotify()

Description Removes Container’s peer and peers of contained compo-
nents.

setLayout

public void setLayout (LayoutManager manager)

Parameters manager New LayoutManager for Container.
Description Changes LayoutManager of Container.

validate

public void validate()

Overrides Component.validate()

Description Sets Container’s valid state to true and recursively validates
its children.

Protected Instance Methods
addImpl

protected void addImpl (Component comp, Object
constraints, int index) �

Parameters comp The component to add.
constraints Constraints on the component.
index Position at which to add this component. Pass -1

to add the component at the end.
Description This method adds a component subject to the given constraints

at a specific position in the container’s list of components. It is
a helper method for the various overrides of add().

CONTAINER 629

10 July 2002 22:24

paramString

protected String paramString()

Returns String with current settings of Container.
Overrides Component.paramString()

Description Helper method for toString() to generate string of current
settings.

processContainerEvent

protected void processContainerEvent (ContainerEvent e) �

Parameters e The event to process.
Description Container events are passed to this method for processing. Nor-

mally, this method is called by processEvent().

processEvent

protected void processEvent (AWTEvent e) �

Parameters e The event to process.
Overrides Component.processEvent()

Description Low level AWTEvents are passed to this method for processing.

validateTree

protected void validateTree() �

Description Descends recursively into the Container’s components and
recalculates layout for any subtrees that are marked invalid.

See Also
Component, Dimension, Event, Graphics, Insets, LayoutManager, Panel,
PrintStream, String, Window

19.17 Cursor �

java.io.Serializablejava.awt.Cursorjava.lang.Object

630 CONTAINER

10 July 2002 22:24

Description
The Cursor class represents the mouse pointer. It encapsulates information that
used to be in java.awt.Frame in the 1.0.2 release.

Class Definition
public class java.awt.Cursor

extends java.lang.Object

implements java.io.Serializable {

// Constants

public final static int CROSSHAIR_CURSOR;

public final static int DEFAULT_CURSOR;

public final static int E_RESIZE_CURSOR;

public final static int HAND_CURSOR;

public final static int MOVE_CURSOR;

public final static int N_RESIZE_CURSOR;

public final static int NE_RESIZE_CURSOR;

public final static int NW_RESIZE_CURSOR;

public final static int S_RESIZE_CURSOR;

public final static int SE_RESIZE_CURSOR;

public final static int SW_RESIZE_CURSOR;

public final static int TEXT_CURSOR;

public final static int W_RESIZE_CURSOR;

public final static int WAIT_CURSOR;

// Class Variables

protected static Cursor[] predefined;

// Class Methods

public static Cursor getDefaultCursor();

public static Cursor getPredefinedCursor (int type);

// Constructors

public Cursor (int type);

// Instance Methods

public int getType();

}

CURSOR 631

10 July 2002 22:24

Constants
CROSSHAIR_CURSOR

public final static int CROSSHAIR_CURSOR

Constant representing a cursor that looks like a crosshair.

DEFAULT_CURSOR

public final static int DEFAULT_CURSOR

Constant representing the platform’s default cursor.

E_RESIZE_CURSOR

public final static int E_RESIZE_CURSOR

Constant representing the cursor for resizing an object on the left.

HAND_CURSOR

public final static int HAND_CURSOR

Constant representing a cursor that looks like a hand.

MOVE_CURSOR

public final static int MOVE_CURSOR

Constant representing a cursor used to move an object.

N_RESIZE_CURSOR

public final static int N_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the top.

NE_RESIZE_CURSOR

public final static int NE_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the top left corner.

NW_RESIZE_CURSOR

public final static int NW_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the top right corner.

632 CURSOR

10 July 2002 22:24

S_RESIZE_CURSOR

public final static int S_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the bottom.

SE_RESIZE_CURSOR

public final static int SE_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the bottom left
corner.

SW_RESIZE_CURSOR

public final static int SW_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the bottom right
corner.

TEXT_CURSOR

public final static int TEXT_CURSOR

Constant representing a cursor used within text.

W_RESIZE_CURSOR

public final static int W_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the right side.

WAIT_CURSOR

public final static int WAIT_CURSOR

Constant representing a cursor that indicates the program is busy.

Class Variables
predefined

protected static Cursor[] predefined

An array of cursor instances corresponding to the predefined cursor types.

Class Methods
getDefaultCursor

public static Cursor getDefaultCursor()

Returns The default system cursor.

CURSOR 633

10 July 2002 22:24

getPredefinedCursor

public static Cursor getPredefinedCursor (int type)

Parameters type One of the type constants defined in this class.
Returns A Cursor object with the specified type.

Constructors
Cursor

public Cursor (int type)

Parameters type One of the type constants defined in this class.
Description Constructs a Cursor object with the specified type.

Instance Methods
getType

public int getType()

Returns The type of cursor.

See Also
Frame

19.18 Dialog

java.awt.Component java.awt.Container

java.awt.Window java.awt.FileDialogjava.awt.Dialog

java.lang.Object

Description
The Dialog class provides a special type of display window that is used for pop-up
messages and acquiring input from the user. Unlike most other components,
dialogs are hidden by default; you must call show() to display them. Dialogs are
always associated with a parent Frame. A Dialog may be either modal or non-
modal; a modal dialog attracts all input typed by the user. The default layout for a
Dialog is BorderLayout.

634 CURSOR

10 July 2002 22:24

Class Definition
public class java.awt.Dialog

extends java.awt.Window {

// Constructors

public Dialog (Frame parent); �
public Dialog (Frame parent, boolean modal);

public Dialog (Frame parent, String title); �
public Dialog (Frame parent, String title, boolean modal);

// Instance Methods

public void addNotify();

public String getTitle();

public boolean isModal();

public boolean isResizable();

public void setModal (boolean b); �
public synchronized void setResizable (boolean resizable);

public synchronized void setTitle (String title);

public void show(); �

// Protected Instance Methods

protected String paramString();

}

Constructors
Dialog

public Dialog (Frame parent) �

Parameters parent Frame that is to act as the parent of Dialog.
Throws IllegalArgumentException

If parent is null.
Description Constructs a Dialog object.

public Dialog (Frame parent, boolean modal)

Parameters parent Frame that is to act as the parent of Dialog.
modal true if the Dialog is modal; false other wise.

Throws IllegalArgumentException

If parent is null.
Description Replaced with Dialog(Frame, String, boolean).

public Dialog (Frame parent, String title) �

Parameters parent Frame that is to act as parent of Dialog.
title Initial title to use for Dialog.

DIALOG 635

10 July 2002 22:24

Throws IllegalArgumentException

If parent is null.
Description Constructs a Dialog object with given characteristics.

public Dialog (Frame parent, String title, boolean modal)

Parameters parent Frame that is to act as parent of Dialog.
title Initial title to use for Dialog.
modal true if the Dialog is modal; false other wise.

Throws IllegalArgumentException

If parent is null.
Description Constructs a Dialog object with given characteristics.

Instance Methods
addNotify

public void addNotify()

Overrides Window.addNotify()

Description Creates Dialog’s peer and peers of contained components.

getTitle

public String getTitle()

Returns The current title for the Dialog.

isModal

public boolean isModal()

Returns true if modal, false other wise.

isResizable

public boolean isResizable()

Returns true if resizable, false other wise.

setModal

public void setModal (boolean b) �

Parameters b true makes the Dialog modal; false if the
Dialog should be modeless.

Description Changes the modal state of the Dialog.

636 DIALOG

10 July 2002 22:24

setResizable

public synchronized void setResizable (boolean resizable)

Parameters resizable true makes the Dialog resizable; false if the
Dialog cannot be resized.

Description Changes the resize state of the Dialog.

setTitle

public synchronized void setTitle (String title)

Parameters title New title for the Dialog.
Description Changes the title of the Dialog.

show

public void show() �

Overrides Window.show()

Description If the dialog is hidden, this method shows it. If the dialog is
already visible, this method brings it to the front.

Protected Instance Methods
paramString

protected String paramString()

Returns String with current settings of Dialog.
Overrides Container.paramString()

Description Helper method for toString() to generate string of current
settings.

See Also
FileDialog, Frame, String, Window, WindowEvent, WindowListener

19.19 Dimension

java.io.Serializablejava.awt.Dimensionjava.lang.Object

DIMENSION 637

10 July 2002 22:24

Description
The Dimension class encapsulates width and height in a single object.

Class Definition
public class java.awt.Dimension

extends java.lang.Object

implements java.io.Serializable {

// Variables

public int height;

public int width;

// Constructors

public Dimension();

public Dimension (int width, int height);

public Dimension (Dimension d);

// Instance Methods

public boolean equals (Object obj); �
public Dimension getSize(); �
public void setSize (Dimension d); �
public void setSize (int width, int height); �
public String toString();

}

Variables
height

public int height

The height of the Dimension.

width

public int width

The width of the Dimension.

Constructors
Dimension

public Dimension()

Description Constructs an empty Dimension object.

638 DIMENSION

10 July 2002 22:24

public Dimension (int width, int height)

Parameters width Initial width of the object
height Initial height of the object

Description Constructs a Dimension object with an initial dimension of
width x height.

public Dimension (Dimension d)

Parameters d Initial dimensions of the object
Description Constructs a Dimension object that is a clone of d.

Instance Methods
equals

public boolean equals (Object obj) �

Parameters obj The object to compare.
Returns true if this Dimension is equivalent to obj; false otherwise.
Overrides Object.equals(Object)

Description Compares two Dimension instances.

getSize

public Dimension getSize() �

Returns The size of the Dimension.

setSize

public void setSize (Dimension d) �

Parameters d The new size.
Description Changes the size of the Dimension.

public void setSize (int width, int height) �

Parameters width The new width.
height The new height.

Description Changes the size of the Dimension.

toString

public String toString()

Returns A string representation of the Dimension object.
Overrides Object.toString()

DIMENSION 639

10 July 2002 22:24

See Also
Object, String, Serializable

19.20 Event

java.io.Serializablejava.lang.Object java.awt.Event

Description
The Event class represents events that happen within the Java environment in a
platform independent way. Events typically represent user actions, like typing a key
or clicking the mouse. Although this class has been updated for the 1.1 release, it
is only used for the 1.0 event model. When using the 1.1 event model, all events
are represented by subclasses of java.awt.AWTEvent.

Class Definition
public class java.awt.Event

extends java.lang.Object

implements java.io.Serializable {

// Constants

public static final int ACTION_EVENT;

public static final int ALT_MASK;

public static final int BACK_SPACE; �
public static final int CAPS_LOCK; �
public static final int CTRL_MASK;

public static final int DELETE; �
public static final int DOWN;

public static final int END;

public static final int ENTER; �
public static final int ESCAPE; �
public static final int F1;

public static final int F2;

public static final int F3;

public static final int F4;

public static final int F5;

public static final int F6;

public static final int F7;

public static final int F8;

public static final int F9;

public static final int F10;

public static final int F11;

public static final int F12;

640 DIMENSION

10 July 2002 22:24

public static final int GOT_FOCUS;

public static final int HOME;

public static final int INSERT; �
public static final int KEY_ACTION;

public static final int KEY_ACTION_RELEASE;

public static final int KEY_PRESS;

public static final int KEY_RELEASE;

public static final int LEFT;

public static final int LIST_DESELECT;

public static final int LIST_SELECT;

public static final int LOAD_FILE;

public static final int LOST_FOCUS;

public static final int META_MASK;

public static final int MOUSE_DOWN;

public static final int MOUSE_DRAG;

public static final int MOUSE_ENTER;

public static final int MOUSE_EXIT;

public static final int MOUSE_MOVE;

public static final int MOUSE_UP;

public static final int NUM_LOCK; �
public static final int PAUSE; �
public static final int PGDN;

public static final int PGUP;

public static final int PRINT_SCREEN; �
public static final int RIGHT;

public static final int SAVE_FILE;

public static final int SCROLL_ABSOLUTE;

public static final int SCROLL_BEGIN; �
public static final int SCROLL_END; �
public static final int SCROLL_LINE_DOWN;

public static final int SCROLL_LINE_UP;

public static final int SCROLL_LOCK; �
public static final int SCROLL_PAGE_DOWN;

public static final int SCROLL_PAGE_UP;

public static final int SHIFT_MASK;

public static final int TAB; �
public static final int UP;

public static final int WINDOW_DEICONIFY;

public static final int WINDOW_DESTROY;

public static final int WINDOW_EXPOSE;

public static final int WINDOW_ICONIFY;

public static final int WINDOW_MOVED;

// Variables

public Object arg;

public int clickCount;

public Event evt;

public int id;

public int key;

EVENT 641

10 July 2002 22:24

public int modifiers;

public Object target;

public long when;

public int x;

public int y;

// Constructors

public Event (Object target, int id, Object arg);

public Event (Object target, long when, int id, int x, int y,

int key, int modifiers);

public Event (Object target, long when, int id, int x, int y,

int key, int modifiers, Object arg);

// Instance Methods

public boolean controlDown();

public boolean metaDown();

public boolean shiftDown();

public String toString();

public void translate (int x, int y);

// Protected Instance Methods

protected String paramString();

}

Constants
ACTION_EVENT

public static final int ACTION_EVENT

ID constant for Action Event.

ALT_MASK

public static final int ALT_MASK

Mask for ALT key.

BACK_SPACE

public static final int BACK_SPACE �

ID constant for Backspace.

CAPS_LOCK

public static final int CAPS_LOCK �

ID constant for Caps Lock key.

642 EVENT

10 July 2002 22:24

CTRL_MASK

public static final int CTRL_MASK

Mask for Control key.

DELETE

public static final int DELETE �

ID constant for Delete.

DOWN

public static final int DOWN

ID constant for the down arrow key.

END

public static final int END

ID constant for End key.

ENTER

public static final int ENTER �

ID constant for Enter key.

ESCAPE

public static final int ESCAPE �

ID constant for Escape key.

F1

public static final int F1

ID constant for F1 key.

F2

public static final int F2

ID constant for F2 key.

F3

public static final int F3

ID constant for F3 key.

EVENT 643

10 July 2002 22:24

F4

public static final int F4

ID constant for F4 key.

F5

public static final int F5

ID constant for F5 key.

F6

public static final int F6

ID constant for F6 key.

F7

public static final int F7

ID constant for F7 key.

F8

public static final int F8

ID constant for F8 key.

F9

public static final int F9

ID constant for F9 key.

F10

public static final int F10

ID constant for F10 key.

F11

public static final int F11

ID constant for F11 key.

F12

public static final int F12

ID constant for F12 key.

644 EVENT

10 July 2002 22:24

GOT_FOCUS

public static final int GOT_FOCUS

ID constant for getting input focus Event.

HOME

public static final int HOME

ID constant for Home key.

INSERT

public static final int INSERT �

ID constant for Insert key.

KEY_ACTION

public static final int KEY_ACTION

ID constant for Special Key Down Event.

KEY_ACTION_RELEASE

public static final int KEY_ACTION_RELEASE

ID constant for Special Key Up Event.

KEY_PRESS

public static final int KEY_PRESS

ID constant for Key Down Event.

KEY_RELEASE

public static final int KEY_RELEASE

ID constant for Key Up Event.

LEFT

public static final int LEFT

ID constant for the left arrow key.

LIST_DESELECT

public static final int LIST_DESELECT

ID constant for List DeSelect Event.

EVENT 645

10 July 2002 22:24

LIST_SELECT

public static final int LIST_SELECT

ID constant for List Select Event.

LOAD_FILE

public static final int LOAD_FILE

ID constant for File Load Event.

LOST_FOCUS

public static final int LOST_FOCUS

ID constant for losing input focus Event.

META_MASK

public static final int META_MASK

Mask for ALT key.

MOUSE_DOWN

public static final int MOUSE_DOWN

ID constant for Mouse Down Event.

MOUSE_DRAG

public static final int MOUSE_DRAG

ID constant for Mouse Drag Event.

MOUSE_ENTER

public static final int MOUSE_ENTER

ID constant for Mouse Enter Event.

MOUSE_EXIT

public static final int MOUSE_EXIT

ID constant for Mouse Exit Event.

MOUSE_MOVE

public static final int MOUSE_MOVE

ID constant for Mouse Move Event.

646 EVENT

10 July 2002 22:24

MOUSE_UP

public static final int MOUSE_UP

ID constant for Mouse Up Event.

NUM_LOCK

public static final int NUM_LOCK �

ID constant for Num Lock key.

PAUSE

public static final int PAUSE �

ID constant for Pause key.

PGDN

public static final int PGDN

ID constant for PageDown key.

PGUP

public static final int PGUP

ID constant for PageUp key.

PRINT_SCREEN

public static final int PRINT_SCREEN �

ID constant for Print Screen key.

RIGHT

public static final int RIGHT

ID constant for the right arrow key.

SAVE_FILE

public static final int SAVE_FILE

ID constant for File Save Event.

SCROLL_ABSOLUTE

public static final int SCROLL_ABSOLUTE

ID constant for Absolute Scroll Event.

EVENT 647

10 July 2002 22:24

SCROLL_BEGIN

public static final int SCROLL_ BEGIN �

ID constant for Begin Scroll Event.

SCROLL_END

public static final int SCROLL_ END �

ID constant for End Scroll Event.

SCROLL_LINE_DOWN

public static final int SCROLL_LINE_DOWN

ID constant for Line Down Scroll Event.

SCROLL_LINE_UP

public static final int SCROLL_LINE_UP

ID constant for Line Up Scroll Event.

SCROLL_LOCK

public static final int SCROLL_LOCK �

Mask for Scroll Lock key.

SCROLL_PAGE_DOWN

public static final int SCROLL_PAGE_DOWN

ID constant for Page Down Scroll Event.

SCROLL_PAGE_UP

public static final int SCROLL_PAGE_UP

ID constant for Page Up Scroll Event.

SHIFT_MASK

public static final int SHIFT_MASK

Mask for SHIFT key.

TAB

public static final int TAB �

ID constant for Tab key.

648 EVENT

10 July 2002 22:24

UP

public static final int UP

ID constant for the up arrow key.

WINDOW_DEICONIFY

public static final int WINDOW_DEICONIFY

ID constant for Window DeIconify Event.

WINDOW_DESTROY

public static final int WINDOW_DESTROY

ID constant for Window Destroy Event.

WINDOW_EXPOSE

public static final int WINDOW_EXPOSE

ID constant for Window Expose Event.

WINDOW_ICONIFY

public static final int WINDOW_ICONIFY

ID constant for Window Iconify Event.

WINDOW_MOVED

public static final int WINDOW_MOVED

ID constant for Window Move Event.

Variables
arg

public Object arg

A variable argument that is specific to the event type.

clickCount

public int clickCount

The number of consecutive MOUSE_DOWN events.

EVENT 649

10 July 2002 22:24

evt

public Event evt

A means of passing a linked list of events as one.

id

public int id

The ID constant that identifies the Event type.

key

public int key

Integer value of key pressed, or ID constant identifying a special key.

modifiers

public int modifiers

The state of the shift/alt/control/meta keys, formed by ORing the masks for
the appropriate keys.

target

public Object target

The Object that generated the event.

when

public long when

The time the event happened.

x

public int x

The x position at which the event happened.

y

public int y

The y position at which the event happened.

650 EVENT

10 July 2002 22:24

Constructors
Event

public Event (Object target, int id, Object arg)

Parameters target The component to which the Event should be
delivered

id The identifier of Event
arg The Object that is the cause of the event

Description Constructs an Event object with the given values.

public Event (Object target, long when, int id, int x, int
y, int key, int modifiers)

Parameters target The component to which the Event should be
delivered

when The time the event happened
id The identifier of Event
x The x position at which the event happened
y The y position at which the event happened
key Integer value of key pressed, or a constant iden-

tifying a special key
modifiers The state of the shift/alt/control/meta keys

Description Constructs an Event object with the given values.

public Event (Object target, long when, int id, int x, int
y, int key, int modifiers, Object arg)

Parameters target The component to which the Event should be
delivered

when The time the event happened
id The identifier of Event
x The x position at which the event happened
y The y position at which the event happened
key Integer value of key pressed, or a constant iden-

tifying a special key
modifiers The state of the shift/alt/control/meta keys
arg The Object that is the cause of the event

Description Constructs an Event object with the given values.

EVENT 651

10 July 2002 22:24

Instance Methods
controlDown

public boolean controlDown()

Returns true if the control key was down when the event was triggered,
false other wise.

Description Checks current settings for modifiers of the Event.

metaDown

public boolean metaDown()

Returns true if the meta key was down when the event was triggered,
false other wise.

Description Checks current settings for modifiers of the Event.

shiftDown

public boolean shiftDown()

Returns true if the shift key was down when the event was triggered,
false other wise.

Description Checks current settings for modifiers of the Event.

toString

public String toString()

Returns A string representation of the Event object.
Overrides Object.toString()

translate

public void translate (int x, int y)

Parameters x Amount to move Event in horizontal direction.
y Amount to move Event in vertical direction.

Description Translates x and y coordinates of Event instance by x and y.

Protected Instance Methods
paramString

protected String paramString()

Returns String with current settings of Event.
Description Helper method for toString() to generate string of current

settings.

652 EVENT

10 July 2002 22:24

See Also
AWTEvent, Component, Object, String

19.21 EventQueue �

java.awt.EventQueuejava.awt.Object

Description
The EventQueue class is a facility for queuing Java 1.1 AWT events, either for the
system or for some other purpose. You rarely need to create your own event
queue; for most purposes, you will want to work with the system’s event queue,
which you acquire using the Toolkit.

Class Definition
public class EventQueue extends Object {

// Constructor

public EventQueue();

// Instance Methods

public synchronized AWTEvent getNextEvent() throws InterruptedException;

public synchronized AWTEvent peekEvent();

public synchronized AWTEvent peekEvent (int id);

public synchronized void postEvent (AWTEvent theEvent);

}

Constructor
EventQueue

public EventQueue()

Description Creates an EventQueue for your own use.

Instance Methods
getNextEvent

public synchronized AWTEvent getNextEvent() throws
InterruptedException

Throws InterruptedException

If the thread is interrupted before an event is
posted to the queue.

EVENTQUEUE 653

10 July 2002 22:24

Returns AWTEvent taken from the event queue.
Description Removes the next event from the event queue and returns it. If

there are no events in the queue, this method will block until
another thread posts one.

peekEvent

public synchronized AWTEvent peekEvent()

Returns Next AWTEvent on the event queue.
Description Returns a reference to the next event on the queue without

removing it from the queue.

public synchronized AWTEvent peekEvent (int id)

Parameters id Type of event to find.
Returns AWTEvent with the given type id; null if no event with the

given type is currently in the queue.
Description Returns an event with the given type if one exists, but doesn’t

remove the event from the queue.

See Also
AWTEvent, Event

19.22 FileDialog

java.awt.Component java.awt.Container

java.awt.Window

java.lang.Object

java.awt.Dialog java.awt.FileDialog

Description
The FileDialog class provides file selection capabilities for opening or saving
files. Because FileDialog is a subclass of Dialog, a FileDialog is always associ-
ated with a Frame and is hidden by default. FileDialogs are always modal (i.e.,
they always attract all user input). In addition, FileDialogs have a load/save
mode; the LOAD mode is for selecting files for an application to load, SAVE is for
selecting a filename to save.

654 EVENTQUEUE

10 July 2002 22:24

Class Definition
public class java.awt.FileDialog

extends java.awt.Dialog {

// Constants

public final static int LOAD;

public final static int SAVE;

// Constructors

public FileDialog (Frame parent); �
public FileDialog (Frame parent, String title);

public FileDialog (Frame parent, String title, int mode);

// Instance Methods

public void addNotify();

public String getDirectory();

public String getFile();

public FilenameFilter getFilenameFilter();

public int getMode();

public synchronized void setDirectory (String directory);

public synchronized void setFile (String file);

public synchronized void setFilenameFilter (FilenameFilter filter);

public void setMode(int mode); �

// Protected Instance Methods

protected String paramString();

}

Constants
LOAD

public final static int LOAD

Constant to specify the FileDialog’s load mode.

SAVE

public final static int SAVE

Constant to specify the FileDialog’s save mode.

Constructors
FileDialog

public FileDialog (Frame parent) �

Parameters parent Frame that is to act as parent of FileDialog.

FILEDIALOG 655

10 July 2002 22:24

Description Constructs a FileDialog object in LOAD mode.

public FileDialog (Frame parent, String title)

Parameters parent Frame that is to act as parent of FileDialog.
title Title to use for FileDialog.

Description Constructs a FileDialog object in LOAD mode.

public FileDialog (Frame parent, String title, int mode)

Parameters parent Frame that is to act as parent of Dialog.
title Title to use for FileDialog.
mode The constant LOAD or SAVE, specifying the dia-

log’s mode.
Description Constructs a FileDialog object in the given mode.

Instance Methods
addNotify

public void addNotify()

Overrides Dialog.addNotify()

Description Creates FileDialog’s peer for the native platform.

getDirectory

public String getDirectory()

Returns The current directory for the FileDialog.

getFile

public String getFile()

Returns The current file selected by the FileDialog.

getFilenameFilter

public FilenameFilter getFilenameFilter()

Returns The current filename filter for the FileDialog.

getMode

public int getMode()

Returns The current mode of the FileDialog.

656 FILEDIALOG

10 July 2002 22:24

setDirectory

public synchronized void setDirectory (String directory)

Parameters director y Director y to be displayed by the FileDialog.
Description Changes the directory displayed in the FileDialog.

setFile

public synchronized void setFile (String file)

Parameters file Initial file string for FileDialog.
Description Change the default file selected by the FileDialog.

setFilenameFilter

public synchronized void setFilenameFilter (FilenameFilter
filter)

Parameters filter Initial filter for FileDialog.
Description Changes the current filename filter of the FileDialog.

setMode

public void setMode (int mode) �

Parameters mode The constant LOAD or SAVE, specifying the dia-
log’s mode.

Description Change the mode of the file dialog.

Protected Instance Methods
paramString

protected String paramString()

Returns String with current settings of FileDialog.
Overrides Dialog.paramString()

Description Helper method for toString() to generate string of current
settings.

See Also
Dialog, FilenameFilter, String

FILEDIALOG 657

10 July 2002 22:24

19.23 FlowLayout

java.lang.Object

java.awt.LayoutManager

java.awt.FlowLayout java.io.Serializable

Description
The FlowLayout LayoutManager provides the means to lay out components in a
row by row fashion. As each row fills up, the components continue on the next
row.

Class Definition
public class java.awt.FlowLayout

extends java.lang.Object

implements java.awt.LayoutManager, java.io.Serializable {

// Constants

public static final int CENTER;

public static final int LEFT;

public static final int RIGHT;

// Constructors

public FlowLayout();

public FlowLayout (int alignment);

public FlowLayout (int alignment, int hgap, int vgap);

// Instance Methods

public void addLayoutComponent (String name, Component component);

public int getAlignment(); �
public int getHgap(); �
public int getVgap(); �
public void layoutContainer (Container target);

public Dimension minimumLayoutSize (Container target);

public Dimension preferredLayoutSize (Container target);

public void removeLayoutComponent (Component component);

public void setAlignment (int align); �
public void setHgap (int hgap); �
public void setVgap (int vgap); �
public String toString();

}

658 FLOWLAYOUT

10 July 2002 22:24

Constants
CENTER

public static final int CENTER

The default alignment for a FlowLayout object; rows of components are cen-
tered within the container.

LEFT

public static final int LEFT

An alignment for a FlowLayout object; rows of components start on the left
side of the container.

RIGHT

public static final int RIGHT

An alignment for a FlowLayout object; rows of components start on the right
side of the container.

Constructors
FlowLayout

public FlowLayout()

Description Constructs a FlowLayout object with CENTER alignment.

public FlowLayout (int alignment)

Parameters alignment Alignment of components within the container.
Description Constructs a FlowLayout object with the given alignment.

public FlowLayout (int alignment, int hgap, int vgap)

Parameters alignment Alignment of components within container
hgap Horizontal space between each component in a

row
vgap Vertical space between each row

Description Constructs a FlowLayout object with the given alignment

and the values specified as the gaps between each component
in the container managed by this instance of FlowLayout.

FLOWLAYOUT 659

10 July 2002 22:24

Instance Methods
addLayoutComponent

public void addLayoutComponent (String name, Component
component)

Parameters name Name of component to add.
component Actual component being added.

Implements LayoutManager.addLayoutComponent()

Description Does nothing.

getAlignment

public int getAlignment() �

Returns The alignment constant for this FlowLayout.

getHgap

public int getHgap() �

Returns The horizontal gap between components.

getVgap

public int getVgap() �

Returns The vertical gap between components.

layoutContainer

public void layoutContainer (Container target)

Parameters target The container that needs to be redrawn.
Implements LayoutManager.layoutContainer()

Description Draws the components contained within the target container.

minimumLayoutSize

public Dimension minimumLayoutSize (Container target)

Parameters target The container whose size needs to be calculated.
Returns Minimum Dimension of container target
Implements LayoutManager.minimumLayoutSize()

Description Calculates minimum size of target container.

660 FLOWLAYOUT

10 July 2002 22:24

preferredLayoutSize

public Dimension preferredLayoutSize (Container target)

Parameters target The container whose size needs to be calculated.
Returns Preferred Dimension of container target
Implements LayoutManager.preferredLayoutSize()

Description Calculates preferred size of target container.

removeLayoutComponent

public void removeLayoutComponent (Component component)

Parameters component Component to stop tracking.
Implements LayoutManager.removeLayoutComponent()

Description Does nothing.

setAlignment

public void setAlignment(int align) �

Parameters alignment Alignment of components within container
Description Sets the alignment for the FlowLayout.

setHgap

public void setHgap(int hgap) �

Parameters hgap The horizontal gap value.
Description Sets the horizontal gap between components.

setVgap

public void setVgap(int vgap) �

Parameters vgap The vertical gap value.
Description Sets the vertical gap between components.

toString

public String toString()

Returns A string representation of the FlowLayout object.
Overrides Object.toString()

See Also
Component, Container, Dimension, LayoutManager, Object, Serializable,
String

FLOWLAYOUT 661

10 July 2002 22:24

19.24 Font

java.lang.Object java.awt.Font java.io.Serializable

Description
The Font class represents a specific font to the system.

Class Definition
public class java.awt.Font

extends java.lang.Object

implements java.io.Serializable {

// Constants

public static final int BOLD;

public static final int ITALIC;

public static final int PLAIN;

// Variables

protected String name;

protected int size;

protected int style;

// Constructors

public Font (String name, int style, int size);

// Class Methods

public static Font decode (String str); �
public static Font getFont (String name)

public static Font getFont (String name, Font defaultFont)

// Instance Methods

public boolean equals (Object object);

public String getFamily();

public String getName();

public FontPeer getPeer(); �
public int getSize();

public int getStyle();

public int hashCode();

public boolean isBold();

public boolean isItalic();

public boolean isPlain();

public String toString();

}

662 FONT

10 July 2002 22:24

Constants
BOLD

public static final int BOLD

Constant for specifying bold fonts.

ITALIC

public static final int ITALIC

Constant for specifying fonts.

PLAIN

public static final int PLAIN

Constant for specifying plain fonts.

Variables
name

protected String name

The font’s logical name.

size

protected int size

The font size; allegedly in points, though probably not true typographer’s
points.

style

protected int style

The font style, e.g., bold or italic or a combination thereof.

Constructors
Font

public Font (String name, int style, int size)

Parameters name The name of the desired font.
style One of the style flags (PLAIN, BOLD, or ITALIC)

or a combination.
size The size of the font to create.

Description Constructs a Font object with the given characteristics.

FONT 663

10 July 2002 22:24

Class Methods
decode

public static Font decode (String str) �

Parameters str The string describing the font.
Returns Font instance requested, or default if str is invalid.
Description Gets font specified by str.

getFont

public static Font getFont (String name)

Parameters name The name of a system property specifying a font
to fetch.

Returns Font instance for name requested, or null if name is invalid.
Description Gets font specified by the system property name.

public static Font getFont (String name, Font defaultFont)

Parameters name The name of a system property specifying a font
to fetch.

defaultFont Font to return if name not found in properties.
Returns Font instance of name requested, or defaultFont if name is

invalid
Description Gets font specified by the system property name.

Instance Methods
equals

public boolean equals (Object object)

Parameters object The object to compare.
Returns true if the objects are equivalent fonts (same name, style, and

point size), false other wise.
Overrides Object.equals(Object)

Description Compares two different Font instances for equivalence.

getFamily

public String getFamily()

Returns Retrieves the actual name of the font.

664 FONT

10 July 2002 22:24

getName

public String getName()

Returns Retrieves the logical name of the font.

getPeer

public FontPeer getPeer() �

Returns The font’s peer.

getSize

public int getSize()

Returns Retrieves the size parameter from creation

getStyle

public int getStyle()

Returns Retrieves the style parameter from creation.

hashCode

public int hashCode()

Returns A hashcode to use when using the Font as a key in a
Hashtable.

Overrides Object.hashCode()

Description Generates a hashcode for the Font.

isBold

public boolean isBold()

Returns true if Font style is bold, false other wise.

isItalic

public boolean isItalic()

Returns true if Font style is italic, false other wise.

isPlain

public boolean isPlain()

Returns true if Font style is neither bold nor italic, false other wise.

FONT 665

10 July 2002 22:24

toString

public String toString()

Returns A string representation of the Font object.
Overrides Object.toString()

See Also
FontMetrics, Object, Properties, String

19.25 FontMetrics

java.lang.Object java.awt.FontMetrics java.io.Serializable

Description
The FontMetrics class provides the means to calculate actual width and height
of text if drawn on the screen.

Class Definition
public abstract class java.awt.FontMetrics

extends java.lang.Object

implements java.io.Serializable {

// Variables

protected Font font;

// Constructors

protected FontMetrics (Font font);

// Instance Methods

public int bytesWidth (byte data[], int offset, int length);

public int charsWidth (char data[], int offset, int length);

public int charWidth (char character);

public int charWidth (int character);

public int getAscent();

public int getDescent();

public Font getFont();

public int getHeight();

public int getLeading();

public int getMaxAdvance();

public int getMaxAscent();

public int getMaxDecent();

public int getMaxDescent();

666 FONT

10 July 2002 22:24

public int[] getWidths();

public int stringWidth (String string);

public String toString();

}

Variables
font

protected Font font

The Font object whose metrics are represented by this object.

Constructors
FontMetrics

protected FontMetrics (Font font)

Parameters font The Font object whose metrics you want.
Description Constructs a platform specific FontMetrics object for the

given font.

Instance Methods
bytesWidth

public int bytesWidth (byte data[], int offset, int
length)

Parameters data[] Array of characters to lookup.
offset Initial character position.
length Number of characters to lookup.

Returns Advance width of characters in the array, starting with offset

and ending with offset+length, in pixels.
Throws ArrayIndexOutOfBoundsException

If offset or length is invalid.

charsWidth

public int charsWidth (char data[], int offset, int
length)

Parameters data[] Array of characters to lookup.
offset Initial character position.
length Number of characters to lookup.

Returns Advance width of characters in the array, starting with offset

and ending with offset+length-1, in pixels.

FONTMETRICS 667

10 July 2002 22:24

Throws ArrayIndexOutOfBoundsException
If offset or length is invalid.

charWidth

public int charWidth (char character)

Parameters character character to lookup
Returns Advanced pixel width of character.

public int charWidth (int character)

Parameters character int value of character to lookup
Returns Advanced pixel width of character.

getAscent

public int getAscent()

Returns Amount of space above the baseline required for the tallest
character in the font.

getDescent

public int getDescent()

Returns Amount of space below the baseline required for the lowest
descender (e.g., the tail on “p”) in the font.

getFont

public Font getFont()

Returns The Font whose metrics are represented by this object.

getHeight

public int getHeight()

Returns The sum of getDescent(), getAscent(), and getLead-

ing(); recommended total space between baselines.

getLeading

public int getLeading()

Returns Retrieves recommended amount of space between lines of text.

668 FONTMETRICS

10 July 2002 22:24

getMaxAdvance

public int getMaxAdvance()

Returns Retrieves advance pixel width of widest character in the font.

getMaxAscent

public int getMaxAscent()

Returns Retrieves maximum amount of space above the baseline
required for the tallest character within the font’s FontMet-

rics. May differ from getAscent() for characters with dia-
critical marks.

getMaxDecent

public int getMaxDecent()

Returns Retrieves the maximum amount of space below the baseline
required for the deepest character for the font.

Description A misspelling of getMaxDescent().

getMaxDescent

public int getMaxDescent()

Returns Retrieves the maximum amount of space below the baseline
required for the deepest character for the font.

getWidths

public int[] getWidths()

Returns 255 element array of character widths.
Description Retrieves an integer array of the advance widths of the first 255

characters in the FontMetrics’ font.

stringWidth

public int stringWidth (String string)

Parameters string Character string to lookup.
Returns Advance pixel width of string.

toString

FONTMETRICS 669

10 July 2002 22:24

public String toString()

Returns A string representation of the FontMetrics object.

Overrides Object.toString()

See Also
Font, Object, String

19.26 Frame

java.awt.Component java.awt.Container

java.awt.Window java.awt.Frame

java.lang.Object

java.awt.MenuContainer

Description
The Frame class is a special type of Window that will appear like other high-level
programs in your windowing environment. It adds a MenuBar, window title, and
window gadgets (like resize, maximize, minimize, window menu) to the basic Win-
dow object. Frames are initially invisible; call show() to display them. Frames may
also be associated with an Image to be used as an icon. The Frame class includes
many constants to represent different cursor styles. All styles aren’t necessarily
available on any platform. In 1.1, these constants are defined in java.awt.Cur-

sor.

Class Definition
public class java.awt.Frame

extends java.awt.Window

implements java.awt.MenuContainer {

// Constants

public final static int CROSSHAIR_CURSOR;

public final static int DEFAULT_CURSOR;

public final static int E_RESIZE_CURSOR;

public final static int HAND_CURSOR;

public final static int MOVE_CURSOR;

public final static int N_RESIZE_CURSOR;

public final static int NE_RESIZE_CURSOR;

public final static int NW_RESIZE_CURSOR;

public final static int S_RESIZE_CURSOR;

public final static int SE_RESIZE_CURSOR;

public final static int SW_RESIZE_CURSOR;

670 FONTMETRICS

10 July 2002 22:24

public final static int TEXT_CURSOR;

public final static int W_RESIZE_CURSOR;

public final static int WAIT_CURSOR;

// Constructors

public Frame();

public Frame (String title);

// Instance Methods

public void addNotify();

public synchronized void dispose();

public int getCursorType(); ✩
public Image getIconImage();

public MenuBar getMenuBar();

public String getTitle();

public boolean isResizable();

public synchronized void remove (MenuComponent component);

public synchronized void setCursor (int cursorType); ✩
public synchronized void setIconImage (Image image);

public synchronized void setMenuBar (MenuBar bar);

public synchronized void setResizable (boolean resizable);

public synchronized void setTitle (String title);

// Protected Instance Methods

protected String paramString();

}

Constants
CROSSHAIR_CURSOR

public final static int CROSSHAIR_CURSOR

Constant representing a cursor that looks like a crosshair.

DEFAULT_CURSOR

public final static int DEFAULT_CURSOR

Constant representing the platform’s default cursor.

E_RESIZE_CURSOR

public final static int E_RESIZE_CURSOR

Constant representing the cursor for resizing an object on the left.

HAND_CURSOR

FRAME 671

10 July 2002 22:24

public final static int HAND_CURSOR

Constant representing a cursor that looks like a hand.

MOVE_CURSOR

public final static int MOVE_CURSOR

Constant representing a cursor used to move an object.

N_RESIZE_CURSOR

public final static int N_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the top.

NE_RESIZE_CURSOR

public final static int NE_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the top left corner.

NW_RESIZE_CURSOR

public final static int NW_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the top right corner.

S_RESIZE_CURSOR

public final static int S_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the bottom.

SE_RESIZE_CURSOR

public final static int SE_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the bottom left
corner.

SW_RESIZE_CURSOR

public final static int SW_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the bottom right
corner.

TEXT_CURSOR

672 FRAME

10 July 2002 22:24

public final static int TEXT_CURSOR

Constant representing a cursor used within text.

W_RESIZE_CURSOR

public final static int W_RESIZE_CURSOR

Constant representing a cursor for resizing an object on the right side.

WAIT_CURSOR

public final static int WAIT_CURSOR

Constant representing a cursor that indicates the program is busy.

Constructors
Frame

public Frame()

Description Constructs a Frame object, with no title.

public Frame (String title)

Parameters title Initial title to use for Frame.
Description Constructs a Frame object, with the given title.

Instance Methods
addNotify

public void addNotify()

Overrides Window.addNotify()

Description Creates Frame’s peer and peers of contained components.

dispose

public synchronized void dispose()

Overrides Window.dispose()

Description Releases the resources of the Frame.

getCursorType

public int getCursorType() ✩

Returns The constant for the current cursor. Replaced by Compo-

nent.getCursor()

FRAME 673

10 July 2002 22:24

getIconImage

public Image getIconImage()

Returns The image used as the icon, or null if there is no icon for this
frame.

getMenuBar

public MenuBar getMenuBar()

Returns The Frame’s current menu bar, or null if there is no menu bar
for this frame.

getTitle

public String getTitle()

Returns The current title for the Frame, or null if there is no title for
this frame.

isResizable

public boolean isResizable()

Returns true if resizable, false other wise.

remove

public synchronized void remove (MenuComponent component)

Parameters component MenuBar to remove from Frame.
Implements MenuContainer.remove()

Description Removes component from Frame if component is the Frame’s
menu bar.

setCursor

public synchronized void setCursor (int cursorType) ✩

Parameters cursorType One of Frame’s cursor constants.
Throws IllegalArgumentException

If cursorType invalid.
Description Changes the cursor of the Frame. Replaced by Compo-

nent.setCursor(Cursor).

674 FRAME

10 July 2002 22:24

setIconImage

public synchronized void setIconImage (Image image)

Parameters image New image to use for the Frame’s icon.
Description Changes the icon’s image for the Frame.

setMenuBar

public synchronized void setMenuBar (MenuBar bar)

Parameters bar New MenuBar to use for the Frame.
Description Changes the menu bar of the Frame.

setResizable

public synchronized void setResizable (boolean resizable)

Parameters resizable true to make the frame resizable, false to pre-
vent resizing.

Description Changes the resize state of the Frame.

setTitle

public synchronized void setTitle (String title)

Parameters title New title to use for the Frame.
Description Changes the title of the Frame.

Protected Instance Methods
paramString

protected String paramString()

Returns String with current settings of Frame.
Overrides Container.paramString()

Description Helper method for toString() to generate a string of current
settings.

See Also
Container, Image, MenuBar, MenuContainer, String, Window

FRAME 675

10 July 2002 22:24

19.27 Graphics

java.lang.Object java.awt.Graphics

Description
The Graphics class is an abstract class that represents an object on which you can
draw. The concrete classes that are actually used to represent graphics objects are
platform dependent, but because they extend the Graphics class, must imple-
ment the methods here.

Class Definition
public abstract class java.awt.Graphics

extends java.lang.Object {

// Constructors

protected Graphics();

// Instance Methods

public abstract void clearRect (int x, int y, int width, int height);

public abstract void clipRect (int x, int y, int width, int height);

public abstract void copyArea (int x, int y, int width, int height,

int deltax, int deltay);

public abstract Graphics create();

public Graphics create (int x, int y, int width, int height);

public abstract void dispose();

public void draw3DRect (int x, int y, int width, int height,

boolean raised);

public abstract void drawArc (int x, int y, int width, int height,

int startAngle, int arcAngle);

public void drawBytes (byte text[], int offset, int length,

int x, int y);

public void drawChars (char text[], int offset, int length,

int x, int y);

public abstract boolean drawImage (Image image, int x, int y,

ImageObserver observer);

public abstract boolean drawImage (Image image, int x, int y,

int width, int height, ImageObserver observer);

public abstract boolean drawImage (Image image, int x, int y,

Color backgroundColor, ImageObserver observer);

public abstract boolean drawImage (Image image, int x, int y,

int width, int height, Color backgroundColor, ImageObserver observer);

public abstract boolean drawImage(Image img, int dx1, int dy1,

int dx2, int dy2, int sx1, int sy1, int sx2, int sy2, ImageObserver

observer); �

676 GRAPHICS

10 July 2002 22:24

public abstract boolean drawImage(Image img, int dx1, int dy1,

int dx2, int dy2, int sx1, int sy1, int sx2, int sy2, Color bgcolor,

ImageObserver observer); �
public abstract void drawLine (int x1, int y1, int x2, int y2);

public abstract void drawOval (int x, int y, int width, int height);

public abstract void drawPolygon (int xPoints[], int yPoints[],

int numPoints);

public void drawPolygon (Polygon p);

public abstract void drawPolyline(int[] xPoints, int[] yPoints,

int nPoints); �
public void drawRect (int x, int y, int width, int height);

public abstract void drawRoundRect (int x, int y, int width,

int height, int arcWidth, int arcHeight);

public abstract void drawString (String text, int x, int y);

public void fill3DRect (int x, int y, int width, int height,

boolean raised);

public abstract void fillArc (int x, int y, int width, int height,

int startAngle, int arcAngle);

public abstract void fillOval (int x, int y, int width, int height);

public abstract void fillPolygon (int xPoints[], int yPoints[],

int numPoints);

public void fillPolygon (Polygon p);

public abstract void fillRect (int x, int y, int width, int height);

public abstract void fillRoundRect (int x, int y, int width,

int height, int arcWidth, int arcHeight);

public void finalize();

public abstract Shape getClip(); �
public abstract Rectangle getClipBounds(); �
public abstract Rectangle getClipRect();

public abstract Color getColor();

public abstract Font getFont();

public FontMetrics getFontMetrics();

public abstract FontMetrics getFontMetrics (Font font);

public abstract void setClip (int x, int y, int width, int height); �
public abstract void setClip (Shape clip); �
public abstract void setColor (Color color);

public abstract void setFont (Font font);

public abstract void setPaintMode();

public abstract void setXORMode (Color xorColor);

public String toString();

public abstract void translate (int x, int y);

}

GRAPHICS 677

10 July 2002 22:24

Constructors
Graphics

protected Graphics()

Description Called by constructors of platform specific subclasses.

Instance Methods
clearRect

public abstract void clearRect (int x, int y, int width,
int height)

Parameters x x coordinate of origin of area to clear.
y y coordinate of origin of area to clear.
width size in horizontal direction to clear.
height size in vertical direction to clear.

Description Resets a rectangular area to the background color.

clipRect

public abstract void clipRect (int x, int y, int width,
int height)

Parameters x x coordinate of origin of clipped area.
y y coordinate of origin of clipped area.
width size in horizontal direction to clip.
height size in vertical direction to clip.

Description Reduces the drawing area to the intersection of the current
drawing area and the rectangular area defined by x, y, width,
and height.

copyArea

public abstract void copyArea (int x, int y, int width,
int height, int deltax, int deltay)

Parameters x x coordinate of origin of area to copy.
y y coordinate of origin of area to copy.
width size in horizontal direction to copy.
height size in vertical direction to copy.
deltax offset in horizontal direction to copy area to.
deltay offset in vertical direction to copy area to.

Description Copies a rectangular area to a new area, whose top left corner is
(x+deltax, y+deltay).

678 GRAPHICS

10 July 2002 22:24

create

public abstract Graphics create()

Returns New graphics context.
Description Creates a second reference to the same graphics context.

public Graphics create (int x, int y, int width, int
height)

Parameters x x coordinate of origin of new graphics context.
y y coordinate of origin of new graphics context.
width size in horizontal direction.
height size in vertical direction.

Returns New graphics context
Description Creates a second reference to a subset of the same graphics

context.

dispose

public abstract void dispose()

Description Frees system resources used by graphics context.

draw3DRect

public void draw3DRect (int x, int y, int width, int
height, boolean raised)

Parameters x x coordinate of the rectangle origin.
y y coordinate of the rectangle origin
width Width of the rectangle to draw.
height Height of the rectangle to draw.
raised Determines if rectangle drawn is raised or not;

true for a raised rectangle.
Description Draws an unfilled 3-D rectangle from (x, y) of size width x

height.

drawArc

public abstract void drawArc (int x, int y, int width, int
height, int startAngle, int arcAngle)

Parameters x x coordinate of the bounding rectangle’s origin.
y y coordinate of the bounding rectangle’s origin
width Width of the bounding rectangle for the arc.

GRAPHICS 679

10 July 2002 22:24

height Height of the bounding rectangle for the arc.
startAngle Angle at which arc begins, in degrees
arcAngle length of arc, in degrees

Description Draws an unfilled arc from startAngle to arcAngle within
bounding rectangle from (x, y) of size width x height. Zero
degrees is at three o’clock; positive angles are counter clock-
wise.

drawBytes

public void drawBytes (byte text[], int offset, int
length, int x, int y)

Parameters text Text to draw, as a byte array.
offset Starting position within text to draw.
length Number of bytes to draw.
x x coordinate of baseline origin.
y y coordinate of baseline origin.

Throws ArrayIndexOutOfBoundsException
If offset or length is invalid.

Description Draws text on screen, starting with text[offset] and ending
with text[offset+length-1].

drawChars

public void drawChars (char text[], int offset, int
length, int x, int y)

Parameters text Text to draw, as a char array.
offset Starting position within text to draw.
length Number of bytes to draw.
x x coordinate of baseline origin.
y y coordinate of baseline origin.

Throws ArrayIndexOutOfBoundsException
If offset or length is invalid.

Description Draws text on screen, starting with text[offset] and ending
with text[offset+length-1].

drawImage

public abstract boolean drawImage (Image image, int x, int
y, ImageObserver observer)

Parameters image Image to draw.

680 GRAPHICS

10 July 2002 22:24

x x coordinate of image origin.
y y coordinate of image origin.
obser ver Object that watches for image information;

almost always this.
Returns true if the image has fully loaded when the method returns,

false other wise.
Description Draws image to screen at (x, y), at its original size. Drawing

may be asynchronous. If image is not fully loaded when the
method returns, observer is notified when additional infor-
mation made available.

public abstract boolean drawImage (Image image, int x, int
y, int width, int height, ImageObserver observer)

Parameters image Image to draw.
x x coordinate of image origin.
y y coordinate of image origin.
width New image size in horizontal direction.
height New image size in vertical direction.
obser ver Object that watches for image information;

almost always this.
Returns true if the image has fully loaded when the method returns,

false other wise.
Description Draws image to screen at (x, y), scaled to width x height.

Drawing may be asynchronous. If image is not fully loaded
when the method returns, observer is notified when addi-
tional information made available.

public abstract boolean drawImage (Image image, int x, int
y, Color backgroundColor, ImageObserver observer)

Parameters image Image to draw.
x x coordinate of image origin.
y y coordinate of image origin.
backgroundColor

Color to show through image where transparent.
obser ver Object that watches for image information;

almost always this.
Returns true if the image has fully loaded when the method returns,

false other wise.
Description Draws image to screen at (x, y), at its original size. Drawing

may be asynchronous. If image is not fully loaded when the
method returns, observer is notified when additional infor-
mation made available. The background color is visible
through any transparent pixels.

GRAPHICS 681

10 July 2002 22:24

public abstract boolean drawImage (Image image, int x, int
y, int width, int height, Color backgroundColor,
ImageObserver observer)

Parameters image Image to draw.
x x coordinate of image origin.
y y coordinate of image origin.
width New image size in horizontal direction.
height New image size in vertical direction.
backgroundColor

Color to show through image where transparent.
obser ver Object that watches for image information;

almost always this.
Returns true if the image has fully loaded when the method returns,

false other wise.
Description Draws image to screen at (x, y), scaled to width x height.

Drawing may be asynchronous. If image is not fully loaded
when the method returns, observer is notified when addi-
tional information made available. The background color is vis-
ible through any transparent pixels.

public abstract boolean drawImage (Image image, int dx1,
int dy1, int dx2, int dy2, int sx1, int sy1, int sx2, int
sy2, ImageObserver observer) �

Parameters image Image to draw.
dx1 x coordinate of one corner of destination

(device) rectangle.
dy1 y coordinate of one corner of destination

(device) rectangle.
dx2 x coordinate of the opposite corner of destina-

tion (device) rectangle.
dy2 y coordinate of the opposite corner of destina-

tion (device) rectangle.
sx1 x coordinate of one corner of source (image)

rectangle.
sy1 y coordinate of one corner of source (image)

rectangle.
sx2 x coordinate of the opposite corner of source

(image) rectangle.
sy2 y coordinate of the opposite corner of source

(image) rectangle.

682 GRAPHICS

10 July 2002 22:24

obser ver Object that watches for image information;
almost always this.

Returns true if the image has fully loaded when the method returns,
false other wise.

Description Draws the part of image described by dx1, dy1, dx2, and dy2

to the screen into the rectangle described by sx1, sy1, sx2,
and sy2. Drawing may be asynchronous. If image is not fully
loaded when the method returns, observer is notified when
additional information is made available.

public abstract boolean drawImage (Image image, int dx1,
int dy1, int dx2, int dy2, int sx1, int sy1, int sx2, int
sy2, Color backgroundColor, ImageObserver observer) �

Parameters image Image to draw.
dx1 x coordinate of one corner of destination

(device) rectangle.
dy1 y coordinate of one corner of destination

(device) rectangle.
dx2 x coordinate of the opposite corner of destina-

tion (device) rectangle.
dy2 y coordinate of the opposite corner of destina-

tion (device) rectangle.
sx1 x coordinate of one corner of source (image)

rectangle.
sy1 y coordinate of one corner of source (image)

rectangle.
sx2 x coordinate of the opposite corner of source

(image) rectangle.
sy2 y coordinate of the opposite corner of source

(image) rectangle.
backgroundColor

Color to show through image where transparent.
obser ver Object that watches for image information;

almost always this.
Returns true if the image has fully loaded when the method returns,

false other wise.
Description Draws the part of image described by dx1, dy1, dx2, and dy2

to the screen into the rectangle described by sx1, sy1, sx2,
and sy2. Drawing may be asynchronous. If image is not fully
loaded when the method returns, observer is notified when
additional information made available. The background color
is visible through any transparent pixels.

GRAPHICS 683

10 July 2002 22:24

drawLine

public abstract void drawLine (int x1, int y1, int x2, int
y2)

Parameters x1 x coordinate of one point on line.
y1 y coordinate of one point on line.
x2 x coordinate of the opposite point on line.
y2 y coordinate of the opposite point on line.

Description Draws a line connecting (x1, y1) and (x2, y2).

drawOval

public abstract void drawOval (int x, int y, int width,
int height)

Parameters x x coordinate of bounding rectangle origin.
y y coordinate of bounding rectangle origin
width Width of bounding rectangle to draw in.
height Height of bounding rectangle to draw in.

Description Draws an unfilled oval within bounding rectangle from (x, y)
of size width x height.

drawPolygon

public abstract void drawPolygon (int xPoints[], int
yPoints[], int numPoints)

Parameters xPoints[] The array of x coordinates for each point.
yPoints[] The array of y coordinates for each point.
numPoints The number of elements in both xPoints and

yPoints arrays to use.
Description Draws an unfilled polygon based on first numPoints elements

in xPoints and yPoints.

public void drawPolygon (Polygon p)

Parameters p Points of object to draw.
Description Draws an unfilled polygon based on points within the Polygon

p.

drawPolyline

public abstract void drawPolyline (int xPoints[], int
yPoints[], int nPoints) �

684 GRAPHICS

10 July 2002 22:24

Parameters xPoints[] The array of x coordinates for each point.
yPoints[] The array of y coordinates for each point.
nPoints The number of elements in both xPoints and

yPoints arrays to use.
Description Draws a series of line segments based on first numPoints ele-

ments in xPoints and yPoints.

drawRect

public void drawRect (int x, int y, int width, int height)

Parameters x x coordinate of rectangle origin.
y y coordinate of rectangle origin
width Width of rectangle to draw.
height Height of rectangle to draw.

Description Draws an unfilled rectangle from (x, y) of size width x
height.

drawRoundRect

public abstract void drawRoundRect (int x, int y, int
width, int height, int arcWidth, int arcHeight)

Parameters x x coordinate of bounding rectangle origin.
y y coordinate of bounding rectangle origin
width Width of rectangle to draw.
height Height of rectangle to draw.
arcWidth Width of arc of rectangle corner.
arcHeight Height of arc of rectangle corner.

Description Draws an unfilled rectangle from (x, y) of size width x height

with rounded corners.

drawString

public abstract void drawString (String text, int x, int
y)

Parameters text Text to draw.
x x coordinate of baseline origin.
y y coordinate of baseline origin.

Description Draws text on screen.

GRAPHICS 685

10 July 2002 22:24

fill3DRect

public void fill3DRect (int x, int y, int width, int
height, boolean raised)

Parameters x x coordinate of rectangle origin.
y y coordinate of rectangle origin
width Width of rectangle to draw.
height Height of rectangle to draw.
raised true to draw a rectangle that appears raised;

false to draw a rectangle that appears
depressed.

Description Draws a filled 3-D rectangle from (x, y) of size width x
height.

fillArc

public abstract void fillArc (int x, int y, int width, int
height, int startAngle, int arcAngle)

Parameters x x coordinate of bounding rectangle origin.
y y coordinate of bounding rectangle origin
width Width of bounding rectangle to draw in.
height Height of bounding rectangle to draw in.
startAngle Starting angle of arc.
arcAngle The extent of the arc, measured from startAngle

Description Draws a filled arc from startAngle to arcAngle within
bounding rectangle from (x, y) of size width x height. Zero
degrees is at three o’clock; positive angles are counter clock-
wise.

fillOval

public abstract void fillOval (int x, int y, int width,
int height)

Parameters x x coordinate of bounding rectangle origin.
y y coordinate of bounding rectangle origin
width Width of bounding rectangle to draw in.
height Height of bounding rectangle to draw in.

Description Draws filled oval within bounding rectangle from (x, y) of size
width x height.

686 GRAPHICS

10 July 2002 22:24

fillPolygon

public abstract void fillPolygon (int xPoints[], int
yPoints[], int numPoints)

Parameters xPoints[] The array of x coordinates for each point.
yPoints[] The array of y coordinates for each point.
numPoints The number of elements in both xPoints and

yPoints arrays to use.
Throws ArrayIndexOutOfBoundsException

If numPoints > xPoints.length or num-

Points > yPoints.length.
Description Draws filled polygon based on first numPoints elements in

xPoints and yPoints.

public void fillPolygon (Polygon p)

Parameters p Points of object to draw.
Description Draws filled polygon based on points within the Polygon p.

fillRect

public abstract void fillRect (int x, int y, int width,
int height)

Parameters x x coordinate of rectangle origin.
y y coordinate of rectangle origin
width Width of rectangle to draw.
height Height of rectangle to draw.

Description Draws filled rectangle from (x, y) of size width x height.

fillRoundRect

public abstract void fillRoundRect (int x, int y, int
width, int height, int arcWidth, int arcHeight)

Parameters x x coordinate of bounding rectangle origin.
y y coordinate of bounding rectangle origin
width Width of rectangle to draw.
height Height of rectangle to draw.
arcWidth Width of arc of rectangle corner.
arcHeight Height of arc of rectangle corner.

Description Draws a filled rectangle from (x, y) of size width x height

with rounded corners.

GRAPHICS 687

10 July 2002 22:24

finalize

public void finalize()

Overrides Object.finalize()

Description Tells the garbage collector to dispose of graphics context.

getClip

public abstract Shape getClip () �

Returns Shape describing the clipping are of the graphics context.

getClipBounds

public abstract Rectangle getClipBounds() �

Returns Rectangle describing the clipping area of the graphics context.

getClipRect

public abstract Rectangle getClipRect() ✩

Returns Replaced by getClipBounds().

getColor

public abstract Color getColor()

Returns The current drawing Color of the graphics context.

getFont

public abstract Font getFont()

Returns The current Font of the graphics context.

getFontMetrics

public FontMetrics getFontMetrics()

Returns The FontMetrics of the current font of the graphics context.

public abstract FontMetrics getFontMetrics (Font font)

Parameters font Font to get metrics for.
Returns The FontMetrics of the given font for the graphics context.

setClip

688 GRAPHICS

10 July 2002 22:24

public abstract void setClip (int x, int y, int width, int
height) �

Parameters x x coordinate of rectangle
y y coordinate of rectangle
width width of rectangle
height height of rectangle

Description Changes current clipping region to the specified rectangle.

public abstract void setClip (Shape clip) �

Parameters clip The new clipping shape.
Description Changes current clipping region to the specified shape.

setColor

public abstract void setColor (Color color)

Parameters color New color.
Description Changes current drawing color of graphics context.

setFont

public abstract void setFont (Font font)

Parameters font New font.
Description Changes current font of graphics context.

setPaintMode

public abstract void setPaintMode()

Description Changes painting mode to normal mode.

setXORMode

public abstract void setXORMode (Color xorColor)

Parameters xorColor XOR mode drawing color.
Description Changes painting mode to XOR mode; in this mode, drawing

the same object in the same color at the same location twice has
no net effect.

toString

public String toString()

Returns A string representation of the Graphics object.
Overrides Object.toString()

GRAPHICS 689

10 July 2002 22:24

translate

public void translate (int x, int y)

Parameters x x coordinate of new drawing origin.
y y coordinate of new drawing origin.

Description Moves the origin of drawing operations to (x, y).

See Also
Color, Font, FontMetrics, Image, ImageObserver, Object, Polygon, Rect-
angle, Shape, String

19.28 GridBagConstraints

java.lang.Object java.awt.GridBagConstraints

java.io.Serializable

java.lang.Cloneable

Description
The GridBagConstraints class provides the means to control the layout of com-
ponents within a Container whose LayoutManager is GridBagLayout.

Class Definition
public class java.awt.GridBagConstraints

extends java.lang.Object

implements java.lang.Cloneable, java.io.Serializable {

// Constants

public final static int BOTH;

public final static int CENTER;

public final static int EAST;

public final static int HORIZONTAL;

public final static int NONE;

public final static int NORTH;

public final static int NORTHEAST;

public final static int NORTHWEST;

public final static int RELATIVE;

public final static int REMAINDER;

public final static int SOUTH;

public final static int SOUTHEAST;

public final static int SOUTHWEST;

public final static int VERTICAL;

public final static int WEST;

690 GRAPHICS

10 July 2002 22:24

// Variables

public int anchor;

public int fill;

public int gridheight;

public int gridwidth;

public int gridx;

public int gridy;

public Insets insets;

public int ipadx;

public int ipady;

public double weightx

public double weighty

// Constructors

public GridBagConstraints();

// Instance Methods

public Object clone();

}

Constants
BOTH

public final static int BOTH

Constant for possible fill value.

CENTER

public final static int CENTER

Constant for possible anchor value.

EAST

public final static int EAST

Constant for possible anchor value.

HORIZONTAL

public final static int HORIZONTAL

Constant for possible fill value.

NONE

GRIDBAGCONSTRAINTS 691

10 July 2002 22:24

public final static int NONE

Constant for possible fill value.

NORTH

public final static int NORTH

Constant for possible anchor value.

NORTHEAST

public final static int NORTHEAST

Constant for possible anchor value.

NORTHWEST

public final static int NORTHWEST

Constant for possible anchor value.

RELATIVE

public final static int RELATIVE

Constant for possible gridx, gridy, gridwidth, or gridheight value.

REMAINDER

public final static int REMAINDER

Constant for possible gridwidth or gridheight value.

SOUTH

public final static int SOUTH

Constant for possible anchor value.

SOUTHEAST

public final static int SOUTHEAST

Constant for possible anchor value.

SOUTHWEST

public final static int SOUTHWEST

Constant for possible anchor value.

692 GRIDBAGCONSTRAINTS

10 July 2002 22:24

VERTICAL

public final static int VERTICAL

Constant for possible fill value.

WEST

public final static int WEST

Constant for possible anchor value.

Variables
anchor

public int anchor

Specifies the alignment of the component in the event that it is smaller than
the space allotted for it by the layout manager; e.g., CENTER centers the object
within the region.

fill

public int fill

The component’s resize policy if additional space available.

gridheight

public int gridheight

Number of columns a component occupies.

gridwidth

public int gridwidth

Number of rows a component occupies.

gridx

public int gridx

Horizontal grid position at which to add component.

gridy

public int gridy

Vertical grid position at which to add component.

GRIDBAGCONSTRAINTS 693

10 July 2002 22:24

insets

public Insets insets

Specifies the outer padding around the component.

ipadx

public int ipadx

Ser ves as the internal padding within the component in both the right and left
directions.

ipady

public int ipady

Ser ves as the internal padding within the component in both the top and bot-
tom directions.

weightx

public double weightx

Represents the percentage of extra horizontal space that will be given to this
component if there is additional space available within the container.

weighty

public double weighty

Represents the percentage of extra vertical space that will be given to this com-
ponent if there is additional space available within the container.

Constructors
GridBagConstraints

public GridBagConstraints()

Description Constructs a GridBagConstraints object.

Instance Methods
clone

public Object clone()

Returns A new instance of GridBagConstraints with same values for
constraints.

Overrides Object.clone()

694 GRIDBAGCONSTRAINTS

10 July 2002 22:24

See Also
Cloneable, GridBagLayout, Insets, Object, Serializable

19.29 GridBagLayout

java.lang.Object

java.awt.LayoutManager

java.awt.LayoutManager2

java.awt.GridBagLayout java.io.Serializable

Description
The GridBagLayout LayoutManager provides the means to layout components
in a flexible grid-based display model.

Class Definition
public class java.awt.GridBagLayout

extends java.lang.Object

implements java.awt.LayoutManager2, java.io.Serializable {

// Protected Constants

protected static final MAXGRIDSIZE;

protected static final MINSIZE;

protected static final PREFERREDSIZE;

// Variables

public double columnWeights[];

public int columnWidths[];

public int rowHeights[];

public double rowWeights[];

// Protected Variables

protected Hashtable comptable;

protected GridBagConstraints defaultConstraints;

protected GridBagLayoutInfo layoutInfo;

// Constructors

public GridBagLayout();

// Instance Methods

public void addLayoutComponent (Component comp, Object constraints); �
public void addLayoutComponent (String name, Component component);

public GridBagConstraints getConstraints (Component component);

GRIDBAGLAYOUT 695

10 July 2002 22:24

public abstract float getLayoutAlignmentX(Container target); �
public abstract float getLayoutAlignmentY(Container target); �
public int[][] getLayoutDimensions();

public Point getLayoutOrigin();

public double[][] getLayoutWeights();

public abstract void invalidateLayout(Container target); �
public void layoutContainer (Container target);

public Point location (int x, int y);

public abstract Dimension maximumLayoutSize(Container target); �
public Dimension minimumLayoutSize (Container target);

public Dimension preferredLayoutSize (Container target);

public void removeLayoutComponent (Component component);

public void setConstraints (Component component,

GridBagConstraints constraints);

public String toString();

// Protected Instance Methods

protected void AdjustForGravity (GridBagConstraints constraints,

Rectangle r);

protected void ArrangeGrid (Container target);

protected GridBagLayoutInfo GetLayoutInfo (Container target,

int sizeFlag);

protected Dimension GetMinSize (Container target,

GridBagLayoutInfo info);

protected GridBagConstraints lookupConstraints (Component comp);

}

Protected Constants
MAXGRIDSIZE

protected static final MAXGRIDSIZE

Maximum number of rows and columns within container managed by Grid-
BagLayout.

MINSIZE

protected static final MINSIZE

Used for internal sizing purposes.

PREFERREDSIZE

protected static final PREFERREDSIZE

Used for internal sizing purposes.

696 GRIDBAGLAYOUT

10 July 2002 22:24

Variables
columnWeights

public double[] columnWeights

The weightx values of the components in the row with the most elements.

columnWidths

public int[] columnWidths

The width values of the components in the row with the most elements.

rowHeights

public int[] rowHeights

The height values of the components in the column with the most elements.

rowWeights

public double[] rowWeights

The weighty values of the components in the column with the most ele-
ments.

Protected Variables
comptable

protected Hashtable comptable

Internal table to manage components.

defaultConstraints

protected GridBagConstraints defaultConstraints

Constraints to use for Components that have none.

layoutInfo

protected GridBagLayoutInfo layoutInfo

Internal information about the GridBagLayout.

Constructors
GridBagLayout

public GridBagLayout()

Description Constructs a GridBagLayout object.

GRIDBAGLAYOUT 697

10 July 2002 22:24

Instance Methods
addLayoutComponent

public void addLayoutComponent (Component comp, Object
constraints) �

Parameters comp The component being added.
constraints An object describing the constraints on this com-

ponent.
Implements LayoutManager2.addLayoutComponent()

Description Adds the component comp to container subject to the given
constraints. This is a more generalized version of addLay-
outComponent(String, Component). It corresponds to
java.awt.Container's add(Component, Object).

public void addLayoutComponent (String name, Component
component)

Parameters name Name of component to add.
component Actual component being added.

Implements LayoutManager.addLayoutComponent()

Description Does nothing.

getConstraints

public GridBagConstraints getConstraints (Component
component)

Parameters component Component whose constraints are desired
Returns GridBagConstraints for component requested.

getLayoutAlignmentX

public abstract float getLayoutAlignmentX (Container
target) �

Parameters target The container to inspect.
Returns The value .5 for all containers.
Description This method returns the preferred alignment of the given con-

tainer target. A return value of 0 is left aligned, .5 is cen-
tered, and 1 is right aligned.

getLayoutAlignmentY

698 GRIDBAGLAYOUT

10 July 2002 22:24

public abstract float getLayoutAlignmentY (Container
target) �

Parameters target The container to inspect.
Returns The value .5 for all containers.
Description This method returns the preferred alignment of the given con-

tainer target. A return value of 0 is top aligned, .5 is cen-
tered, and 1 is bottom aligned.

getLayoutDimensions

public int[][] getLayoutDimensions()

Returns Returns two single dimension arrays as a multi-dimensional
array. Index 0 is an array of widths (columnWidths instance
variable), while index 1 is an array of heights (rowHeights
instance variable).

getLayoutOrigin

public Point getLayoutOrigin()

Returns Returns the origin of the components within the Container

whose LayoutManager is GridBagLayout.

getLayoutWeights

public double[][] getLayoutWeights()

Returns Returns two single dimension arrays as a multi-dimensional
array. Index 0 is an array of columns weights (columnWeights
instance variable), while index 1 is an array of row weights
(rowWeights instance variable).

invalidateLayout

public abstract void invalidateLayout (Container target)
�

Parameters target The container to invalidate.
Description Does nothing.

layoutContainer

public void layoutContainer (Container target)

Parameters target The container that needs to be redrawn.

GRIDBAGLAYOUT 699

10 July 2002 22:24

Implements LayoutManager.layoutContainer()

Description Draws components contained within target.

location

public Point location (int x, int y)

Parameters x The x coordinate of the grid position to find.
y The y coordinate of the grid position to find.

Returns Returns the grid element under the location provided at posi-
tion (x, y) in pixels. Note that the returned Point uses the
GridBagLayout’s grid for its coordinate space.

Description Locates the grid position in the Container under the given
location.

maximumLayoutSize

public abstract Dimension maximumLayoutSize (Container
target) �

Parameters target The container to inspect.
Returns A Dimension whose horizontal and vertical components are

Integer.MAX_VALUE.
Description For GridBagLayout, a maximal Dimension is always

returned.

minimumLayoutSize

public Dimension minimumLayoutSize (Container target)

Parameters target The container whose size needs to be calculated.
Returns Minimum Dimension of container target.
Implements LayoutManager.minimumLayoutSize()

Description Calculates minimum size of target container.

preferredLayoutSize

public Dimension preferredLayoutSize (Container target)

Parameters target The container whose size needs to be calculated.
Returns Preferred Dimension of container target
Implements LayoutManager.preferredLayoutSize()

Description Calculates preferred size of target container.

700 GRIDBAGLAYOUT

10 July 2002 22:24

removeLayoutComponent

public void removeLayoutComponent (Component component)

Parameters component Component to stop tracking.
Implements LayoutManager.removeLayoutComponent()

Description Does nothing.

setConstraints

public void setConstraints (Component component,
GridBagConstraints constraints)

Parameters component Component to set constraints for
constraints Constraints for component

Description Changes the GridBagConstraints on component to those
provided.

toString

public String toString()

Returns A string representation of the GridBagLayout object.
Overrides Object.toString()

Protected Instance Methods
AdjustForGravity

protected void AdjustForGravity (GridBagConstraints
constraints, Rectangle r)

Parameters constraints Constraints to use for adjustment of Rectangle.
r Rectangular area that needs to be adjusted.

Description Helper routine for laying out a cell of the grid. The routine
adjusts the values for r based upon the constraints.

ArrangeGrid

protected void ArrangeGrid (Container target)

Parameters target Container to layout.
Description Helper routine that does the actual arrangement of compo-

nents in target.

GetLayoutInfo

GRIDBAGLAYOUT 701

10 July 2002 22:24

protected GridBagLayoutInfo GetLayoutInfo (Container
target, int sizeFlag)

Parameters target Container to get information about.
sizeFlag One of the constants MINSIZE or PREFERRED-

SIZE.
Returns Returns an internal class used to help size the container.

GetMinSize

protected Dimension GetMinSize (Container target,
GridBagLayoutInfo info)

Parameters target Container to calculate size.
info Specifics about the container’s constraints.

Returns Minimum Dimension of container target based on info.
Description Helper routine for calculating size of container.

lookupConstraints

protected GridBagConstraints lookupConstraints (Component
comp)

Parameters comp Component in question.
Returns A reference to the GridBagConstraints object for this com-

ponent.
Description Helper routine for calculating size of container.

See Also
Component, Container, Dimension, GridBagConstraints, Hashtable, Lay-
outManager, LayoutManager2, Object, Point, Rectangle, String

19.30 GridLayout

java.lang.Object

java.awt.LayoutManager

java.awt.GridLayout java.io.Serializable

702 GRIDBAGLAYOUT

10 July 2002 22:24

Description
The GridLayout LayoutManager provides the means to layout components in a
grid of rows and columns.

Class Definition
public class java.awt.GridLayout

extends java.lang.Object

implements java.awt.LayoutManager, java.io.Serializable

{

// Constructors

public GridLayout(); �
public GridLayout (int rows, int cols);

public GridLayout (int rows, int cols, int hgap, int vgap);

// Instance Methods

public void addLayoutComponent (String name, Component component);

public int getColumns(); �
public int getHgap(); �
public int getRows(); �

public int getVgap(); �
public void layoutContainer (Container target);

public Dimension minimumLayoutSize (Container target);

public Dimension preferredLayoutSize (Container target);

public void removeLayoutComponent (Component component);

public int setColumns(int cols); �
public int setHgap(int hgap); �
public int setRows(int rows); �

public int setVgap(int vgap); �
public String toString();

}

Constructors
GridLayout

public GridLayout() �

Description Constructs a GridLayout object with a default single row and
one column per component.

public GridLayout (int rows, int cols)

Parameters rows Requested number of rows in container.
cols Requested number of columns in container.

GRIDLAYOUT 703

10 July 2002 22:24

Description Constructs a GridLayout object with the requested number of
rows and columns. Note that the actual number of rows and
columns depends on the number of objects in the layout, not
the constructor’s parameters.

public GridLayout (int rows, int cols, int hgap, int vgap)

Parameters rows Requested number of rows in container.
cols Requested number of columns in container.
hgap Horizontal space between each component in a

row.
vgap Vertical space between each row.

Description Constructs a GridLayout object with the requested number of
rows and columns and the values specified as the gaps
between each component. Note that the actual number of rows
and columns depends on the number of objects in the layout,
not the constructor’s parameters.

Instance Methods
addLayoutComponent

public void addLayoutComponent (String name, Component
component)

Parameters name Name of component to add.
component Actual component being added.

Implements LayoutManager.addLayoutComponent()

Description Does nothing.

getColumns

public int getColumns() �

Returns The number of columns.

getHgap

public int getHgap() �

Returns The horizontal gap for this GridLayout instance.

getRows

public int getRows() �

Returns The number of rows.

704 GRIDLAYOUT

10 July 2002 22:24

getVgap

public int getVgap() �

Returns The vertical gap for this GridLayout instance.

layoutContainer

public void layoutContainer (Container target)

Parameters target The container that needs to be redrawn.
Implements LayoutManager.layoutContainer()

Description Draws the components contained within the target.

minimumLayoutSize

public Dimension minimumLayoutSize (Container target)

Parameters target The container whose size needs to be calculated.
Returns Minimum Dimension of the container target.
Implements LayoutManager.minimumLayoutSize()

Description Calculates the minimum size of the target container.

preferredLayoutSize

public Dimension preferredLayoutSize (Container target)

Parameters target The container whose size needs to be calculated.
Returns Preferred Dimension of the container target.
Implements LayoutManager.preferredLayoutSize()

Description Calculates the preferred size of the target container.

removeLayoutComponent

public void removeLayoutComponent (Component component)

Parameters component Component to stop tracking.
Implements LayoutManager.removeLayoutComponent()

Description Does nothing.

setColumns

public void setColumns(int cols) �

Parameters cols The new number of columns.
Description Sets the number of columns.

GRIDLAYOUT 705

10 July 2002 22:24

setHgap

public void setHgap(int hgap) �

Parameters hgap The horizontal gap value.
Description Sets the horizontal gap between components.

setRows

public void setRows(int rows) �

Parameters rows The new number of rows.
Description Sets the number of rows.

setVgap

public void setVgap(int vgap) �

Parameters vgap The vertical gap value.
Description Sets the vertical gap between components.

toString

public String toString()

Returns A string representation of the GridLayout object.
Overrides Object.toString()

See Also
Component, Container, Dimension, LayoutManager, Object, String

19.31 IllegalComponentStateException �

java.awt.IllegalStateException java.awt.IllegalComponentStateException

java.lang.RuntimeExceptionjava.lang.Throwablejava.lang.Throwable java.lang.Exceptionjava.lang.Object

Description
An Exception indicating that a Component was not in an appropriate state to
per form a requested action.

706 GRIDLAYOUT

10 July 2002 22:24

Class Definition
public class java.awt.IllegalComponentStateException

extends java.lang.IllegalStateException {

// Constructors

public IllegalComponentStateException();

public IllegalComponentStateException (String s);

}

Constructors
IllegalComponentStateException

public IllegalComponentStateException()

Description Constructs the exception object with no detail message.

public IllegalComponentStateException (String s)

Parameters s Detail message
Description Constructs the exception object with the given detail message.

See Also
Exception, String

19.32 Image

java.lang.Object java.awt.Image java.io.Serializable

Description
The Image class represents a displayable object maintained in memory. Because
Image is an abstract class, you never work with the Image class itself, but with a
platform specific subclass. However, you should never need to know what that sub-
class is. To draw on an Image, get its graphics context.

Class Definition
public abstract class java.awt.Image

extends java.lang.Object

implements java.io.Serializable {

// Constants

public final static int SCALE_AREA_AVERAGING; �
public final static int SCALE_DEFAULT; �
public final static int SCALE_FAST; �

IMAGE 707

10 July 2002 22:24

public final static int SCALE_REPLICATE; �
public final static int SCALE_SMOOTH; �
public final static Object UndefinedProperty;

// Instance Methods

public abstract void flush();

public abstract Graphics getGraphics();

public abstract int getHeight (ImageObserver observer);

public abstract Object getProperty (String name, ImageObserver observer);

public Image getScaledInstance (int width, int height, int hints); �
public abstract ImageProducer getSource();

public abstract int getWidth (ImageObserver observer);

}

Constants
SCALE_AREA_AVERAGING

public final static int SCALE_AREA_AVERAGING �

Flag that requests use of AreaAveragingScaleFilter.

SCALE_DEFAULT

public final static int SCALE_DEFAULT �

Flag that requests use of the default image scaling algorithm.

SCALE_FAST

public final static int SCALE_FAST �

Flag that requests use of an image scaling algorithm that is faster rather than
smoother.

SCALE_REPLICATE

public final static int SCALE_REPLICATE �

Flag that requests use of ReplicateScaleFilter.

SCALE_SMOOTH

public final static int SCALE_SMOOTH �

Flag that requests use of an image scaling algorithm that is smoother rather
than faster.

UndefinedProperty

708 IMAGE

10 July 2002 22:24

public final static Object UndefinedProperty

Possible return object from getProperty().

Instance Methods
flush

public abstract void flush()

Description Resets image to initial state.

getGraphics

public abstract Graphics getGraphics()

Throws ClassCastException
If image created from file or URL.

Returns The graphics context of the image.
Description Gets the graphics context of the image for drawing.

getHeight

public abstract int getHeight (ImageObserver observer)

Parameters obser ver An image observer; usually the Component on
which the image is rendered.

Returns Image height, or -1 if the height is not yet available.

getProperty

public abstract Object getProperty (String name,
ImageObserver observer)

Parameters name Name of the property to fetch.
obser ver An image observer; usually the Component on

which the image is rendered.
Returns Object representing the requested property, null, or Unde-

finedProperty.
Throws ArrayIndexOutOfBoundsException

If offset or length is invalid.
Description Retrieves a property from the image’s private property list.

getScaledInstance

public Image getScaledInstance (int width, int height, int
hints) �

IMAGE 709

10 July 2002 22:24

Parameters width The width for the scaled image. Use -1 to pre-
ser ve the aspect ratio with reference to height.

height The height for the scaled image. Use -1 to pre-
ser ve the aspect ratio with reference to width.

hints One or more of the SCALE_ constants.
Returns The scaled image. It may be loaded asynchronously, even if the

original image was fully loaded.
Description Creates a copy of an image, scaled to width x height and

using an algorithm chosen based on the hints given.

getSource

public abstract ImageProducer getSource()

Returns The ImageProducer of the image.

getWidth

public abstract int getWidth (ImageObserver observer)

Parameters obser ver An image observer; usually the Component on
which the image is rendered.

Returns Image width, or -1 if the width is not yet available.

See Also
Graphics, ImageObserver, ImageProducer, Object, Properties, String

19.33 Insets

java.lang.Object java.awt.Insets

java.io.Serializable

java.lang.Cloneable

Description
The Insets class provides a way to encapsulate the layout margins of the four dif-
ferent sides of a Container.

Class Definition
public class java.awt.Insets

extends java.lang.Object

implements java.io.Serializable, java.lang.Cloneable {

// Variables

710 IMAGE

10 July 2002 22:24

public int bottom;

public int left;

public int right;

public int top;

// Constructors

public Insets (int top, int left, int bottom, int right);

// Instance Methods

public Object clone();

public boolean equals (Object obj); �
public String toString();

}

Variables
bottom

public int bottom

The border width for the bottom of a Container.

left

public int left

The border width for the left side of a Container.

right

public int right

The border width for the right side of a Container.

top

public int top

The border width for the top of a Container.

Constructors
Insets

public Insets (int top, int left, int bottom, int right)

Parameters top The border width for the top of a Container.
left The border width for the left side of a Con-

tainer.
bottom The border width for the bottom of a Con-

tainer.

INSETS 711

10 July 2002 22:24

right The border width for the right side of a Con-

tainer.
Description Constructs an Insets object with the appropriate border set-

tings.

Instance Methods
clone

public Object clone()

Returns Clone of original object.
Overrides Object.clone()

Description Creates a copy of the original instance of an object.

equals

public boolean equals (Object obj) �

Parameters obj The object to be tested.
Returns true if the objects are equal; false other wise.
Overrides Object.equals(Object)

Description Tests two Insets objects for equality.

toString

public String toString()

Returns A string representation of the Insets object.
Overrides Object.toString()

See Also
Cloneable, Container, Object, Serializable, String

19.34 ItemSelectable �

Description
An interface that describes an object that has one or more items that can be
selected.

Interface Definition
public abstract interface ItemSelectable {

// Instance Methods

public abstract void addItemListener (ItemListener l);

public abstract Object[] getSelectedObjects();

public abstract void removeItemListener (ItemListener l);

712 INSETS

10 July 2002 22:24

java.awt.List

java.awt.Choice

java.awt.CheckboxMenuItem

java.awt.Checkbox

java.awt.ItemSelectable

}

Interface Methods
addItemListener

public abstract void addItemListener (ItemListener l)

Parameters l The listener to be added.
Description Adds a listener for ItemEvent objects.

getSelectedObjects

public abstract Object[] getSelectedObjects()

Description This method returns an array containing Objects representing
the items that are currently selected. If no items are selected,
null is returned.

removeItemListener

public abstract void removeItemListener (ItemListener l)

Parameters l The listener to be removed.
Description Removes the specified ItemListener so it will not receive

ItemEvent objects.

See Also
Checkbox, CheckboxMenuItem, Choice, ItemEvent, ItemListener, List

19.35 Label

Description
The Label is a Component that displays a single line of static text.

LABEL 713

10 July 2002 22:24

java.lang.Object java.awt.Labeljava.awt.Component

Class Definition
public class java.awt.Label

extends java.awt.Component {

// Constants

public static final int CENTER;

public static final int LEFT;

public static final int RIGHT;

// Constructors

public Label();

public Label (String label);

public Label (String label, int alignment);

// Instance Methods

public void addNotify();

public int getAlignment();

public String getText();

public synchronized void setAlignment (int alignment);

public synchronized void setText (String label);

// Protected Instance Methods

protected String paramString();

}

Constants
CENTER

public static final int CENTER

Description Constant to center text within the label.

LEFT

public static final int LEFT

Description Constant to left justify text within the label.

RIGHT

714 LABEL

10 July 2002 22:24

public static final int RIGHT

Description Constant to right justify text within the label.

Constructors
Label

public Label()

Description Constructs a Label object with the text centered within the
label.

public Label (String label)

Parameters label The text for the label
Description Constructs a Label object with the text label centered within

the label.

public Label (String label, int alignment)

Parameters label The text for the label
alignment The alignment for the label; one of the con-

stants CENTER, LEFT, or RIGHT.
Throws IllegalArgumentException

If alignment is not one of CENTER, LEFT, or
RIGHT.

Description Constructs a Label object, with a given alignment and text of
label.

Instance Methods
addNotify

public void addNotify()

Overrides Component.addNotify()

Description Creates Label’s peer.

getAlignment

public int getAlignment()

Returns Current alignment.

getText

LABEL 715

10 July 2002 22:24

public String getText()

Returns Current text of Label.

setAlignment

public synchronized void setAlignment (int alignment)

Parameters alignment New alignment for Label; CENTER, LEFT, or
RIGHT.

Throws IllegalArgumentException
If alignment is not one of CENTER, LEFT, or
RIGHT.

Description Changes the current alignment of Label.

setText

public synchronized void setText (String label)

Parameters label New text for Label.
Description Changes the current text of Label.

Protected Instance Methods
paramString

protected String paramString()

Returns String with current settings of Label.
Overrides Component.paramString()

Description Helper method for toString() to generate string of current
settings.

See Also
Component, String

19.36 LayoutManager

Description
LayoutManager is an interface that defines the responsibilities of an object that
wants to lay out Components to the display in a Container.

Interface Definition
public abstract interface java.awt.LayoutManager {

// Interface Methods

public abstract void addLayoutComponent (String name,

Component component);

716 LABEL

10 July 2002 22:24

java.awt.LayoutManager

java.awt.LayoutManager2

java.awt.FlowLayout

java.awt.GridLayout

public abstract void layoutContainer (Container target);

public abstract Dimension minimumLayoutSize (Container target);

public abstract Dimension preferredLayoutSize (Container target);

public abstract void removeLayoutComponent (Component component);

}

Interface Methods
addLayoutComponent

public abstract void addLayoutComponent (String name,
Component component)

Parameters name Name of component to add.
component Actual component being added.

Description Called when you call Container.add(String, Component)
to add an object to a container.

layoutContainer

public abstract void layoutContainer (Container target)

Parameters target The container who needs to be redrawn.
Description Called when target needs to be redrawn.

minimumLayoutSize

public abstract Dimension minimumLayoutSize (Container
target)

Parameters target The container whose size needs to be calculated.
Returns Minimum Dimension of the container target
Description Called when the minimum size of the target container needs

to be calculated.

preferredLayoutSize

public abstract Dimension preferredLayoutSize (Container
target)

LAYOUTMANAGER 717

10 July 2002 22:24

Parameters target The container whose size needs to be calculated.
Returns Preferred Dimension of the container target
Description Called when the preferred size of the target container needs

to be calculated.

removeLayoutComponent

public abstract void removeLayoutComponent (Component
component)

Parameters component Component to no longer track.
Description Called when you call Container.remove(Component) to

remove a component from the layout.

See Also
Component, Container, FlowLayout, GridLayout, Object, String

19.37 LayoutManager2 �

java.awt.LayoutManager

java.awt.LayoutManager2

java.awt.FlowLayout

java.awt.GridLayout

Description
LayoutManager2 is an extension of LayoutManager. It provides a more general-
ized way to add components to a container, as well as more sizing and alignment
methods.

Interface Definition
public abstract interface java.awt.LayoutManager2

extends java.awt.LayoutManager {

// Interface Methods

public abstract void addLayoutComponent (Component comp,

Object constraints);

public abstract float getLayoutAlignmentX(Container target);

public abstract float getLayoutAlignmentY(Container target);

public abstract void invalidateLayout(Container target);

public abstract Dimension maximumLayoutSize(Container target);

}

718 LAYOUTMANAGER

10 July 2002 22:24

Interface Methods
addLayoutComponent

public abstract void addLayoutComponent (Component comp,
Object constraints)

Parameters comp Component to add.
constraints Constraints on the component.

Description Called to add an object to a container. This is slightly more
generic than LayoutManager’s addLayoutCompo-

nent(String, Component).

getLayoutAlignmentX

public abstract float getLayoutAlignmentX (Container
target)

Parameters target The container to inspect.
Returns A value between 0 and 1.
Description This method returns the preferred alignment of the given con-

tainer target. A return value of 0 is left aligned, .5 is cen-
tered, and 1 is right aligned.

getLayoutAlignmentY

public abstract float getLayoutAlignmentY (Container
target)

Parameters target The container to inspect.
Returns A value between 0 and 1.
Description This method returns the preferred alignment of the given con-

tainer target. A return value of 0 is top aligned, .5 is cen-
tered, and 1 is bottom aligned.

invalidateLayout

public abstract void invalidateLayout (Container target)

Parameters target The container to invalidate.
Description Sophisticated layout managers may cache information to

improve performance. This method can be used to signal the
manager to discard any cached information and start fresh.

maximumLayoutSize

LAYOUTMANAGER2 719

10 July 2002 22:24

public abstract Dimension maximumLayoutSize (Container
target)

Returns The maximum size of target.
Parameters target The container to inspect.
Description This method returns the maximum size of target using this

layout manager.

See Also
BorderLayout, CardLayout, Component, Container, GridBagLayout,
Object, String

19.38 List

java.awt.Componentjava.lang.Object java.awt.ItemSelectablejava.awt.List

Description
The List is a Component that provides a scrollable list of choices to select from. A
List can be in one of two modes: single selection mode, in which only one item
may be selected at a time; and multiple selection mode, in which several items may
be selected at one time. A list does not necessarily display all of the choices at one
time; one of the constructors lets you specify the number of choices to display
simultaneously. Although the changes in 1.1 are extensive, almost all of them can
be boiled down to (1) using the 1.1 event model, and (2) standardizing method
names (e.g. set/get pairs).

Class Definition
public class java.awt.List

extends java.awt.Component

implements java.awt.ItemSelectable {

// Constructors

public List();

public List (int rows); �
public List (int rows, boolean multipleSelections);

// Instance Methods

public void add (String item); �
public synchronized void add (String item, int index); �
public void addActionListener (ActionListener l); �
public void addItem (String item);

720 LAYOUTMANAGER2

10 July 2002 22:24

public synchronized void addItem (String item, int index); ✩
public void addItemListener (ItemListener l); �
public void addNotify();

public boolean allowsMultipleSelections(); ✩
public synchronized void clear(); ✩
public int countItems(); ✩
public synchronized void delItem (int position);

public synchronized void delItems (int start, int end); ✩
public synchronized void deselect (int index);

public String getItem (int index);

public int getItemCount(); �
public synchronized String[] getItems(); �
public Dimension getMinimumSize(); �
public Dimension getMinimumSize (int rows); �
public Dimension getPreferredSize(); �
public Dimension getPreferredSize (int rows); �
public int getRows();

public synchronized int getSelectedIndex();

public synchronized int[] getSelectedIndexes();

public synchronized String getSelectedItem();

public synchronized String[] getSelectedItems();

public Object[] getSelectedObjects(); �
public int getVisibleIndex();

public boolean isIndexSelected(int index); �
public boolean isMultipleMode(); �
public boolean isSelected (int index); ✩
public synchronized void makeVisible (int index);

public Dimension minimumSize(); ✩
public Dimension minimumSize (int rows); ✩
public Dimension preferredSize(); ✩
public Dimension preferredSize (int rows); ✩
public synchronized void remove (int position); �
public synchronized void remove (String item); �
public void removeActionListener (ActionListener l); �
public synchronized void removeAll(); �
public void removeItemListener (ItemListener l); �
public void removeNotify();

public synchronized void replaceItem (String newItem, int index);

public synchronized void select (int position);

public synchronized void setMultipleMode (boolean b); �
public synchronized void setMultipleSelections (boolean value); ✩

// Protected Instance Methods

protected String paramString();

protected void processActionEvent (ActionEvent e); �
protected void processEvent (AWTEvent e); �
protected void processItemEvent (ItemEvent e); �

}

LIST 721

10 July 2002 22:24

Constructors
List

public List()

Description Constructs a List object in single-selection mode.

public List (int rows) �

Parameters rows Requested number of rows to display.
Description Constructs a List object with the specified number of rows, in

single-selection mode.

public List (int rows, boolean multipleSelections)

Parameters rows Requested number of rows to display.
multipleSelections

true to allow multiple selections; false to
select one item at a time.

Description Constructs a List object.

Instance Methods
add

public void add (String item) �

Parameters item Text for entry to add.
Description Adds a new entry to the available choices.

public synchronized void add (String item, int index) �

Parameters item Text for entry to add.
index Position at which to add entry; the first entry has

an index of zero.
Description Adds a new entry to the available choices at the designated posi-

tion.

addActionListener

public void addActionListener (ActionListener l) �

Parameters l An object that implements the ActionLis-

tener inter face.
Description Add a listener for the action event.

722 LIST

10 July 2002 22:24

addItem

public void addItem (String item)

Parameters item Text for entry to add.
Description Replaced by add(String).

public synchronized void addItem (String item, int index)
✩

Parameters item Text for entry to add.
index Position at which to add entry; the first entry has

an index of zero.
Description Replaced by add(String, int).

addItemListener

public void addItemListener (ItemListener l) �

Parameters l The listener to be added.
Implements ItemSelectable.addItemListener(ItemListener l)

Description Adds a listener for the ItemEvent objects this List fires off.

addNotify

public void addNotify()

Overrides Component.addNotify()

Description Creates List’s peer.

allowsMultipleSelections

public boolean allowsMultipleSelections() ✩

Returns true if multi-selection active, false other wise. Replaced by
isMultipleMode().

clear

public synchronized void clear() ✩

Description Clears all the entries out of the List. Replaced by
removeAll().

countItems

public int countItems() ✩

Returns Number of items in the List. Replaced by getItemCount().

LIST 723

10 July 2002 22:24

delItem

public synchronized void delItem (int position)

Parameters position Position of item to delete.
Description Removes a single entry from the List. Replaced by

remove(int) and remove(String).

delItems

public synchronized void delItems (int start, int end) ✩

Parameters start Starting position of entries to delete.
end Ending position of entries to delete.

Description Removes a set of entries from the List.

deselect

public synchronized void deselect (int index)

Parameters index Position to deselect.
Description Deselects the entry at the designated position, if selected.

getItem

public String getItem (int index)

Parameters index Position of entry to get.
Throws ArrayIndexOutOfBoundsException

If index is invalid.
Returns String for entry at given position.

getItemCount

public int getItemCount() �

Returns Number of items in the List.

getItems

public String[] getItems() �

Returns The string items in the List.

getMinimumSize

public Dimension getMinimumSize() �

Returns The minimum dimensions of the List.

724 LIST

10 July 2002 22:24

public Dimension getMinimumSize (int rows) �

Parameters rows Number of rows within List to size.
Returns The minimum dimensions of a List of the given size.

getPreferredSize

public Dimension getPreferredSize() �

Returns The preferred dimensions of the List.

public Dimension getPreferredSize (int rows) �

Parameters rows Number of rows within List to size.
Returns The preferred dimensions of a List of the given size.

getRows

public int getRows()

Returns Returns number of rows requested to be displayed in List.

getSelectedIndex

public synchronized int getSelectedIndex()

Returns Position of currently selected entry, or -1 if nothing is selected,
or if multiple entries are selected.

getSelectedIndexes

public synchronized int[] getSelectedIndexes()

Returns An array whose elements are the indices of the currently
selected entries.

getSelectedItem

public synchronized String getSelectedItem()

Returns Currently selected entry as a String, or null if nothing is
selected, or if multiple entries are selected.

getSelectedItems

public synchronized String[] getSelectedItems()

Returns An array of strings whose elements are the labels of the cur-
rently selected entries.

LIST 725

10 July 2002 22:24

getSelectedObjects

public Object[] getSelectedObjects() �

Implements ItemSelectable.getSelectedObjects()

Returns An array of strings whose elements are the labels of the cur-
rently selected entries.

getVisibleIndex

public int getVisibleIndex()

Returns The last index from a call to makeVisible().

isIndexSelected

public boolean isIndexSelected (int index) �

Parameters index Position to check.
Returns true if index selected, false other wise.
Description Checks to see if a particular entry is currently selected.

isMultipleMode

public boolean isMultipleMode() �

Returns true if multiple selection is allowed, false other wise.

isSelected

public boolean isSelected (int index) ✩

Parameters index Position to check.
Returns true if index selected, false other wise.
Description Checks to see if a particular entry is currently selected.

Replaced by isIndexSelected(int).

makeVisible

public synchronized void makeVisible (int index)

Parameters index Position to make visible on screen.
Description Ensures an item is displayed on the screen.

minimumSize

public Dimension minimumSize() ✩

Returns The minimum dimensions of the List. Replaced by getMin-
imumSize().

726 LIST

10 July 2002 22:24

public Dimension minimumSize (int rows) ✩

Parameters rows Number of rows within List to size.
Returns The minimum dimensions of a List of the given size.

Replaced by getMinimumSize(int).

preferredSize

public Dimension preferredSize() ✩

Returns The preferred dimensions of the List. Replaced by getPre-
ferredSize().

public Dimension preferredSize (int rows) ✩

Parameters rows Number of rows within List to size.
Returns The preferred dimensions of a List of the given size. Replaced

by getPreferredSize(int).

remove

public synchronized void remove (int position) �

Parameters position Position of item to remove.
Description Removes a single entry from the List.

public synchronized void remove (String item) �

Parameters item Item to remove.
Throws IllegalArgumentException

If item is not in the List.
Description Removes a single entry from the List.

removeActionListener

public void removeActionListener (ActionListener l) �

Parameters l One of this List’s ActionListeners.
Description Remove an action event listener.

removeAll

public synchronized removeAll() �

Description Removes all items from the List.

LIST 727

10 July 2002 22:24

removeItemListener

public void removeItemListener (ItemListener l) �

Parameters l The listener to be removed.
Implements ItemSelectable.removeItemListener (ItemListener

l)

Description Removes the specified ItemListener so it will not receive
ItemEvent objects from this List.

removeNotify

public void removeNotify()

Description Destroys the peer of the List.

replaceItem

public synchronized void replaceItem (String newItem, int
index)

Parameters newItem Label for entry to add.
index Position of entry to replace.

Description Replaces the contents at a particular position with a new entry.

select

public synchronized void select (int position)

Parameters position Position to make selected entry.
Description Makes the given entry the selected one for the List.

setMultipleMode

public synchronized void setMultipleMode (boolean b) �

Parameters b true to enable multiple selections; false to dis-
able multiple selections.

Description Changes List’s selection mode based upon flag.

setMultipleSelections

public synchronized void setMultipleSelections
(boolean value) ✩

Parameters value true to enable multiple selections; false to dis-
able multiple selections.

Description Changes List’s selection mode based upon flag. Replaced by
setMultipleMode(boolean).

728 LIST

10 July 2002 22:24

Protected Instance Methods
paramString

protected String paramString()

Returns String with current settings of List.
Overrides Component.paramString()

Description Helper method for toString() to generate string of current
settings.

processActionEvent

protected void processActionEvent (ActionEvent e) �

Parameters e The action event to process.
Description Action events are passed to this method for processing. Nor-

mally, this method is called by processEvent().

processEvent

protected void processEvent (AWTEvent e) �

Parameters e The event to process.
Description Low-level AWTEvents are passed to this method for processing.

processItemEvent

protected void processItemEvent(ItemEvent e) �

Parameters e The item event to process.
Description Item events are passed to this method for processing. Normally,

this method is called by processEvent().

See Also
Component, Dimension, ItemSelectable, String

19.39 MediaTracker

java.lang.Object java.io.Serializablejava.awt.MediaTracker

MEDIATRACKER 729

10 July 2002 22:24

Description
The MediaTracker class assists in the loading of multimedia objects across the
network. It can be used to wait until an object (or group of objects) has been
loaded completely. Tracked objects are assigned to groups; if there is more than
one object in a group, you can only track the behavior of the group as a whole
(i.e., it isn’t possible to track an individual object unless it is the only object in its
group). Currently (1.0.2 and 1.1) MediaTracker only works for Image objects;
future releases may extend MediaTracker to other multi-media types.

Class Definition
public abstract class java.awt.MediaTracker

extends java.lang.Object

implements java.io.Serializable {

// Constants

public static final int ABORTED;

public static final int COMPLETE;

public static final int ERRORED;

public static final int LOADING;

// Constructors

public MediaTracker (Component component);

// Instance Methods

public void addImage (Image image, int id);

public synchronized void addImage (Image image, int id, int width, int height);

public boolean checkAll();

public synchronized boolean checkAll (boolean load);

public boolean checkID (int id);

public synchronized boolean checkID (int id, boolean load);

public synchronized Object[] getErrorsAny();

public synchronized Object[] getErrorsID (int id);

public synchronized boolean isErrorAny();

public synchronized boolean isErrorID (int id);

public synchronized void removeImage(Image image); �
public synchronized void removeImage(Image image, int id); �
public synchronized void removeImage(Image image, int id, int width, int height); �
public synchronized int statusAll (boolean load);

public synchronized int statusID (int id, boolean load);

public void waitForAll() throws InterruptedException;

public synchronized boolean waitForAll (long ms) throws InterruptedException;

public void waitForID (int id) throws InterruptedException;

public synchronized boolean waitForID (int id, long ms) throws InterruptedException;

}

730 MEDIATRACKER

10 July 2002 22:24

Constants
ABORTED

public static final int ABORTED

Flag that indicates that the loading process aborted while loading a particular
image.

COMPLETE

public static final int COMPLETE

Flag that indicates a particular image loaded successfully.

ERRORED

public static final int ERRORED

Flag that indicates an error occurred while a particular image was loading.

LOADING

public static final int LOADING

Flag that indicates a particular image is still loading.

Constructors
MediaTracker

public MediaTracker (Component component)

Parameters component Component that eventually renders objects
being tracked.

Description Constructs an MediaTracker object.

Instance Methods
addImage

public void addImage (Image image, int id)

Parameters image Image to track.
id ID of a group.

Description Tells a MediaTracker to track the loading of image, placing the
image in the group identified by id.

public synchronized void addImage (Image image, int id,
int width, int height)

Parameters image Image to track.
id ID of a group.

MEDIATRACKER 731

10 July 2002 22:24

width Eventual rendering width.
height Eventual rendering height.

Description Tells a MediaTracker to track the loading of image, which will
be scaled to the given height and width, placing the image in
the group identified by id.

checkAll

public boolean checkAll()

Returns true if images completed loading (successfully or unsuccess-
fully), false other wise.

Description Determines if all images have finished loading.

public synchronized boolean checkAll (boolean load)

Parameters load Flag to force image loading to start.
Returns true if all images have completed loading (successfully or

unsuccessfully), false other wise.
Description Determines if all images have finished loading; the load

parameter may be used to force images to start loading.

checkID

public boolean checkID (int id)

Parameters id ID of a group.
Returns true if all images have completed loading (successfully or

unsuccessfully), false other wise.
Description Determines if all images with the given ID tag have finished

loading.

public synchronized boolean checkID (int id, boolean load)

Parameters id ID of a group.
load Flag to force image loading to start.

Returns true if all images have completed loading (successfully or
unsuccessfully), false other wise.

Description Determines if all images with the given ID tag have finished
loading; the load parameter may be used to force images to
start loading.

732 MEDIATRACKER

10 July 2002 22:24

getErrorsAny

public synchronized Object[] getErrorsAny()

Returns An array of objects managed by this media tracker that encoun-
tered a loading error.

Description Checks to see if any media encountered an error while loading.

getErrorsID

public synchronized Object[] getErrorsID (int id)

Parameters id ID of a group.
Returns An array of objects that encountered a loading error.
Description Checks to see if any media with the given ID tag encountered

an error while loading.

isErrorAny

public synchronized boolean isErrorAny()

Returns true if an error occurred, false other wise.
Description Checks to see if any media monitored by this media tracker

encountered an error while loading.

isErrorID

public synchronized boolean isErrorID (int id)

Parameters id ID of a group.
Returns true if error happened, false other wise.
Description Checks to see if any media in the given group encountered an

error while loading.

removeImage

public synchronized void removeImage (Image image) �

Parameters image The image to remove.
Description Removes the specified image from this MediaTracker.

public synchronized void removeImage (Image image, int id)
�

Parameters image The image to remove.
id ID of a group.

Description Removes the specified image from this MediaTracker. Only
instances matching the given id will be removed.

MEDIATRACKER 733

10 July 2002 22:24

public synchronized void removeImage (Image image, int id,
int width, int height) �

Parameters image The image to remove.
id ID of a group.
width Width of the scaled image, or -1 for unscaled.
height Height of the scaled image, or -1 for unscaled.

Description Removes the specified image from this MediaTracker. Only
instances matching the given id and scale sizes will be
removed.

statusAll

public synchronized int statusAll (boolean load)

Parameters load Flag to force image loading to start.
Returns MediaTracker status flags ORed together.
Description Checks load status of all the images monitored by this media

tracker; the load parameter may be used to force images to
start loading.

statusID

public synchronized int statusID (int id, boolean load)

Parameters id ID of a group.
load Flag to force image loading to start.

Returns MediaTracker status flags ORed together.
Description Checks load status of all the images in the given group; the

load parameter may be used to force images to start loading.

waitForAll

public void waitForAll() throws InterruptedException

Throws InterruptedException
If waiting interrupted.

Description Waits for all the images monitored by this media tracker to
load.

public synchronized boolean waitForAll (long ms) throws
InterruptedException

Parameters ms Time to wait for loading.
Throws InterruptedException

If waiting interrupted.

734 MEDIATRACKER

10 July 2002 22:24

Returns true if images fully loaded, false other wise.
Description Waits at most ms milliseconds for all images monitored by this

media tracker to load.

waitForID

public void waitForID (int id) throws InterruptedException

Parameters id ID of a group.
Throws InterruptedException

If waiting interrupted.
Description Waits for images in the given group to load.

public synchronized boolean waitForID (int id, long ms)
throws InterruptedException

Parameters id ID of a group.
ms Maximum time to wait for loading.

Throws InterruptedException
If waiting interrupted.

Returns true if images fully loaded, false other wise.
Description Waits at most ms milliseconds for the images in the given group

to load.

See Also
Component, Image, Object

19.40 Menu

java.lang.Object java.awt.MenuItem

java.awt.MenuContainer java.awt.Menu java.awt.PopupMenu

java.awt.MenuComponent

Description
The Menu class represents a group of MenuItem objects. Menus themselves are
menu items, allowing you to build multi-level menus. Menus are always attached to
MenuBars, which currently can only belong to frames.

MENU 735

10 July 2002 22:24

Class Definition
public class java.awt.Menu

extends java.awt.MenuItem

implements java.awt.MenuContainer {

// Constructors

public Menu(); �
public Menu (String label);

public Menu (String label, boolean tearOff);

// Instance Methods

public synchronized MenuItem add (MenuItem item);

public void add (String label);

public void addNotify();

public void addSeparator();

public int countItems(); ✩
public MenuItem getItem (int index);

public int getItemCount(); �
public void insert (String label, int index); �
public synchronized void insert (MenuItem menuitem, int index); �
public void insertSeparator (int index); �
public boolean isTearOff();

public String paramString(); �
public synchronized void remove (int index);

public synchronized void remove (MenuComponent component);

public synchronized void removeAll(); �
public void removeNotify();

}

Constructors
Menu

public Menu() �

Description Constructs a Menu object.

public Menu (String label)

Parameters label Text that appears on Menu.
Description Constructs a Menu object with the given label.

public Menu (String label, boolean tearOff)

Parameters label Text that appears on Menu.
tearOff true to create a tear-off menu, false other-

wise.
Description Constructs a Menu object; this will be a tear-off menu if

tearOff is set to true.

736 MENU

10 July 2002 22:24

Instance Methods
add

public synchronized MenuItem add (MenuItem item)

Parameters item A MenuItem to add to the Menu.
Returns Item just added.
Description Adds a new item to a Menu.

public void add (String label)

Parameters label Text for a MenuItem
Description Constructs a new MenuItem object with the given label, and

adds it to a Menu.

addNotify

public void addNotify()

Overrides MenuItem.addNotify()

Description Creates a Menu peer, and peers for all MenuItem objects that
appear on it.

addSeparator

public void addSeparator()

Description Adds a separator bar to the Menu.

countItems

public int countItems() ✩

Returns The number of items on the menu. Replaced by getItem-

Count().

getItem

public MenuItem getItem (int index)

Parameters index The position of the MenuItem to fetch; the first
item has index 0.

Returns The MenuItem at the designated position.

getItemCount

public int getItemCount() �

Returns The number of items on the menu.

MENU 737

10 July 2002 22:24

insert

public void insert (String label, int index) �

Parameters label The label for the new item.
index The position for the new item.

Description Adds a new item to this menu.

public synchronized void insert (MenuItem menuitem, int
index) �

Parameters menuitem The item to add.
index The position for the new item.

Throws IllegalArgumentException
If index is less than zero.

Description Adds a new item to this menu.

insertSeparator

public void insertSeparator (int index) �

Parameters index The position for the separator.
Throws IllegalArgumentException

If index is less than zero.
Description Adds a separator to this menu.

isTearOff

public boolean isTearOff()

Returns true if the menu is a tear-off menu, false other wise.

paramString

public String paramString() �

Returns String with current settings of Menu.
Overrides MenuItem.paramString()

Description Helper method for toString() to generate string of current
settings.

remove

public synchronized void remove (int index)

Parameters index The position of the MenuItem to remove.
Description Removes an item from the Menu.

738 MENU

10 July 2002 22:24

public synchronized void remove (MenuComponent component)

Parameters component The element to remove.
Implements MenuContainer.remove()

Description Removes an item from the Menu.

removeAll

public synchronized void removeAll() �

Description Removes all items from the Menu.

removeNotify

public void removeNotify()

Description Destroys Menu peer, and peers for all MenuItem objects that
appear on it.

See Also
Frame, MenuComponent, MenuContainer, MenuItem, String

19.41 MenuBar

java.lang.Object java.awt.MenuComponent java.awt.MenuBar java.awt.MenuContainer

Description
A MenuBar holds menus. MenuBars are always attached to frames, and displayed
on the top line of the Frame. One menu in a MenuBar may be designated a “help”
menu.

Class Definition
public class java.awt.MenuBar

extends java.awt.MenuComponent

implements java.awt.MenuContainer {

// Constructors

public MenuBar();

// Instance Methods

public synchronized Menu add (Menu m);

public void addNotify();

public int countMenus(); ✩
public void deleteShortcut (MenuShortcut s); �

MENUBAR 739

10 July 2002 22:24

public Menu getHelpMenu();

public Menu getMenu (int index);

public int getMenuCount(); �
public MenuItem getShortcutMenuItem (MenuShortcut s); �
public synchronized void remove (int index);

public synchronized void remove (MenuComponent component);

public void removeNotify();

public synchronized void setHelpMenu (Menu m);

public synchronized Enumeration shortcuts(); �
}

Constructors
MenuBar

public MenuBar()

Description Constructs a MenuBar object.

Instance Methods
add

public synchronized Menu add (Menu m)

Parameters m A Menu to add to MenuBar.
Returns Item just added.
Description Adds a new menu to the MenuBar.

addNotify

public void addNotify()

Description Creates MenuBar’s peer and peers of contained menus.

countMenus

public int countMenus() ✩

Returns The number of menus on the menu bar. Replaced by get-

MenuCount().

deleteShortcut

public void deleteShortcut (MenuShortcut s) �

Parameters s The shortcut to remove.
Description Removes a menu shortcut.

740 MENUBAR

10 July 2002 22:24

getHelpMenu

public Menu getHelpMenu()

Returns The menu that was designated the help menu.

getMenu

public Menu getMenu (int index)

Parameters index The position of the Menu to fetch.
Returns The Menu at the designated position.

getMenuCount

public int getMenuCount() �

Returns The number of menus on the menu bar.

getShortcutMenuItem

public MenuItem getShortcutMenuItem (MenuShortcut s) �

Parameters s A menu shortcut.
Returns The corresponding menu item.
Description Finds the MenuItem corresponding to the given MenuShort-

cut, or null if no match is found.

remove

public synchronized void remove (int index)

Parameters index The position of the Menu to remove.
Description Removes a Menu from the MenuBar.

public synchronized void remove (MenuComponent component)

Parameters component The element of the MenuBar to remove.
Implements MenuContainer.remove()

Description Removes a Menu from the MenuBar.

removeNotify

public void removeNotify()

Description Destroys the MenuBar peer, and peers for all Menu objects that
appear on it.

MENUBAR 741

10 July 2002 22:24

setHelpMenu

public synchronized void setHelpMenu (Menu m)

Parameters m Menu to designate as the help menu.
Description Designates a Menu as the MenuBar’s help menu.

shortcuts

public synchronized Enumeration shortcuts() �

Returns An Enumeration of MenuShortcut objects.
Description Returns an Enumeration of all MenuShortcut objects man-

aged by this MenuBar.

See Also
Frame, Menu, MenuComponent, MenuContainer

19.42 MenuComponent

java.lang.Object java.awt.MenuComponent

java.awt.MenuBar

java.awt.io.Serializable

java.awt.MenuItem

Description
The abstract MenuComponent class represents the parent of all menu GUI compo-
nents.

Class Definition
public abstract class java.awt.MenuComponent

extends java.lang.Object

implements java.io.Serializable {

// Instance Methods

public final void dispatchEvent (AWTEvent e); �
public Font getFont();

public String getName(); �
public MenuContainer getParent();

public MenuComponentPeer getPeer(); ✩
public boolean postEvent (Event e); ✩
public void removeNotify();

public void setFont (Font f);

742 MENUBAR

10 July 2002 22:24

public void setName (String name); �
public String toString();

// Protected Instance Methods

protected String paramString(); �
protected void processEvent (AWTEvent e); �

}

Instance Methods
dispatchEvent

public final void dispatchEvent (AWTEvent e)

Parameters e The AWTEvent to process.

Description Tells the menu component to deal with the AWTEvent e.

getFont

public Font getFont()

Returns The font for the current MenuComponent.

getName

public Font getName() �

Returns The name for the current MenuComponent.

getParent

public MenuContainer getParent()

Returns The parent MenuContainer for the MenuComponent.

getPeer

public MenuComponentPeer getPeer() �

Returns A reference to the MenuComponent’s peer.

postEvent

public boolean postEvent (Event e) ✩

Parameters e Event instance to post to component.
Returns Ignored for menus.
Description Tells the Frame that contains the MenuBar containing the

MenuComponent to deal with Event.

MENUCOMPONENT 743

10 July 2002 22:24

removeNotify

public void removeNotify()

Description Removes peer of MenuComponent’s subclass.

setFont

public void setFont (Font f)

Parameters f New font for MenuComponent.
Description Changes the font of the label of the MenuComponent.

setName

public void setName (String name) �

Parameters name New name for MenuComponent.
Description Changes the name of the MenuComponent.

toString

public String toString()

Returns A string representation of the MenuComponent object.

Overrides Object.toString()

Protected Instance Methods
paramString

protected String paramString() �

Returns String with current settings of MenuComponent.
Overrides Component.paramString()

Description Helper method for toString() to generate string of current
settings.

processEvent

protected void processEvent (AWTEvent e) �

Parameters e The event to process.
Description Low-level AWTEvents are passed to this method for processing.

See Also
Event, Font, MenuBar, MenuComponentPeer, MenuContainer, MenuItem,
Object, Serializable, String

744 MENUCOMPONENT

10 July 2002 22:24

19.43 MenuContainer

java.awt.Component

java.awt.MenuBar

java.awt.Menu

java.awt.Frame
java.awt.MenuContainer

Description
MenuContainer is an interface that defines the responsibilities for objects that
can have a menu.

Interface Definition
public abstract interface java.awt.MenuContainer

extends java.lang.Object {

// Interface Methods

public abstract Font getFont();

public abstract boolean postEvent (Event e); ✩
public abstract void remove (MenuComponent component);

}

Interface Methods
getFont

public abstract Font getFont()

Returns Current font of the object implementing this method.

postEvent

public abstract boolean postEvent (Event e) ✩

Parameters e Event to post.
Returns Ignores return value.
Description Posts event to the object implementing this method.

MENUCONTAINER 745

10 July 2002 22:24

remove

public abstract void remove (MenuComponent component)

Parameters component Menu object to remove
Description Tells the object implementing this method to remove a menu

component.

See Also
Event, Font, Frame, Menu, MenuBar, MenuComponent, Object

19.44 MenuItem

java.awt.CheckboxMenuItem

java.lang.Object java.awt.MenuComponent java.awt.MenuItem

java.awt.Menu

Description
The MenuItem class represents a selectable item on a menu.

Class Definition
public class java.awt.MenuItem

extends java.awt.MenuComponent {

// Constructors

public MenuItem(); �
public MenuItem (String label);

public MenuItem (String label, MenuShortcut s); �

// Instance Methods

public void addActionListener (ActionListener l); �
public void addNotify();

public void deleteShortcut(); �
public synchronized void disable(); ✩
public synchronized void enable(); ✩
public void enable (boolean condition); ✩
public String getActionCommand(); �
public String getLabel();

public MenuShortcut getShortcut(); �
public boolean isEnabled();

public String paramString();

public void removeActionListener (ActionListener l); �

746 MENUCONTAINER

10 July 2002 22:24

public void setActionCommand (String command); �
public synchronized void setEnabled (boolean b); �
public synchronized void setLabel (String label);

public void setShortcut (MenuShortcut s); �

// Protected Instance Methods

protected final void disableEvents (long eventsToDisable); �
protected final void enableEvents (long eventsToEnable); �
protected void processActionEvent (ActionEvent e); �
protected void processEvent (AWTEvent e); �

}

Constructors
MenuItem

public MenuItem() �

Description Constructs a MenuItem object with no label or shortcut.

public MenuItem (String label)

Parameters label Text that appears on the MenuItem.
Description Constructs a MenuItem object.

public MenuItem (String label, MenuShortcut s) �

Parameters label Text that appears on the MenuItem.
s Shortcut for the MenuItem.

Description Constructs a MenuItem object with the given shortcut.

Instance Methods
addActionListener

public void addActionListener(ActionListener l) �

Parameters l An object that implements the ActionLis-

tener inter face.
Description Add a listener for the action event.

addNotify

public void addNotify()

Description Creates the MenuItem’s peer.

MENUITEM 747

10 July 2002 22:24

deleteShortcut

public void deleteShortcut() �

Description Removes the shortcut associated with this item.

disable

public synchronized void disable() ✩

Description Disables the menu component so that it is unresponsive to user
interactions. Replaced by setEnabled(false).

enable

public synchronized void enable() ✩

Description Enables the menu component so that it is responsive to user
interactions. Replaced by setEnabled(true).

public void enable (boolean condition) ✩

Parameters condition true to enable the menu component; false to
disable it.

Description Enables or disables the menu component, depending on the
condition parameter. Replaced by setEnabled(boolean).

getActionCommand

public String getActionCommand() �

Returns Current action command string.
Description Returns the string used for the action command.

getLabel

public String getLabel()

Returns The current text associated with the MenuItem.

getShortcut

public MenuShortcut getShortcut() �

Returns The current shortcut for this item, or null if there is none.

748 MENUITEM

10 July 2002 22:24

isEnabled

public boolean isEnabled()

Returns true if the menu item is enabled, false other wise.

paramString

public String paramString()

Returns String with current settings of MenuItem.
Description Helper method for toString() to generate string of current

settings.

removeActionListener

public void removeActionListener(ActionListener l) �

Parameters l One of this Button’s ActionListeners.
Description Remove an action event listener.

setActionCommand

public void setActionCommand(String command) �

Parameters command New action command string.
Description Specify the string used for the action command.

setEnabled

public synchronized void setEnabled (boolean b) �

Parameters b true to enable the item, false to disable it.
Description Enables or disables the item. Replaces enable(),

enable(boolean), and disable().

setLabel

public synchronized void setLabel (String label)

Parameters label New text to appear on MenuItem.
Description Changes the label of the MenuItem.

setShortcut

public void setShortcut (MenuShortcut s) �

Parameters s New shortcut for the MenuItem.
Description Changes the shortcut of the MenuItem.

MENUITEM 749

10 July 2002 22:24

Protected Instance Methods
disableEvents

protected final void disableEvents (long eventsToDisable)
�

Parameters eventsToDisable
A value representing certain kinds of events.
This can be constructed by ORing the event
mask constants defined in
java.awt.AWTEvent.

Description By default, a menu item receives events corresponding to the
event listeners that have registered. If a menu item should not
receive events of a certain type, even if there is a listener regis-
tered for that type of event, this method can be used to disable
that event type.

enableEvents

protected final void enableEvents (long eventsToEnable) �

Parameters eventsToDisable
A value representing certain kinds of events.
This can be constructed by ORing the event
mask constants defined in
java.awt.AWTEvent.

Description By default, a menu item receives events corresponding to the
event listeners that have registered. If a menu item should
receive other types of events as well, this method can be used to
get them.

processActionEvent

protected void processActionEvent (ActionEvent e) �

Parameters e The action event to process.
Description Action events are passed to this method for processing. Nor-

mally, this method is called by processEvent().

processEvent

protected void processEvent (AWTEvent e) �

Parameters e The event to process.
Description Low-level AWTEvents are passed to this method for processing.

750 MENUITEM

10 July 2002 22:24

See Also
CheckboxMenuItem, Menu, MenuComponent, MenuShortcut, String

19.45 MenuShortcut �

java.lang.Object java.awt.MenuShortcut java.io.Serializable

Description
A MenuShortcut is used to associate a keystroke with a menu item. MenuShort-
cuts are constructed using their corresponding key; they are associated with menu
items via MenuItem.setShortcut(MenuShortcut).

Class Definition
public class java.awt.MenuShortcut

extends java.awt.Event {

// Constructors

public MenuShortcut (int key);

public MenuShortcut (int key, boolean useShiftModifier);

// Instance Methods

public boolean equals (MenuShortcut s);

public int getKey();

public String toString();

public boolean usesShiftModifier();

// Protected Instance Methods

protected String paramString();

}

Constructors
MenuShortcut

public MenuShortcut (int key)

Parameters key A keycode like those returned with key press
Event objects.

Description Constructs a MenuShortcut object for the given key.

MENUSHORTCUT 751

10 July 2002 22:24

public MenuShortcut (int key, boolean useShiftModifier)

Parameters key A keycode like those returned with key press
Event objects.

useShiftModifier
true if the Shift key must be used, false other-
wise.

Description Constructs a MenuShortcut object with the given values.

Instance Methods
equals

public boolean equals (MenuShortcut s)

Parameters s The MenuShortcut to compare.
Returns true if s is equal to this MenuShortcut, false other wise.

getKey

public int getKey()

Returns The key for this MenuShortcut.

toString

public String toString()

Returns A string representation of the MenuShortcut object.
Overrides Event.toString()

usesShiftModifier

public boolean usesShiftModifier()

Returns true if this MenuShortcut must be invoked with the Shift key
pressed, false other wise.

Protected Instance Methods
paramString

protected String paramString()

Returns String with current settings of MenuShortcut.
Overrides Event.paramString()

Description Helper method for toString() to generate string of current
settings.

752 MENUSHORTCUT

10 July 2002 22:24

See Also
Event, MenuItem

19.46 Panel

java.awt.Component java.awt.Container

java.applet.Appletjava.awt.Panel

java.lang.Object

Description
The Panel class provides a generic Container within an existing display area.

Class Definition
public class java.awt.Panel

extends java.awt.Container {

// Constructors

public Panel();

public Panel(LayoutManager layout); �

// Instance Methods

public void addNotify();

}

Constructors
Panel

public Panel()

Description Constructs a Panel object.

public Panel (LayoutManager layout) �

Description Constructs a Panel object with the specified layout manager.

PANEL 753

10 July 2002 22:24

Instance Methods
addNotify

public void addNotify()

Overrides Container.addNotify()

Description Creates Panel’s peer and peers of contained components.

See Also
Applet, Container

19.47 Point

java.lang.Object java.awt.Point java.io.Serializable

Description
The Point class encapsulates a pair of x and y coordinates within a single object.

Class Definition
public class java.awt.Point

extends java.lang.Object

implements java.io.Serializable {

// Variables

public int x;

public int y;

// Constructors

public Point(); �
public Point (int width, int height);

public Point (Point p); �

// Instance Methods

public boolean equals (Object object);

public Point getLocation(); �
public int hashCode();

public void move (int x, int y);

public void setLocation (int x, int y); �
public void setLocation (Point p); �
public String toString();

public void translate (int deltax, int deltay);

}

754 PANEL

10 July 2002 22:24

Variables
x

public int x

The coordinate that represents the horizontal position.

y

public int y

The coordinate that represents the vertical position.

Constructors
Point

public Point() �

Description Constructs a Point object initialized to (0, 0).

public Point (int x, int y)

Parameters x Coordinate that represents the horizontal posi-
tion.

y Coordinate that represents the vertical position.
Description Constructs a Point object with an initial position of (x, y).

public Point (Point p) �

Parameters p Initial position.
Description Constructs a Point object with the same position as p.

Instance Methods
equals

public boolean equals (Object object)

Parameters object The object to compare.
Returns true if both points have the same x and y coordinates, false

other wise.
Overrides Object.equals()

Description Compares two different Point instances for equivalence.

getLocation

public Point getLocation() �

Returns Position of this point.
Description Gets the current position of this Point.

POINT 755

10 July 2002 22:24

hashCode

public int hashCode()

Returns A hashcode to use the Point is used as a key in a Hashtable.
Overrides Object.hashCode()

Description Generates a hashcode for the Point.

move

public void move (int x, int y)

Parameters x The new x coordinate.
y The new y coordinate.

Description Changes the Point’s location to (x, y).

setLocation

public void setLocation (int x, int y) �

Parameters x The new x coordinate.
y The new y coordinate.

Description Changes the Point’s location to (x, y).

public void setLocation (Point p) �

Parameters p The new location.
Description Changes the Point’s location to p.

toString

public String toString()

Returns A string representation of the Point object.
Overrides Object.toString()

translate

public void translate (int deltax, int deltay)

Parameters deltax Amount to move horizontally.
deltay Amount to move vertically.

Description Moves the Point to the location (x+deltax, y+deltay).

See Also
Object, String

756 POINT

10 July 2002 22:24

19.48 Polygon

java.lang.Object

java.awt.Shape

java.awt.Polygon java.io.Serializable

Description
The Polygon class encapsulates a collection of points used to create a series of
line segments.

Class Definition
public class java.awt.Polygon

extends java.lang.Object

implements java.awt.Shape, java.io.Serializable {

// Variables

protected Rectangle bounds; �
public int npoints;

public int xpoints[];

public int ypoints[];

// Constructors

public Polygon();

public Polygon (int xpoints[], int ypoints, int npoints);

// Instance Methods

public void addPoint (int x, int y);

public boolean contains (int x, int y); �
public boolean contains (Point p); �
public Rectangle getBoundingBox(); ✩
public Rectangle getBounds(); �
public boolean inside (int x,int y); ✩
public void translate (int deltaX, int deltaY); �

}

POL YGON 757

10 July 2002 22:24

Variables
bounds

protected Rectangle bounds �

The rectangle that describes the boundaries of the Polygon.

npoints

public int npoints

The number of elements to use in the xpoints and ypoints arrays.

xpoints

public int xpoints[]

The array of x coordinates for each point.

ypoints

public int ypoints[]

The array of y coordinates for each point.

Constructors
Polygon

public Polygon()

Description Constructs an empty Polygon object with no points.

public Polygon (int xPoints[], int yPoints[], int
numPoints)

Parameters xPoints[] The initial array of x coordinates for each point.
yPoints[] The initial array of y coordinates for each point.
numPoints The number of elements in both xPoints and

yPoints arrays to use.

Throws ArrayIndexOutOfBoundsException

If numPoints > xPoints.length or num-

Points > yPoints.length.

Description Constructs a Polygon object with the set of points provided.

758 POL YGON

10 July 2002 22:24

Instance Methods
addPoint

public void addPoint (int x, int y)

Parameters x The x coordinate of the point to be added.
y The y coordinate of the point to be added.

Description Adds the point (x, y) to the end of the list of points for the
Polygon.

contains

public boolean contains (int x, int y) �

Parameters x The x coordinate to test.
y The y coordinate to test.

Returns true if the Polygon contains the point; false other wise.

public boolean contains (Point p) �

Parameters p The point to be tested.
Returns true if the Polygon contains the point; false other wise.

getBoundingBox

public Rectangle getBoundingBox() ✩

Returns Bounding Rectangle of the points within the Polygon.
Description Returns the smallest Rectangle that contains all the points

within the Polygon. Replaced by getBounds().

getBounds

public Rectangle getBounds() �

Implements Shape.getBounds()

Returns Bounding Rectangle of the points within the Polygon.
Description Returns the smallest Rectangle that contains all the points

within the Polygon.

inside

public boolean inside (int x,int y) ✩

Parameters x The x coordinate of the point to be checked.
y The y coordinate of the point to be checked.

Returns true if (x, y) within Polygon, false other wise.
Description Checks to see if the (x, y) point is within an area that would be

filled if the Polygon was drawn with Graphics.fillPoly-

gon(). Replaced by contains(int, int).

POL YGON 759

10 July 2002 22:24

translate

public void translate (int deltaX, int deltaY) �

Parameters deltaX Amount to move horizontally.
deltaY Amount to move vertically.

Description Moves the Polygon to the location (x+deltaX, y+deltaY).

See Also
Graphics, Object, Rectangle

19.49 PopupMenu �

java.awt.Menu java.awt.PopupMenujava.awt.MenuItem

java.lang.Object java.awt.MenuComponent

Description
A PopupMenu is a menu that can be popped up on a Component.

Class Definition
public class java.awt.PopupMenu

extends java.awt.Menu {

// Constructors

public PopupMenu();

public PopupMenu (String label);

// Instance Methods

public synchronized void addNotify();

public void show (Component origin, int x, int y);

}

Constructors
PopupMenu

public PopupMenu()

Description Constructs a PopupMenu object.

760 POL YGON

10 July 2002 22:24

public PopupMenu (String label)

Parameters label Text that appears on Menu.
Description Constructs a PopupMenu object with the given label.

Instance Methods
addNotify

public synchronized void addNotify()

Overrides Menu.addNotify()

Description Creates a PopupMenu peer.

show

public void show (Component origin, int x, int y)

Parameters origin The Component upon which the PopupMenu

will be displayed.
x The PopupMenu’s horizontal position on the

component.
y The PopupMenu’s vertical position on the com-

ponent.
Description Shows the menu on the given Component. The origin speci-

fied must be contained in the hierarchy of the PopupMenu’s
parent component, which is determined by the call to Compo-

nent.add(PopupMenu).

19.50 PrintGraphics �

java.awt.PrintGraphics

Description
PrintGraphics is an interface for classes that provide a printing graphics con-
text.

Interface Definition
public abstract interface java.awt.PrintGraphics {

// Interface Methods

public abstract PrintJob getPrintJob();

}

PRINTGRAPHICS 761

10 July 2002 22:24

Interface Methods
getPrintJob

public abstract PrintJob getPrintJob()

Returns The PrintJob from which the PrintGraphics object origi-
nated.

See Also
PrintJob

19.51 PrintJob �

java.lang.Object java.awt.PrintJob

Description
PrintJob encapsulates printing information. When you call Toolkit.get-

PrintJob(), this is the object that is returned. From the PrintJob, you can
access a Graphics object, which can be used for drawing to the printer.

Class Definition
public abstract class jav.awt.PrintJob

extends java.lang.Object {

// Instance Methods

public abstract void end();

public void finalize();

public abstract Graphics getGraphics();

public abstract Dimension getPageDimension();

public abstract int getPageResolution();

public abstract boolean lastPageFirst();

}

762 PRINTGRAPHICS

10 July 2002 22:24

Instance Methods
end

public abstract void end()

Description Ends printing and cleans up.

finalize

public void finalize()

Overrides Object.finalize()

Description Cleans up when this object is garbage collected.

getGraphics

public abstract Graphics getGraphics()

Returns A Graphics object representing the next page. The object
returned will also implement the PrintGraphics inter face.

Description Returns a Graphics object for printing.

getPageDimension

public abstract Dimension getPageDimension()

Returns The page dimensions in pixels.

getPageResolution

public abstract int getPageResolution

Returns The page resolution, in pixels per inch.

lastPageFirst

public abstract boolean lastPageFirst()

Returns true if pages are printed in reverse order; false other wise.

See Also
Dimension, Graphics, PrintGraphics, Toolkit

PRINTJOB 763

10 July 2002 22:24

19.52 Rectangle

java.lang.Object

java.awt.Shape

java.awt.Rectangle java.io.Serializable

Description
The Rectangle class represents a rectangle by combining its origin (a pair of x
and y coordinates) with its size (a width and a height).

Class Definition
public class java.awt.Rectangle

extends java.lang.Object

implements java.awt.Shape, java.io.Serializable {

// Variables

pubic int height;

public int width;

public int x;

public int y;

// Constructors

public Rectangle();

public Rectangle (int width, int height);

public Rectangle (int x, int y, int width, int height);

public Rectangle (Dimension d);

public Rectangle (Point p);

public Rectangle (Point p, Dimension d);

public Rectangle (Rectangle r); �

// Instance Methods

public void add (int newX, int newY);

public void add (Point p);

public void add (Rectangle r);

public boolean contains (int x, int y); �
public boolean contains (Point p); �
public boolean equals (Object object);

public Rectangle getBounds(); �
public Point getLocation(); �
public Dimension getSize(); �
public void grow (int horizontal, int vertical);

public int hashCode();

public boolean inside (int x, int y); ✩
public Rectangle intersection (Rectangle r);

public boolean intersects (Rectangle r);

764 RECTANGLE

10 July 2002 22:24

public boolean isEmpty();

public void move (int x, int y); ✩
public void reshape (int x, int y, int width, int height); ✩
public void resize (int width, int height); ✩
public void setBounds (Rectangle r); �
public void setBounds (int x, int y, int width, int height); �
public void setLocation (int x, int y); �
public void setLocation (Point p); �
public void setSize (int width, int height); �
public void setSize (Dimension d); �
public String toString();

public void translate (int x, int y);

public Rectangle union (Rectangle r);

}

Variables
height

public int height

The height of the Rectangle.

width

public int width

The width of the Rectangle.

x

public int x

The x coordinate of the Rectangle’s upper left corner (its origin).

y

public int y

The y coordinate of the Rectangle’s upper left corner (its origin).

Constructors
Rectangle

public Rectangle()

Description Constructs an empty Rectangle object with an origin of (0, 0)
and dimensions of 0 x 0.

RECTANGLE 765

10 July 2002 22:24

public Rectangle (int width, int height)

Parameters width width of Rectangle
height height of Rectangle

Description Constructs a Rectangle object with an origin of (0, 0) and
dimensions of width x height.

public Rectangle (int x, int y, int width, int height)

Parameters x x coordinate of the Rectangle’s origin
y y coordinate of the Rectangle’s origin
width width of Rectangle
height height of Rectangle

Description Constructs a Rectangle object with an origin of (x, y) and
dimensions of width x height.

public Rectangle (Dimension d)

Parameters d dimensions of Rectangle
Description Constructs a Rectangle object with an origin of (0, 0) and

dimensions of d.width x d.height.

public Rectangle (Point p)

Parameters p origin of Rectangle
Description Constructs an empty Rectangle object with an origin of (p.x,

p.y) and dimensions of 0 x 0.

public Rectangle (Point p, Dimension d)

Parameters p origin of Rectangle
d dimensions of Rectangle

Description Constructs a Rectangle object with an origin of (p.x, p.y)
and dimensions of d.width x d.height.

public Rectangle (Rectangle r) �

Parameters r original Rectangle
Description Constructs copy of the given Rectangle.

Instance Methods
add

public void add (int newX, int newY)

Parameters newX The x-coordinate of a point to incorporate
within the Rectangle.

766 RECTANGLE

10 July 2002 22:24

newY The y-coordinate of a point to incorporate
within the Rectangle.

Description Extends the Rectangle so that the point (newX, newY) is
within it.

public void add (Point p)

Parameters p The new Point to add to the Rectangle.
Description Extends the Rectangle so that the point p is within it.

public void add (Rectangle r)

Parameters r The Rectangle being added to the current
Rectangle.

Description Extends the Rectangle to include the Rectangle r.

contains

public boolean contains (int x, int y) �

Parameters x The x coordinate to test.
y The y coordinate to test.

Returns true if the Rectangle contains the point; false other wise.

public boolean contains (Point p) �

Parameters p The point to be tested.
Returns true if the Rectangle contains the point; false other wise.

equals

public boolean equals (Object object)

Parameters object The object to compare.
Returns true if both Rectangles have the same origin, width, and

height; false other wise.
Overrides Object.equals(Object)

Description Compares two different Rectangle instances for equivalence.

getBounds

public Rectangle getBounds() �

Implements Shape.getBounds()

Returns Bounding Rectangle.

RECTANGLE 767

10 July 2002 22:24

getLocation

public Point getLocation() �

Returns Position of the rectangle.
Description Gets the current position of this Rectangle.

getSize

public Dimension getSize() �

Returns Dimensions of the rectangle.
Description Gets width and height of the rectangle.

grow

public void grow (int horizontal, int vertical)

Parameters horizontal Amount to extend Rectangle in horizontal
direction on both the left and right sides.

vertical Amount to extend Rectangle in vertical direc-
tion on both the top and the bottom.

Description Increases the rectangle’s dimensions.

hashCode

public int hashCode()

Returns A hashcode to use when using the Rectangle as a key in a
Hashtable.

Overrides Object.hashCode()

Description Generates a hashcode for the Rectangle.

inside

public boolean inside (int x, int y) ✩

Parameters x The x coordinate to check.
y The y coordinate to check.

Returns true if (x, y) falls within the Rectangle, false other wise.
Description Checks to see if the point (x, y) is within the Rectangle.

Replaced by contains(int, int).

768 RECTANGLE

10 July 2002 22:24

intersection

public Rectangle intersection (Rectangle r)

Parameters r Rectangle to add to the current Rectangle.
Returns A new Rectangle consisting of all points in both the current

Rectangle and r.
Description Generates a new Rectangle that is the intersection of r and

the current Rectangle.

intersects

public boolean intersects (Rectangle r)

Parameters r Rectangle to check.
Returns true if any points in r are also in the current Rectangle,

false other wise.
Description Checks to see if r crosses the Rectangle.

isEmpty

public boolean isEmpty()

Returns true if the Rectangle is empty, false other wise.
Description Determines if the rectangle is dimensionless (i.e., width or

height are less than or equal to 0).

move

public void move (int x, int y) ✩

Parameters x The new x coordinate of the Rectangle’s upper
left corner.

y The new y coordinate of the Rectangle’s upper
left corner.

Description Changes the Rectangle’s origin to (x, y). Replaced by set-

Location(int, int).

reshape

public void reshape (int x, int y, int width, int height)
✩

Parameters x The new x coordinate of the Rectangle’s upper
left corner.

y The new y coordinate of the Rectangle’s upper
left corner.

RECTANGLE 769

10 July 2002 22:24

width The new width.
height The new height.

Description Changes Rectangle’s origin and dimensions. Replaced by
setBounds(int, int, int, int).

resize

public void resize (int width, int height) ✩

Parameters width The new width.
height The new height.

Description Changes Rectangle’s dimensions. Replaced by set-

Size(int, int).

setBounds

public void setBounds (Rectangle r) �

Parameters r A Rectangle describing the new bounds.
Description Changes Rectangle’s location and size.

public void setBounds (int x, int y, int width, int
height) [New in 1.1]

Parameters x The new x coordinate of the Rectangle’s upper
left corner.

y The new y coordinate of the Rectangle’s upper
left corner.

width The new width.
height The new height.

Description Changes Rectangle’s location and size.

setLocation

public void setLocation (int x, int y) �

Parameters x New horizontal position.
y New vertical position.

Description Relocates the rectangle.

public void setLocation (Point p) �

Parameters p New position for component.
Description Relocates the rectangle.

770 RECTANGLE

10 July 2002 22:24

setSize

public void setSize (int width, int height) �

Parameters width New width.
height New height.

Description Resizes the rectangle.

public void setSize (Dimension d) �

Parameters d New dimensions.
Description Resizes the rectangle.

toString

public String toString()

Returns A string representation of the Rectangle object.
Overrides Object.toString()

translate

public void translate (int deltax, int deltay)

Parameters deltax Amount to move Rectangle horizontally.
deltay Amount to move Rectangle vertically.

Description Moves the Rectangle’s origin to (x+deltax, y+deltay).

union

public Rectangle union (Rectangle r)

Parameters r Rectangle to determine union with.
Returns The smallest Rectangle containing both r and the current

Rectangle.
Description Generates a new Rectangle by combining r and the current

Rectangle.

See Also
Dimension, Object, Point, String

19.53 ScrollPane �

Description
The ScrollPane class provides automatic scrolling of a child component.

SCROLLPANE 771

10 July 2002 22:24

java.awt.Component java.awt.Container java.awt.ScrollPanejava.lang.Object

Class Definition
public class java.awt.ScrollPane

extends java.awt.Container {

// Constants

public final static int SCROLLBARS_ALWAYS;

public final static int SCROLLBARS_AS_NEEDED;

public final static int SCROLLBARS_NEVER;

// Constructors

public ScrollPane();

public ScrollPane (int scrollbarDisplayPolicy);

// Public Instance Methods

public void addNotify();

public void doLayout();

public Adjustable getHAdjustable();

public int getHScrollbarHeight();

public Point getScrollPosition();

public int getScrollbarDisplayPolicy();

public Adjustable getVAdjustable();

public int getVScrollbarWidth();

public Dimension getViewportSize();

public void layout(); ✩
public String paramString();

public void printComponents (Graphics g);

public final void setLayout (LayoutManager mgr);

public void setScrollPosition (int x, int y);

public void setScrollPosition (Point p);

//Protected Instance Methods

protected final void addImpl (Component comp, Object constraints,

int index);

}

772 SCROLLPANE

10 July 2002 22:24

Constants
SCROLLBARS_ALWAYS

public final static int SCROLLBARS_ALWAYS

Always show the scrollbars.

SCROLLBARS_AS_NEEDED

public final static int SCROLLBARS_AS_NEEDED

Only show the scrollbars if the contents of the ScrollPane are larger than
what is visible.

SCROLLBARS_NEVER

public final static int SCROLLBARS_NEVER

Don’t ever show the scrollbars. The ScrollPane can still be scrolled program-
matically.

Constructors
ScrollPane

public ScrollPane()

Description Constructs a ScrollPane object with SCROLL-

BARS_AS_NEEDED.

public ScrollPane (int scrollbarDisplayPolicy)

Parameters scrollbarDisplayPolicy
One of the SCROLLBARS_ constants.

Description Constructs a ScrollPane object with the specified scrollbar
display policy.

Instance Methods
addImpl

protected final void addImpl (Component comp, Object
constraints, int index)

Parameters comp The component to add to the Scrollpane.
constraints Layout constraints; ignored.
index The position at which to add the component;

should always be less than or equal to 0.
Returns The component that was added.
Overrides Container.addImpl (Component, Object, int)

SCROLLPANE 773

10 July 2002 22:24

Throws IllegalArgumentException
If pos is greater than 0.

Description Adds a child component to the Scrollpane. If there already
was a child component, it is replaced by the new component.

addNotify

public void addNotify()

Overrides Container.addNotify()

Description Creates ScrollPane’s peer.

doLayout

public void doLayout()

Overrides Container.doLayout()

Description Lays out the ScrollPane. Resizes the child component to its
preferred size.

getHAdjustable

public Adjustable getHAdjustable()

Returns The object implementing the Adjustable inter face that is
used to adjust the ScrollPane horizontally. Usually this is a
Scrollbar.

getHScrollbarHeight

public int getHScrollbarHeight()

Returns The height a horizontal scrollbar would occupy, regardless of
whether it’s shown or not.

getScrollPosition

public Point getScrollPosition()

Returns Returns the position within the child component that is dis-
played at 0, 0 in the ScrollPane.

getScrollbarDisplayPolicy

public int getScrollbarDisplayPolicy()

Returns The display policy for the scrollbars (one of the SCROLLBARS_

constants).

774 SCROLLPANE

10 July 2002 22:24

getVAdjustable

public Adjustable getVAdjustable()

Returns The object implementing the Adjustable inter face that is
used to adjust the ScrollPane vertically. Usually this is a
Scrollbar.

getVScrollbarWidth

public int getVScrollbarWidth()

Returns The width a vertical scrollbar would occupy, regardless of
whether it’s shown or not.

getViewportSize

public Dimension getViewportSize()

Returns The size of the ScrollPane’s port (the area of the child com-
ponent that is shown).

layout

public void layout() ✩

Overrides Container.layout()

Description Lays out component. Replaced by doLayout().

paramString

public String paramString()

Returns String with current settings of ScrollPane.
Overrides Container.paramString()

Description Helper method for toString() to generate string of current
settings.

printComponents

public void printComponents (Graphics g)

Parameters g Graphics context.
Overrides Container.printComponents(Graphics)

Description Prints the ScrollPane’s child component.

setLayout

SCROLLPANE 775

10 July 2002 22:24

public void setLayout (LayoutManager manager)

Parameters manager Ignored.
Overrides Container.setLayout(LayoutManager)

Description Does nothing. No layout manager is needed because there is
only one child component.

setScrollPosition

public void setScrollPosition (int x, int y)

Parameters x New horizontal position.
y New vertical position.

Throws IllegalArgumentException
If the point given is not valid.

Description Scroll to the given position in the child component.

public void setScrollPosition (Point p)

Parameters p New position.
Throws IllegalArgumentException

If the point given is not valid.
Description Scroll to the given position in the child component.

See Also
Adjustable, Container, Point, Scrollbar

19.54 Scrollbar

java.awt.Componentjava.lang.Object java.awt.Adjustablejava.awt.Scrollbar

Description
The Scrollbar is a Component that provides the means to get and set values
within a predetermined range. For example, a scrollbar could be used for a vol-
ume control. Scrollbars are most frequently used to help users manipulate areas
too large to be displayed on the screen (pre version 1.1) or to set a value within an
integer range.

776 SCROLLPANE

10 July 2002 22:24

Class Definition
public class java.awt.Scrollbar

extends java.awt.Component

implements java.awt.Adjustable {

// Constants

public final static int HORIZONTAL;

public final static int VERTICAL;

// Constructors

public Scrollbar();

public Scrollbar (int orientation);

public Scrollbar (int orientation, int value, int visible, int minimum,

int maximum);

// Instance Methods

public void addAdjustmentListener (AdjustmentListener l); �
public void addNotify();

public int getBlockIncrement(); �
public int getLineIncrement(); ✩
public int getMaximum();

public int getMinimum();

public int getOrientation();

public int getPageIncrement(); ✩
public int getUnitIncrement(); �
public int getValue();

public int getVisible(); ✩
public int getVisibleAmount(); �
public void removeAdjustmentListener (AdjustmentListener l); �
public synchronized void setBlockIncrement (int v); �
public void setLineIncrement (int amount); ✩
public synchronized void setMaximum (int newMaximum); �
public synchronized void setMinimum (int newMinimum); �
public synchronized void setOrientation (int orientation); �
public void setPageIncrement (int amount); ✩
public synchronized void setUnitIncrement(int v); �
public synchronized void setValue (int value);

public synchronized void setValues (int value, int visible,

int minimum, int maximum);

public synchronized void setVisibleAmount (int newAmount); �

// Protected Instance Methods

protected String paramString();

protected void processAdjustmentEvent (AdjustmentEvent e); �
protected void processEvent (AWTEvent e); �

}

SCROLLBAR 777

10 July 2002 22:24

Constants
HORIZONTAL

public final static int HORIZONTAL

Constant used for a Scrollbar with a horizontal orientation.

VERTICAL

public final static int VERTICAL

Constant used for a Scrollbar with a vertical orientation.

Constructors
Scrollbar

public Scrollbar()

Description Constructs a vertical Scrollbar object; slider size, minimum
value, maximum value, and initial value are all zero.

public Scrollbar (int orientation)

Parameters orientation Scrollbar constant designating direction.
Throws IllegalArgumentException

If orientation is invalid.
Description Constructs a Scrollbar object, in the designated direction;

slider size, minimum value, maximum value, and initial value
are all zero.

public Scrollbar (int orientation, int value, int visible,
int minimum, int maximum)

Parameters orientation Scrollbar constant designating direction.
value Initial value of Scrollbar.
visible Initial slider size.
minimum Initial minimum value.
maximum Initial maximum value.

Throws IllegalArgumentException
If orientation is invalid.

Description Constructs a Scrollbar object with the given values.

Instance Methods
addAdjustmentListener

778 SCROLLBAR

10 July 2002 22:24

public void addAdjustmentListener (AdjustmentListener l)
�

Parameters l An object that implements the Adjust-

mentListener inter face.
Implements Adjustable.addAdjustmentListener()

Description Add a listener for adjustment event.

addNotify

public void addNotify()

Overrides Component.addNotify()

Description Creates Scrollbar’s peer.

getBlockIncrement

public int getBlockIncrement() �

Implements Adjustable.getBlockIncrement()

Returns The amount to scroll when a paging area is selected.

getLineIncrement

public int getLineIncrement() ✩

Returns The amount to scroll when one of the arrows at the ends of the
scrollbar is selected. Replaced by getUnitIncrement().

getMaximum

public int getMaximum()

Implements Adjustable.getMaximum()

Returns The maximum value that the Scrollbar can take.

getMinimum

public int getMinimum()

Implements Adjustable.getMinimum()

Returns The minimum value that the Scrollbar can take.

getOrientation

public int getOrientation()

Implements Adjustable.getOrientation()

Returns A constant representing the direction of the Scrollbar.

SCROLLBAR 779

10 July 2002 22:24

getPageIncrement

public int getPageIncrement() ✩

Returns The amount to scroll when a paging area is selected. Replaced
with getBlockIncrement().

getUnitIncrement

public int getUnitIncrement() �

Implements Adjustable.getUnitIncrement()

Returns The amount to scroll when one of the arrows at the ends of the
scrollbar is selected.

getValue

public int getValue()

Implements Adjustable.getValue()

Returns The current setting for the Scrollbar.

getVisible

public int getVisible() ✩

Returns The current visible setting (i.e., size) for the slider. Replaced by
getVisibleAmount().

getVisibleAmount

public int getVisibleAmount() �

Implements Adjustable.getVisibleAmount()

Returns The current visible setting (i.e., size) for the slider.

removeAdjustmentListener

public void removeAdjustmentListener (AdjustmentListener
l) �

Parameters l One of this Scrollbar’s AdjustmentListen-
ers.

Implements Adjustable.removeAdjustmentListener()

Description Remove an adjustment event listener.

setBlockIncrement

780 SCROLLBAR

10 July 2002 22:24

public synchronized void setBlockIncrement (int amount) �

Parameters amount New paging increment amount.
Implements Adjustable.setBlockIncrement()

Description Changes the block increment amount for the Scrollbar; the
default block increment is 10.

setLineIncrement

public void setLineIncrement (int amount) ✩

Parameters amount New line increment amount.
Description Changes the line increment amount for the Scrollbar. The

default line increment is 1. Replaced by setUnitIncre-

ment(int).

setMaximum

public synchronized void setMaximum (int newMaximum) �

Parameters newMaximum New maximum value.
Implements Adjustable.setMaximum()

Description Changes the maximum value for the Scrollbar.

setMinimum

public synchronized void setMinimum (int newMinimum) �

Parameters newMinimum New minimum value.
Implements Adjustable.setMinimum()

Description Changes the minimum value for the Scrollbar.

setOrientation

public synchronized void setOrientation (int orientation)
�

Parameters orientation One of the orientation constants HORIZONTAL

or VERTICAL.
Description Changes the orientation of the Scrollbar.

setPageIncrement

public void setPageIncrement (int amount) ✩

Parameters amount New paging increment amount.
Description Changes the paging increment amount for the Scrollbar; the

default page increment is 10. Replaced by setBlockIncre-

ment(int).

SCROLLBAR 781

10 July 2002 22:24

setUnitIncrement

public synchronized void setUnitIncrement (int amount) �

Parameters amount New line increment amount.
Implements Adjustable.setUnitIncrement()

Description Changes the unit increment amount for the Scrollbar. The
default unit increment is 1.

setValue

public synchronized void setValue (int value)

Parameters value New Scrollbar value.
Implements Adjustable.setValue()

Description Changes the current value of the Scrollbar.

setValues

public synchronized void setValues (int value, int
visible, int minimum, int maximum)

Parameters value New Scrollbar value.
visible New slider width.
minimum New minimum value for Scrollbar.
maximum New maximum value for Scrollbar.

Description Changes the settings of the Scrollbar to the given amounts.

setVisibleAmount

public synchronized void setVisibleAmount (int newAmount)
�

Parameters newAmount New amount visible.
Implements Adjustable.setVisibleAmount()

Description Changes the current visible amount of the Scrollbar.

Protected Instance Methods
paramString

protected String paramString()

Returns String with current settings of Scrollbar.
Overrides Component.paramString()

Description Helper method for toString() to generate string of current
settings.

782 SCROLLBAR

10 July 2002 22:24

processAdjustmentEvent

protected void processAdjustmentEvent (AdjustmentEvent e)
�

Parameters e The adjustment event to process.
Description Adjustment events are passed to this method for processing.

Normally, this method is called by processEvent().

processEvent

protected void processEvent (AWTEvent e) �

Parameters e The event to process.
Description Low level AWTEvents are passed to this method for processing.

See Also
Adjustable, Component, String

19.55 Shape �

java.awt.Shape

java.awt.Rectangle

java.awt.Polygon

Description
Shape is an interface describing a two-dimensional geometric shape.

Interface Definition
public abstract interface java.awt.Shape {

// Interface Methods

public abstract Rectangle getBounds();

}

Interface Methods
getBounds

public abstract Rectangle getBounds()

Returns A Rectangle that completely encloses the shape.

SHAPE 783

10 July 2002 22:24

See Also
Polygon, Rectangle

19.56 SystemColor �

java.lang.Object java.awt.Color java.io.SerializableSystemColor

Description
SystemColor provides information on the colors that the windowing system uses
to display windows and other graphic components. Most windowing systems allow
the user to choose different color schemes; SystemColor enables programs to
find out what colors are in use in order to paint themselves in a consistent manner.

Class Definition
public final class java.awt.SystemColor

extends java.awt.Color

implements java.io.Serializable {

// Constants

public final static int ACTIVE_CAPTION;

public final static int ACTIVE_CAPTION_BORDER;

public final static int ACTIVE_CAPTION_TEXT;

public final static int CONTROL;

public final static int CONTROL_DK_SHADOW;

public final static int CONTROL_HIGHLIGHT;

public final static int CONTROL_LT_HIGHLIGHT;

public final static int CONTROL_SHADOW;

public final static int CONTROL_TEXT;

public final static int DESKTOP;

public final static int INACTIVE_CAPTION;

public final static int INACTIVE_CAPTION_BORDER;

public final static int INACTIVE_CAPTION_TEXT;

public final static int INFO;

public final static int INFO_TEXT;

public final static int MENU;

public final static int MENU_TEXT;

public final static int NUM_COLORS;

public final static int SCROLLBAR;

public final static int TEXT;

public final static int TEXT_HIGHLIGHT;

public final static int TEXT_HIGHLIGHT_TEXT;

public final static int TEXT_INACTIVE_TEXT;

public final static int TEXT_TEXT;

784 SHAPE

10 July 2002 22:24

public final static int WINDOW;

public final static int WINDOW_BORDER;

public final static int WINDOW_TEXT;

public final static SystemColor activeCaption;

public final static SystemColor activeCaptionBorder;

public final static SystemColor activeCaptionText;

public final static SystemColor control;

public final static SystemColor controlDkShadow;

public final static SystemColor controlHighlight;

public final static SystemColor controlLtHighlight;

public final static SystemColor controlShadow;

public final static SystemColor controlText;

public final static SystemColor desktop;

public final static SystemColor inactiveCaption;

public final static SystemColor inactiveCaptionBorder;

public final static SystemColor inactiveCaptionText;

public final static SystemColor info;

public final static SystemColor infoText;

public final static SystemColor menu;

public final static SystemColor menuText;

public final static SystemColor scrollbar;

public final static SystemColor text;

public final static SystemColor textHighlight;

public final static SystemColor textHighlightText;

public final static SystemColor textInactiveText;

public final static SystemColor textText;

public final static SystemColor window;

public final static SystemColor windowBorder;

public final static SystemColor windowText;

// Public Instance Methods

public int getRGB();

public String toString();

}

Constants
ACTIVE_CAPTION

public static final int ACTIVE_CAPTION

ACTIVE_CAPTION_BORDER

public static final int ACTIVE_CAPTION_BORDER

SYSTEMCOLOR 785

10 July 2002 22:24

ACTIVE_CAPTION_TEXT

public static final int ACTIVE_CAPTION_TEXT

CONTROL

public static final int CONTROL

CONTROL_DK_SHADOW

public static final int CONTROL_DK_SHADOW

CONTROL_HIGHLIGHT

public static final int CONTROL_HIGHLIGHT

CONTROL_LT_HIGHLIGHT

public static final int CONTROL_LT_HIGHLIGHT

CONTROL_SHADOW

public static final int CONTROL_SHADOW

CONTROL_TEXT

public static final int CONTROL_TEXT

DESKTOP

public static final int DESKTOP

INACTIVE_CAPTION

public static final int INACTIVE_CAPTION

INACTIVE_CAPTION_BORDER

public static final int INACTIVE_CAPTION_BORDER

INACTIVE_CAPTION_TEXT

public static final int INACTIVE_CAPTION_TEXT

INFO

786 SYSTEMCOLOR

10 July 2002 22:24

public static final int INFO

INFO_TEXT

public static final int INFO_TEXT

MENU

public static final int MENU

MENU_TEXT

public static final int MENU_TEXT

NUM_COLORS

public static final int NUM_COLORS

SCROLLBAR

public static final int SCROLLBAR

TEXT

public static final int TEXT

TEXT_HIGHLIGHT

public static final int TEXT_HIGHLIGHT

TEXT_HIGHLIGHT_TEXT

public static final int TEXT_HIGHLIGHT_TEXT

TEXT_INACTIVE_TEXT

public static final int TEXT_INACTIVE_TEXT

TEXT_TEXT

public static final int TEXT_TEXT

WINDOW

SYSTEMCOLOR 787

10 July 2002 22:24

public static final int WINDOW

WINDOW_BORDER

public static final int WINDOW_BORDER

WINDOW_TEXT

public static final int WINDOW_TEXT

activeCaption

public static final SystemColor activeCaption

Background color for captions in window borders.

activeCaptionBorder

public static final SystemColor activeCaptionBorder

Border color for captions in window borders.

activeCaptionText

public static final SystemColor activeCaptionText

Text color for captions in window borders.

control

public static final SystemColor control

Background color for controls.

controlDkShadow

public static final SystemColor controlDkShadow

Dark shadow color for controls.

controlHighlight

public static final SystemColor controlHighlight

Highlight color for controls.

controlLtHighlight

public static final SystemColor controlLtHighlight

Light highlight color for controls.

788 SYSTEMCOLOR

10 July 2002 22:24

controlShadow

public static final SystemColor controlShadow

Shadow color for controls.

controlText

public static final SystemColor controlText

Text color for controls.

desktop

public static final SystemColor desktop

Desktop background color.

inactiveCaption

public static final SystemColor inactiveCaption

Background color for inactive captions in window borders.

inactiveCaptionBorder

public static final SystemColor inactiveCaptionBorder

Border color for inactive captions in window borders.

inactiveCaptionText

public static final SystemColor inactiveCaptionText

Text color for inactive captions in window borders.

info

public static final SystemColor info

Background color for informational text.

infoText

public static final SystemColor infoText

Text color for informational text.

menu

public static final SystemColor menu

Background color for menus.

SYSTEMCOLOR 789

10 July 2002 22:24

menuText

public static final SystemColor menuText

Text color for menus.

scrollbar

public static final SystemColor scrollbar

Background color for scrollbars.

text

public static final SystemColor text

Background color for text components.

textHighlight

public static final SystemColor textHighlight

Background color for highlighted text.

textHighlightText

public static final SystemColor textHighlightText

Text color for highlighted text.

textInactiveText

public static final SystemColor textInactiveText

Text color for inactive text.

textText

public static final SystemColor textText

Text color for text components.

window

public static final SystemColor window

Background color for windows.

windowBorder

public static final SystemColor windowBorder

Border color for windows.

790 SYSTEMCOLOR

10 July 2002 22:24

windowText

public static final SystemColor windowText

Text color for windows.

Instance Methods
getRGB

public int getRGB()

Returns Current color as a composite value
Overrides Color.getRGB()

Description Gets integer value of current system color.

toString

public String toString()

Returns A string representation of the SystemColor object.
Overrides Color.toString()

See Also
Color, Serializable, String

19.57 TextArea

java.awt.TextAreajava.awt.TextComponentjava.lang.Object java.awt.Component

Description
The TextArea class provides a multi-line Component for textual user input.

Class Definition
public class java.awt.TextArea

extends java.awt.TextComponent {

// Constants

public final static int SCROLLBARS_BOTH; �
public final static int SCROLLBARS_HORIZONTAL_ONLY; �
public final static int SCROLLBARS_NONE; �
public final static int SCROLLBARS_VERTICAL_ONLY; �

// Constructors

public TextArea();

public TextArea (int rows, int columns);

TEXTAREA 791

10 July 2002 22:24

public TextArea (String text);

public TextArea (String text, int rows, int columns);

public TextArea (String text, int rows, int columns, int scrollbars); �

// Instance Methods

public void addNotify();

public synchronized void append (String string); �
public void appendText (String string); ✩
public int getColumns();

public Dimension getMinimumSize(); �
public Dimension getMinimumSize (int rows, int columns); �
public Dimension getPreferredSize(); �
public Dimension getPreferredSize (int rows, int columns); �
public int getRows();

public int getScrollbarVisibility(); �
public synchronized void insert (String string, int position); �
public void insertText (String string, int position); ✩
public Dimension minimumSize(); ✩
public Dimension minimumSize (int rows, int columns); ✩
public Dimension preferredSize(); ✩
public Dimension preferredSize (int rows, int columns); ✩
public synchronized void replaceRange (String str, int start, int end); �
public void replaceText (String string, int startPosition, int endPosition); ✩
public void setColumns (int columns); �
public void setRows (int rows); �

// Protected Instance Methods

protected String paramString();

}

Constants
SCROLLBARS_BOTH

public final static int SCROLLBARS_BOTH �

Show both the horizontal and vertical scrollbars.

SCROLLBARS_HORIZONTAL_ONLY

public final static int SCROLLBARS_HORIZONTAL_ONLY �

Show the horizontal scrollbar.

SCROLLBARS_NONE

792 TEXTAREA

10 July 2002 22:24

public final static int SCROLLBARS_NONE �

Show no scrollbars.

SCROLLBARS_VERTICAL_ONLY

public final static int SCROLLBARS_VERTICAL_ONLY �

Show the vertical scrollbar.

Constructors
TextArea

public TextArea()

Description Constructs a TextArea object with the default size and no ini-
tial content. The default size of a text area varies widely from
platform to platform, so it’s best to avoid this constructor.

public TextArea (int rows, int columns)

Parameters rows Requested number of displayed rows.
columns Requested number of displayed columns.

Description Constructs a TextArea object of the given size and no initial
content.

public TextArea (String text)

Parameters text Initial text for TextArea.
Description Constructs a TextArea object with the given initial content.

public TextArea (String text, int rows, int columns)

Parameters text Initial text for TextArea.
rows Requested number of displayed rows.
columns Requested number of displayed columns.

Description Constructs a TextArea object with the given content and size.

public TextArea (String text, int rows, int columns, int
scrollbars) �

Parameters text Initial text for TextArea.
rows Requested number of displayed rows.
columns Requested number of displayed columns.
scrollbars Requested scrollbar visibility. Use one of the

constants defined.
Description Constructs a TextArea object with the given content, size, and

scrollbar visibility.

TEXTAREA 793

10 July 2002 22:24

Instance Methods
addNotify

public void addNotify()

Overrides Component.addNotify()

Description Creates TextArea’s peer.

append

public synchronized void append (String string) �

Parameters string Content to append to the end of the TextArea.
Description Appends the given text string to the text already displayed in

the TextArea.

appendText

public void appendText (String string) ✩

Parameters string Content to append to end of TextArea.
Description Replaced by append(String).

getColumns

public int getColumns()

Returns The width of the TextArea in columns.

getMinimumSize

public Dimension getMinimumSize() �

Returns The minimum dimensions of the TextArea.

public Dimension getMinimumSize (int rows, int columns) �

Parameters rows Number of rows within TextArea to size.
columns Number of columns within TextArea to size.

Returns The minimum dimensions of a TextArea of the given size.

getPreferredSize

public Dimension getPreferredSize() �

Returns The preferred dimensions of the TextArea.

public Dimension getPreferredSize (int rows, int columns)
�

794 TEXTAREA

10 July 2002 22:24

Parameters rows Number of rows within TextArea to size.
columns Number of columns within TextArea to size.

Returns The preferred dimensions of a TextArea of the given size.

getRows

public int getRows()

Returns The height of the TextArea in rows.

getScrollbarVisibility

public int getScrollbarVisibility() �

Returns One of the SCROLLBAR_ constants indicating which scrollbars
are visible.

insert

public synchronized void insert (String string, int
position) �

Parameters string Content to place within TextArea content.
position Location to insert content.

Description Places additional text within the TextArea at the given posi-
tion.

insertText

public void insertText (String string, int position) ✩

Parameters string Content to place within TextArea content.
position Location to insert content.

Description Places additional text within the TextArea at the given posi-
tion. Replaced by insert(String, int).

minimumSize

public Dimension minimumSize() ✩

Returns The minimum dimensions of the TextArea. Replaced by
getMinimumSize().

public Dimension minimumSize (int rows, int columns) ✩

Parameters rows Number of rows within TextArea to size.
columns Number of columns within TextArea to size.

Returns The minimum dimensions of a TextArea of the given size.
Replaced by getMinimumSize(int, int).

TEXTAREA 795

10 July 2002 22:24

preferredSize

public Dimension preferredSize() ✩

Returns The preferred dimensions of the TextArea. Replaced by get-
PreferredSize().

public Dimension preferredSize (int rows, int columns) ✩

Parameters rows Number of rows within TextArea to size.
columns Number of columns within TextArea to size.

Returns The preferred dimensions of a TextArea of the given size.
Replaced by getPreferredSize(int, int).

replaceRange

public synchronized void replaceRange (String str, int
start, int end) �

Parameters str New content to place in TextArea.
start Starting position of content to replace.
end Ending position of content to replace.

Description Replaces a portion of the TextArea’s content with the given
text.

replaceText

public void replaceText (String string, int startPosition,
int endPosition) ✩

Parameters string New content to place in TextArea.
startPosition Starting position of content to replace.
endPosition Ending position of content to replace.

Description Replaces a portion of the TextArea’s content with the given
text. Replaced by replaceRange(String, int, int).

setColumns

public void setColumns (int columns) �

Parameters columns New number of columns.
Throws IllegalArgumentException

If columns is less than zero.
Description Changes the number of columns.

796 TEXTAREA

10 July 2002 22:24

setRows

public void setRows (int rows) �

Parameters rows New number of columns.
Throws IllegalArgumentException

If rows is less than zero.
Description Changes the number of rows.

Protected Instance Methods
paramString

protected String paramString()

Returns String with current settings of TextArea.
Overrides TextComponent.paramString()

Description Helper method for toString() to generate string of current
settings.

See Also
Dimension, TextComponent, String

19.58 TextComponent

java.awt.TextComponentjava.lang.Object java.awt.Component

java.awt.TextArea

java.awt.TextField

Description
The abstract TextComponent class provides the base class for the text input com-
ponents, TextArea and TextField.

Class Definition
public abstract class java.awt.TextComponent

extends java.awt.Component {

// Instance Methods

public synchronized void addTextListener (TextListener l); �
public int getCaretPosition(); �
public synchronized String getSelectedText();

public synchronized int getSelectionEnd();

TEXTCOMPONENT 797

10 July 2002 22:24

public synchronized int getSelectionStart();

public synchronized String getText();

public boolean isEditable();

public void removeNotify();

public void removeTextListener (TextListener l); �
public synchronized void select (int selectionStart, int selectionEnd);

public synchronized void selectAll();

public void setCaretPosition (int position); �
public synchronized void setEditable (boolean state);

public synchronized void setSelectionEnd (int selectionEnd); �
public synchronized void setSelectionStart (int selectionStart); �
public synchronized void setText (String text);

// Protected Instance Methods

protected String paramString();

protected void processEvent (AWTEvent e); �
protected void processTextEvent (TextEvent e); �

}

Instance Methods
addTextListener

public synchronized void addTextListener (TextListener l)
�

Parameters l An object that implements the TextListener

inter face.
Description Add a listener for the text events.

getCaretPosition

public int getCaretPosition() �

Returns The position, in characters, of the caret (text cursor).

getSelectedText

public synchronized String getSelectedText()

Returns The currently selected text of the TextComponent.

getSelectionEnd

public synchronized int getSelectionEnd()

Returns The ending cursor position of any selected text.

798 TEXTCOMPONENT

10 July 2002 22:24

getSelectionStart

public synchronized int getSelectionStart()

Returns The initial position of any selected text.

getText

public synchronized String getText()

Returns Current contents of the TextComponent.

isEditable

public boolean isEditable()

Returns true if editable, false other wise.

removeNotify

public void removeNotify()

Description Destroys the peer of the TextComponent.

removeTextListener

public void removeTextListener (TextListener l) �

Parameters l One of this TextComponent’s TextListeners.
Description Remove a text event listener.

select

public synchronized void select (int selectionStart, int
selectionEnd)

Parameters selectionStart Beginning position of text to select.
selectionEnd Ending position of text to select.

Description Selects text in the TextComponent.

selectAll

public synchronized void selectAll()

Description Selects all the text in the TextComponent.

setCaretPosition

public void setCaretPosition (int position) �

Parameters position The new character position for the caret.

TEXTCOMPONENT 799

10 July 2002 22:24

Throws IllegalArgumentException
If position is less than zero.

Description Allows you to change the location of the caret.

setEditable

public synchronized void setEditable (boolean state)

Parameters state true to allow the user to edit the text in the
TextComponent; false to prevent editing.

Description Allows you to make the TextComponent editable or read-only.

setSelectionEnd

public synchronized void setSelectionEnd (int
selectionEnd) �

Parameters selectionEnd The character position of the end of the selec-
tion.

Description Allows you to change the location of the end of the selected
text.

setSelectionStart

public synchronized void setSelectionStart (int
selectionStart) �

Parameters selectionStart The character position of the start of the selec-
tion.

Description Allows you to change the location of the start of the selected
text.

setText

public synchronized void setText (String text)

Parameters text New text for TextComponent.
Description Sets the content of the TextComponent.

Protected Instance Methods
paramString

protected String paramString()

Returns String with current settings of TextComponent.
Overrides Component.paramString()

Description Helper method for toString() to generate string of current
settings.

800 TEXTCOMPONENT

10 July 2002 22:24

processEvent

protected void processEvent (AWTEvent e) �

Parameters e The event to process.
Description Low-level AWTEvents are passed to this method for processing.

processTextEvent

protected void processTextEvent (TextEvent e) �

Parameters e The event to process.
Description Text events are passed to this method for processing. Normally,

this method is called by processEvent().

See Also
Component, TextArea, TextField, String

19.59 TextField

java.awt.TextFieldjava.awt.TextComponentjava.lang.Object java.awt.Component

Description
The TextField class provides a single line Component for user input.

Class Definition
public class java.awt.TextField

extends java.awt.TextComponent {

// Constructors

public TextField();

public TextField (int columns);

public TextField (String text);

public TextField (String text, int columns);

// Instance Methods

public void addActionListener (ActionListener l); �
public void addNotify();

public boolean echoCharIsSet();

public int getColumns();

public char getEchoChar();

public Dimension getMinimumSize(); �
public Dimension getMinimumSize (int columns); �
public Dimension getPreferredSize(); �

TEXTFIELD 801

10 July 2002 22:24

public Dimension getPreferredSize (int columns); �
public Dimension minimumSize(); ✩
public Dimension minimumSize (int columns); ✩
public Dimension preferredSize(); ✩
public Dimension preferredSize (int columns); ✩
public void removeActionListener (ActionListener l); �
public void setColumns(int columns); �
public void setEchoChar(char c); �
public void setEchoCharacter (char c); ✩

// Protected Instance Methods

protected String paramString();

protected void processActionEvent (ActionEvent e); �
protected void processEvent (AWTEvent e); �

}

Constructors
TextField

public TextField()

Description Constructs a TextField object of the default size.

public TextField (int columns)

Parameters columns Requested number of displayed columns.
Description Constructs a TextField object of the given size.

public TextField (String text)

Parameters text Initial text for TextField.
Description Constructs a TextField object with the given content.

public TextField (String text, int columns)

Parameters text Initial text for TextField.
columns Requested number of displayed columns.

Description Constructs a TextField object with the given content and size.

Instance Methods
addActionListener

public void addActionListener (ActionListener l) �

Parameters l An object that implements the ActionLis-

tener inter face.
Description Add a listener for the action event.

802 TEXTFIELD

10 July 2002 22:24

addNotify

public synchronized void addNotify()

Overrides Component.addNotify()

Description Creates TextField’s peer.

echoCharIsSet

public boolean echoCharIsSet()

Returns true if the TextField has an echo character used as a
response to any input character; false other wise. An echo
character can be used to create a TextField for hidden input,
like a password; the same character (e.g., “x”) is used to echo
all input.

getColumns

public int getColumns()

Returns The width of the TextField in columns.

getEchoChar

public char getEchoChar()

Returns The current echo character.

getMinimumSize

public Dimension getMinimumSize() �

Returns The minimum dimensions of the TextField.

public Dimension getMinimumSize (int columns) �

Parameters columns Number of columns within TextField to size.
Returns The minimum dimensions of a TextField of the given size.

getPreferredSize

public Dimension getPreferredSize() �

Returns The preferred dimensions of the TextField.

public Dimension getPreferredSize (int columns) �

Parameters columns Number of columns within TextField to size.
Returns The preferred dimensions of a TextField of the given size.

TEXTFIELD 803

10 July 2002 22:24

minimumSize

public Dimension minimumSize() ✩

Returns The minimum dimensions of the TextField. Replaced by
getMinimumSize().

public Dimension minimumSize (int columns) ✩

Parameters columns Number of columns within TextField to size.
Returns The minimum dimensions of a TextField of the given size.

Replaced by getMinimumSize(int).

preferredSize

public Dimension preferredSize() ✩

Returns The preferred dimensions of the TextField. Replaced by
getPreferredSize().

public Dimension preferredSize (int columns) ✩

Parameters columns Number of columns within TextField to size.
Returns The preferred dimensions of a TextField of the given size.

Replaced by getPreferredSize(int).

removeActionListener

public void removeActionListener (ActionListener l) �

Parameters l One of this TextField’s ActionListeners.
Description Remove an action event listener.

setColumns

public void setColumns (int columns) �

Parameters columns New number of columns.
Throws IllegalArgumentException

If columns is less than zero.
Description Changes the number of columns.

setEchoChar

public void setEchoChar (char c) �

Parameters c The character to echo for all input. To echo the
characters that the user types (the default), set
the echo character to 0 (zero).

804 TEXTFIELD

10 July 2002 22:24

Description Changes the character that is used to echo all user input in the
TextField.

setEchoCharacter

public void setEchoCharacter (char c) ✩

Parameters c The character to echo for all input. To echo the
characters that the user types (the default), set
the echo character to 0 (zero).

Description Replaced by setEchoChar(char) for consistency with get-

EchoChar().

Protected Instance Methods
paramString

protected String paramString()

Returns String with current settings of TextField.
Overrides TextComponent.paramString()

Description Helper method for toString() to generate string of current
settings.

processActionEvent

protected void processActionEvent (ActionEvent e) �

Parameters e The action event to process.
Description Action events are passed to this method for processing. Nor-

mally, this method is called by processEvent().

processEvent

protected void processEvent (AWTEvent e) �

Parameters e The event to process.
Description Low-level AWTEvents are passed to this method for processing.

See Also
Dimension, TextComponent, String

TEXTFIELD 805

10 July 2002 22:24

19.60 Toolkit

java.lang.Object java.awt.Toolkit

Description
The abstract Toolkit class provides access to platform-specific details like window
size and available fonts. It also deals with creating all the components’ peer objects
when you call addNotify().

Class Definition
public abstract class java.awt.Toolkit

extends java.lang.Object {

// Class Methods

public static synchronized Toolkit getDefaultToolkit();

protected static Container getNativeContainer (Component c); �
public static String getProperty (String key, String defaultValue); �

// Instance Methods

public abstract void beep(); �
public abstract int checkImage (Image image, int width, int height,

ImageObserver observer);

public abstract Image createImage (ImageProducer producer);

public Image createImage (byte[] imagedata); �
public abstract Image createImage (byte[] imagedata, int imageoffset,

int imagelength); �
public abstract ColorModel getColorModel();

public abstract String[] getFontList();

public abstract FontMetrics getFontMetrics (Font font);

public abstract Image getImage (String filename);

public abstract Image getImage (URL url);

public int getMenuShortcutKeyMask(); �
public abstract PrintJob getPrintJob (Frame frame, String jobtitle,

Properties props); �
public abstract int getScreenResolution();

public abstract Dimension getScreenSize();

public abstract Clipboard getSystemClipboard(); �
public final EventQueue getSystemEventQueue(); �
public abstract boolean prepareImage (Image image, int width, int height,

ImageObserver observer);

public abstract void sync();

// Protected Instance Methods

protected abstract ButtonPeer createButton (Button b);

806 TOOLKIT

10 July 2002 22:24

protected abstract CanvasPeer createCanvas (Canvas c);

protected abstract CheckboxPeer createCheckbox (Checkbox cb);

protected abstract CheckboxMenuItemPeer createCheckboxMenuItem

(CheckboxMenuItem cmi);

protected abstract ChoicePeer createChoice (Choice c);

protected LightweightPeer createComponent(Component target); �
protected abstract DialogPeer createDialog (Dialog d);

protected abstract FileDialogPeer createFileDialog (FileDialog fd);

protected abstract FramePeer createFrame (Frame f);

protected abstract LabelPeer createLabel (Label l);

protected abstract ListPeer createList (List l);

protected abstract MenuPeer createMenu (Menu m);

protected abstract MenuBarPeer createMenuBar (MenuBar mb);

protected abstract MenuItemPeer createMenuItem (MenuItem mi);

protected abstract PanelPeer createPanel (Panel p);

protected abstract PopupMenuPeer createPopupMenu (PopupMenu target); �
protected abstract ScrollPanePeer createScrollPane (ScrollPane target); �
protected abstract ScrollbarPeer createScrollbar (Scrollbar sb);

protected abstract TextAreaPeer createTextArea (TextArea ta);

protected abstract TextFieldPeer createTextField (TextField tf);

protected abstract WindowPeer createWindow (Window w);

protected abstract FontPeer getFontPeer (String name, int style); �
protected abstract EventQueue getSystemEventQueueImpl(); �
protected void loadSystemColors (int[] systemColors); �

}

Class Methods
getDefaultToolkit

public static synchronized Toolkit getDefaultToolkit()

Throws AWTError If the toolkit for the current platform cannot be
found.

Returns The system’s default Toolkit.

getNativeContainer

protected static Container getNativeContainer (Component
c) �

Returns The native container for the given component. The compo-
nent’s immediate parent may be a lightweight component.

getProperty

TOOLKIT 807

10 July 2002 22:24

public static String getProperty (String key, String
defaultValue) �

Parameters key The name of a property.
defaultValue A default value to return if the property is not

found.
Returns The value of the property described by key, or defaultValue

if it is not found.

Instance Methods
beep

public abstract void beep() �

Description Produces an audible beep.

checkImage

public abstract int checkImage (Image image, int width,
int height, ImageObserver observer)

Parameters image Image to check.
width Width of the scaled image; -1 if image will be

rendered unscaled.
height Height of the scaled image; -1 if image will be

rendered unscaled.
obser ver The Component that image will be rendered

on.
Returns The ImageObserver flags ORed together for the data that is

now available.
Description Checks on the status of the construction of a screen representa-

tion of image on observer.

createImage

public abstract Image createImage (ImageProducer producer)

Parameters producer An ImageProducer that generates data for the
desired image.

Returns Newly created Image.
Description Creates a new Image from an ImageProducer.

public abstract Image createImage (byte[] imagedata) �

Parameters imagedata Raw data representing an image.

808 TOOLKIT

10 July 2002 22:24

Returns Newly created Image.
Description Creates a new Image from the imagedata provided.

public abstract Image createImage (byte[] imagedata,
int imageoffset, int imagelength) �

Parameters imagedata Raw data representing one or more images.
imageoffset An offset into the data given.
imagelength The length of data to use.

Returns Newly created Image.
Description Creates a new Image from the imagedata provided, starting at

imageoffset bytes and reading imagelength bytes.

getColorModel

public abstract ColorModel getColorModel()

Returns The current ColorModel used by the system.

getFontList

public abstract String[] getFontList()

Returns A String array of the set of Java fonts available with this
Toolkit.

getFontMetrics

public abstract FontMetrics getFontMetrics (Font font)

Parameters font A Font whose metrics are desired
Returns The current FontMetrics for the font on the user’s system.

getImage

public abstract Image getImage (String filename)

Parameters filename Location of Image on local filesystem
Returns The Image that needs to be fetched.
Description Fetches an image from the local file system.

public abstract Image getImage (URL url)

Parameters url Location of Image.
Returns The Image that needs to be fetched.
Description Fetches an image from a URL.

TOOLKIT 809

10 July 2002 22:24

getMenuShortcutKeyMask

public int getMenuShortcutKeyMask() �

Returns The modifier key mask used for menu shortcuts. This will be
one of the mask constants defined in java.awt.Event.

getPrintJob

public abstract PrintJob getPrintJob (Frame frame,
String jobtitle, Properties props) �

Parameters frame The frame to be used as the parent of a plat-
form-specific printing dialog.

jobtitle The name of the job.
props Properties for this print job.

Returns A PrintJob object. If the user canceled the printing opera-
tion, null is returned.

getScreenResolution

public abstract int getScreenResolution()

Returns The current resolution of the user’s screen, in dots-per-inch.

getScreenSize

public abstract Dimension getScreenSize()

Returns The size of the screen available to the Toolkit, in pixels, as a
Dimension object.

getSystemClipboard

public abstract Clipboard getSystemClipboard() �

Returns A Clipboard object that can be used for cut, copy, and paste
operations.

getSystemEventQueue

public final EventQueue getSystemEventQueue() �

Returns A reference to the system’s event queue, allowing the program
to post new events or inspect the queue.

prepareImage

810 TOOLKIT

10 July 2002 22:24

public abstract boolean prepareImage (Image image, int
width, int height, ImageObserver observer)

Parameters image Image to check.
width Width of the scaled image; -1 if image will be

rendered unscaled.
height Height of the scaled image; -1 if image will be

rendered unscaled.
obser ver The Component that image will be rendered

on.
Returns true if image fully loaded, false other wise.
Description Forces the system to start loading the image.

sync

public abstract void sync()

Description Flushes the display of the underlying graphics context.

Protected Instance Methods
createButton

protected abstract ButtonPeer createButton (Button b)

Parameters b Component whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the Button.

createCanvas

protected abstract CanvasPeer createCanvas (Canvas c)

Parameters c Component whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the Canvas.

createCheckbox

protected abstract CheckboxPeer createCheckbox (Checkbox
cb)

Parameters cb Component whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the Checkbox.

TOOLKIT 811

10 July 2002 22:24

createCheckboxMenuItem

protected abstract CheckboxMenuItemPeer
createCheckboxMenuItem (CheckboxMenuItem cmi)

Parameters cmi Component whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the CheckboxMenuItem.

createChoice

protected abstract ChoicePeer createChoice (Choice c)

Parameters c Component whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the Choice.

createComponent

protected LightweightPeer createComponent (Component
target) �

Parameters target Component whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the Component.

createDialog

protected abstract DialogPeer createDialog (Dialog d)

Parameters d Component whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the Dialog.

createFileDialog

protected abstract FileDialogPeer createFileDialog
(FileDialog fd)

Parameters fd Component whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the FileDialog.

createFrame

protected abstract FramePeer createFrame (Frame f)

Parameters f Component whose peer needs to be created.

812 TOOLKIT

10 July 2002 22:24

Returns Newly created peer.
Description Creates a peer for the Frame.

createLabel

protected abstract LabelPeer createLabel (Label l)

Parameters l Component whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the Label.

createList

protected abstract ListPeer createList (List l)

Parameters l Component whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the List.

createMenu

protected abstract MenuPeer createMenu (Menu m)

Parameters m Menu whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the given Menu.

createMenuBar

protected abstract MenuBarPeer createMenuBar (MenuBar mb)

Parameters mb MenuBar whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the MenuBar.

createMenuItem

protected abstract MenuItemPeer createMenuItem (MenuItem
mi)

Parameters mi MenuItem whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the MenuItem.

createPanel

TOOLKIT 813

10 July 2002 22:24

protected abstract PanelPeer createPanel (Panel p)

Parameters p Component whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the Panel.

createPopupMenu

protected abstract PopupMenuPeer createPopupMenu
(PopupMenu target) �

Parameters target Component whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the PopupMenu.

createScrollPane

protected abstract ScrollPanePeer createScrollPane
(ScrollPane target) �

Parameters target Component whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the ScrollPane.

createScrollbar

protected abstract ScrollbarPeer createScrollbar
(Scrollbar sb)

Parameters sb Component whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the Scrollbar.

createTextArea

protected abstract TextAreaPeer createTextArea (TextArea
ta)

Parameters ta Component whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the TextArea.

createTextField

protected abstract TextFieldPeer createTextField
(TextField tf)

814 TOOLKIT

10 July 2002 22:24

Parameters tf Component whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the TextField.

createWindow

protected abstract WindowPeer createWindow (Window w)

Parameters w Component whose peer needs to be created.
Returns Newly created peer.
Description Creates a peer for the Window.

getFontPeer

protected abstract FontPeer getFontPeer (String name, int
style) �

Parameters name Name of the font to be created.
style Style of the font to be created.

Returns Newly created peer.
Description Creates a FontPeer.

getSystemEventQueueImpl

protected abstract getSystemEventQueueImpl()�

Returns A toolkit-specific EventQueue object.

loadSystemColors

protected abstract void loadSystemColors
(int[] systemColors) �

Description Fills the given integer array with the current system colors.

See Also
Button, ButtonPeer, Canvas, CanvasPeer, Checkbox, CheckboxMenuItem,
CheckboxMenuItemPeer, CheckboxPeer, Choice, ChoicePeer, Clipboard,
ColorModel, Component, Container, Dialog, DialogPeer, Dimension,
FileDialog, FileDialogPeer, Font, FontMetrics, FontPeer, Frame,
FramePeer, Image, ImageObserver, ImageProducer, Label, LabelPeer,
LightweightPeer, List, ListPeer, Menu, MenuBar, MenuBarPeer, MenuItem,
MenuItemPeer, MenuPeer, Panel, PanelPeer, PrintJob, Scrollbar,
ScrollbarPeer, ScrollPane, ScrollPanePeer, String, TextArea,
TextAreaPeer, TextField, TextFieldPeer, Window, WindowPeer

TOOLKIT 815

10 July 2002 22:24

19.61 Window

java.awt.Component java.awt.Container java.awt.Windowjava.lang.Object

java.awt.Dialog

java.awt.Frame

Description
The Window class serves as a top-level display area that exists outside the browser
or applet area you may be working in. A window must have a parent Frame.

Class Definition
public class java.awt.Window

extends java.awt.Container {

// Constructors

public Window (Frame parent);

// Instance Methods

public void addNotify();

public synchronized void addWindowListener (WindowListener l); �
public void dispose();

public Component getFocusOwner(); �
public Locale getLocale(); �
public Toolkit getToolkit();

public final String getWarningString();

public boolean isShowing(); �
public void pack();

public boolean postEvent (Event e); ✩
public synchronized void remove WindowListener (WindowListener l); �
public void show();

public void toBack();

public void toFront();

//Protected Instance Methods

protected void processEvent (AWTEvent e); �
protected void processWindowEvent (WindowEvent e); �

}

816 WINDOW

10 July 2002 22:24

Constructors
Window

public Window (Frame parent)

Parameters parent Frame that is to act as the parent of Window.
Description Constructs a Window object.

Instance Methods
addNotify

public void addNotify()

Overrides Container.addNotify()

Description Creates Window’s peer and peers of contained components.

removeWindowListener

public synchronized void
removeWindowListener(WindowListener l) �

Parameters l One of this Frame’s WindowListeners.
Description Remove an event listener.

addWindowListener

public synchronized void addWindowListener (WindowListener
l) �

Parameters l An object that implements the WindowLis-

tener inter face.

Description Add a listener for windowing events.

dispose

public void dispose()

Returns Releases the resources of the Window.

getFocusOwner

public Component getFocusOwner() �

Returns The child component that currently has the input focus.

getLocale

WINDOW 817

10 July 2002 22:24

public Locale getLocale() �

Returns The locale for this Window.
Overrides Window.getLocale()

getToolkit

public Toolkit getToolkit()

Returns Toolkit of Window.
Overrides Component.getToolkit()

getWarningString

public final String getWarningString()

Returns String that will be displayed on the bottom of insecure Window

instances.

isShowing

public boolean isShowing()

Returns true if the Window is showing on the screen, false other wise.

pack

public void pack()

Description Resizes Window to getPreferredSize() of contained compo-
nents.

postEvent

public boolean postEvent (Event e) ✩

Parameters e Event instance to post to window.
Returns If Event is handled, true is returned. Otherwise, false is

returned.
Description Tells the Window to deal with Event.

removeWindowListener

public synchronized void removeWindowListener
(WindowListener l) �

Parameters l One of this Frame’s WindowListeners.

Description Remove an event listener.

818 WINDOW

10 July 2002 22:24

show

public void show()

Description Show the Window and validate its components.
Overrides Component.show()

toBack

public void toBack()

Description Puts the Window in the background of the display.

toFront

public void toFront()

Description Brings the Window to the foreground of the display.

Protected Instance Methods
processEvent

protected void processEvent (AWTEvent e) �

Parameters e The event to process.
Description Low level AWTEvents are passed to this method for processing.

processWindowEvent

protected void processWindowEvent (WindowEvent e) �

Parameters e The event to process.
Description Window events are passed to this method for processing. Nor-

mally, this method is called by processEvent().

See Also
Component, Container, Dialog, Frame, String, Toolkit

WINDOW 819

10 July 2002 22:24

20

java.awt.datatransfer Reference

20.1 Clipboard �

Description
The Clipboard class is a repository for a Transferable object and can be used
for cut, copy, and paste operations. The system clipboard can be accessed by call-
ing Toolkit.getDefaultToolkit().getSystemClipboard(). You can use
this technique if you are interested in exchanging data between your application
and other applications (Java or non-Java) running on the system. In addition,
Clipboard can be instantiated directly, if “private” clipboards are needed.

Class Definition
public class java.awt.datatransfer.Clipboard

extends java.lang.Object {

// Variables

protected Transferable contents;

protected ClipboardOwner owner;

// Constructors

public Clipboard (String name);

// Instance Methods

public synchronized Transferable getContents (Object requestor);

public String getName();

public synchronized void setContents (Transferable contents, ClipboardOwner owner);

}

820

10 July 2002 22:25

Variables
contents

protected Transferable contents

The object that the Clipboard contains, i.e., the object that has been cut or
copied.

owner

protected ClipboardOwner owner

The object that owns the contents. When something else is placed on the
clipboard, owner is notified via lostOwnership().

Constructors
Clipboard

public Clipboard (String name)

Parameters name The name for this Clipboard.
Description Constructs a Clipboard object with the given name.

Instance Methods
getContents

public synchronized Transferable getContents (Object
requestor)

Parameters requestor The object asking for the contents.
Returns An object that implements the Transferable inter face.
Description Returns the current contents of the Clipboard. You could use

this method to paste data from the clipboard into your applica-
tion.

getName

public String getName()

Returns Clipboard’s name.
Description Returns the name used when this clipboard was constructed.

Toolkit.getSystemClipboard() returns a Clipboard

named “System”.

setContents

CLIPBOARD 821

10 July 2002 22:25

public synchronized void setContents (Transferable
contents, ClipboardOwner owner)

Parameters contents New contents.
owner Owner of the new contents.

Description Changes the contents of the Clipboard. You could use this
method to cut or copy data from your application to the clip-
board.

See Also
ClipboardOwner, Toolkit, Transferable

20.2 ClipboardOwner �

Description
ClipboardOwner is implemented by classes that want to be notified when some-
one else sets the contents of a clipboard.

Interface Definition
public abstract interface java.awt.datatransfer.ClipboardOwner {

// Interface Methods

public abstract void lostOwnership (Clipboard clipboard, Transferable contents);

}

Interface Methods
lostOwnership

public abstract void lostOwnership (Clipboard clipboard,
Transferable contents)

Parameters clipboard The clipboard whose contents have changed.
contents The contents that this owner originally put on

the clipboard.

Description Tells the ClipboardOwner that the contents it placed on the
given clipboard are no longer there.

See Also
Clipboard, StringSelection, Transferable

822 CLIPBOARD

10 July 2002 22:25

20.3 DataFlavor �

Description
The DataFlavor class encapsulates information about data formats.

Class Definition
public class java.awt.datatransfer.DataFlavor

extends java.lang.Object {

// Class Variables

public static DataFlavor plainTextFlavor;

public static DataFlavor stringFlavor;

// Constructors

public DataFlavor (Class representationClass,

String humanPresentableName);

public DataFlavor (String MIMEType, String humanPresentableName);

// Instance Methods

public boolean equals (DataFlavor dataFlavor);

public String getHumanPresentableName();

public String getMIMEType();

public Class getRepresentationClass();

public boolean isMIMETypeEqual (String MIMEType);

public final boolean isMIMETypeEqual (DataFlavor dataFlavor);

public void setHumanPresentableName (String humanPresentableName);

// Protected Instance Methods

protected String normalizeMIMEType (String MIMEType);

protected String normalizeMIMETypeParameter (String parameterName,

String parameterValue);

}

Class Variables
plainTextFlavor

public static DataFlavor plainTextFlavor

A preset DataFlavor object representing plain text.

stringFlavor

public static DataFlavor stringFlavor

A preset DataFlavor object representing a Java String.

DATAFLAVOR 823

10 July 2002 22:25

Constructors
DataFlavor

public DataFlavor (Class representationClass, String
humanPresentableName)

Parameters representationClass
The Java class that represents data in this flavor.

humanPresentableName
A name for this flavor that humans will recog-
nize.

Description Constructs a DataFlavor object with the given characteristics.
The MIME type for this DataFlavor is application/x-

java-serialized-object <Java ClassName>.*

public DataFlavor (String MIMEType, String
humanPresentableName)

Parameters MIMEType The MIME type string this DataFlavor repre-
sents.

humanPresentableName
A name for this flavor that humans will recog-
nize.

Description Constructs a DataFlavor object with the given characteristics.
The representation class used for this DataFlavor is
java.io.InputStream.

Instance Methods
equals

public boolean equals (DataFlavor dataFlavor)

Parameters dataFlavor The flavor to compare.
Returns true if dataFlavor is equivalent to this DataFlavor, false

other wise.
Description Compares two different DataFlavor instances for equivalence.

getHumanPresentableName

public String getHumanPresentableName()

Returns The name of this flavor.

* The type name changed to x-java-serialized-object in the 1.1.1 release.

824 DATAFLAVOR

10 July 2002 22:25

getMIMEType

public String getMIMEType()

Returns The MIME type string for this flavor.

getRepresentationClass

public Class getRepresentationClass()

Returns The Java class that will be used to represent data in this flavor.

isMIMETypeEqual

public boolean isMIMETypeEqual (String MIMEType)

Parameters MIMEType The type to compare.
Returns true if the given MIME type is the same as this DataFlavor’s

MIME type; false other wise.
Description Compares two different DataFlavor MIME types for equiva-

lence.

public final boolean isMIMETypeEqual (DataFlavor
dataFlavor)

Parameters dataFlavor The flavor to compare.
Returns true if DataFlavor’s MIME type is the same as this DataFla-

vor’s MIME type; false other wise.
Description Compares two different DataFlavor MIME types for equiva-

lence.

setHumanPresentableName

public void setHumanPresentableName (String
humanPresentableName)

Parameters humanPresentableName
A name for this flavor that humans will recog-
nize.

Description Changes the name of the DataFlavor.

Protected Instance Methods
normalizeMIMEType

protected String normalizeMIMEType (String MIMEType)

Parameters MIMEType The MIME type string to normalize.
Returns Normalized MIME type string.

DATAFLAVOR 825

10 July 2002 22:25

Description This method is called for each MIME type string. Subclasses can
override this method to add default parameter/value pairs to
MIME strings.

normalizeMIMETypeParameter

protected String normalizeMIMETypeParameter (String
parameterName, String parameterValue)

Parameters parameterName
The MIME type parameter to normalize.

parameterValue
The corresponding value.

Returns Normalized MIME type parameter string.
Description This method is called for each MIME type parameter string.

Subclasses can override this method to handle special parame-
ters, such as those that are case-insensitive.

See Also
Class, String

20.4 StringSelection �

Description
StringSelection is a “convenience” class that can be used for copy and paste
operations on Unicode text strings. For example, you could place a string on the
system’s clipboard with the following code:

Clipboard c =

Toolkit.getDefaultToolkit().getSystemClipboard();

StringSelection s = new StringSelection(

"Be safe when you cut and paste.");

c.setContents(s, s);

Class Definition
public class java.awt.datatransfer.StringSelection

extends java.lang.Object

implements java.awt.datatransfer.ClipboardOwner,

java.awt.datatransfer.Transferable {

// Constructor

public StringSelection(String data);

// Instance Methods

826 DATAFLAVOR

10 July 2002 22:25

public synchronized Object getTransferData (DataFlavor flavor)

throws UnsupportedFlavorException, IOException;

public synchronized DataFlavor[] getTransferDataFlavors();

public boolean isDataFlavorSupported (DataFlavor flavor);

public void lostOwnership (Clipboard clipboard, Transferable contents);

}

Constructors
StringSelection

public StringSelection (String data)

Parameters data The string to be placed in a clipboard.
Description Constructs a StringSelection object from the given string.

Instance Methods
getTransferData

public synchronized Object getTransferData (DataFlavor
flavor) throws UnsupportedFlavorException, IOException

Parameters flavor The requested flavor for the returned data,
which can be either DataFlavor.stringFla-
vor or DataFlavor.plainTextFlavor.

Returns The string that the StringSelection was constructed with.
This is returned either as a String object or a Reader object,
depending on the flavor requested.

Throws UnsupportedFlavorException
If the requested flavor is not supported.

IOException If a Reader representing the string could not be
created.

Implements Transferable.getTransferData(DataFlavor)

Description Returns the string this StringSelection represents. This is
returned either as a String object or a Reader object,
depending on the flavor requested.

getTransferDataFlavors

public synchronized DataFlavor[] getTransferDataFlavors()

Returns An array of the data flavors the StringSelection supports.
Implements Transferable.getTransferDataFlavors()

Description DataFlavor.stringFlavor and DataFlavor.plain-

TextFlavor are returned.

STRINGSELECTION 827

10 July 2002 22:25

isDataFlavorSupported

public boolean isDataFlavorSupported (DataFlavor flavor)

Parameters flavor The flavor in question.
Returns true if flavor is supported; false other wise.
Implements Transferable.isDataFlavorSupported(DataFlavor)

lostOwnership

public void lostOwnership (Clipboard clipboard,
Transferable contents)

Parameters clipboard The clipboard whose contents are changing.
contents The contents that were on the clipboard.

Implements ClipboardOwner.lostOwnership(Clipboard, Trans-

ferable)

Description Does nothing.

See Also
Clipboard, ClipboardOwner, DataFlavor, String, Transferable

20.5 Transferable �

Description
The Transferable inter face is implemented by objects that can be placed on
Clipboards.

Interface Definition
public abstract interface Transferable {

// Instance Methods

public abstract Object getTransferData (DataFlavor flavor)

throws UnsupportedFlavorException, IOException;

public abstract DataFlavor[] getTransferDataFlavors();

public abstract boolean isDataFlavorSupported (DataFlavor flavor);

}

Interface Methods
getTransferData

828 STRINGSELECTION

10 July 2002 22:25

public abstract Object getTransferData (DataFlavor flavor)
throws UnsupportedFlavorException, IOException

Parameters flavor The requested flavor for the returned data.
Returns The data represented by this Transferable object, in the

requested flavor.
Throws UnsupportedFlavorException

If the requested flavor is not supported.
IOException If a Reader representing the data could not be

created.
Description Returns the data this Transferable object represents. The

class of object returned depends on the flavor requested.

getTransferDataFlavors

public abstract DataFlavor[] getTransferDataFlavors()

Returns An array of the supported data flavors.
Description The data flavors should be returned in order, sorted from most

to least descriptive.

isDataFlavorSupported

public abstract boolean isDataFlavorSupported (DataFlavor
flavor)

Parameters flavor The flavor in question.
Returns true if flavor is supported; false other wise.

See Also
Clipboard, DataFlavor, Reader, StringSelection, Transferable

20.6 UnsupportedFlavorException �

Description
This exception is thrown from Transferable.getTransferData(DataFla-

vor) to indicate that the DataFlavor requested is not available.

Class Definition
public class java.awt.datatransfer.UnsupportedFlavorException

extends java.lang.Exception {

// Constructor

public UnsupportedFlavorException (DataFlavor flavor);

}

UNSUPPORTEDFLAVOREXCEPTION 829

10 July 2002 22:25

Constructors
UnsupportedFlavorException

public UnsupportedFlavorException (DataFlavor flavor)

Parameters flavor The flavor that caused the exception.

See Also
DataFlavor, Exception, Transferable

830 UNSUPPORTEDFLAVOREXCEPTION

10 July 2002 22:25

21

java.awt.event Reference

21.1 ActionEvent �

Description
Action events are fired off when the user performs an action on a component,
such as pushing a button, double-clicking on a list item, or selecting a menu item.
There is only one action event type, ACTION_PERFORMED.

Class Definition
public class java.awt.event.ActionEvent

extends java.awt.AWTEvent {

// Constants

public final static int ACTION_FIRST;

public final static int ACTION_LAST;

public final static int ACTION_PERFORMED;

public final static int ALT_MASK;

public final static int CTRL_MASK;

public final static int META_MASK;

public final static int SHIFT_MASK;

// Constructors

public ActionEvent (Object source, int id, String command);

public ActionEvent (Object source, int id, String command, int modifiers);

// Instance Methods

public String getActionCommand();

public int getModifiers();

831

10 July 2002 22:26

public String paramString();

}

Constants
ACTION_FIRST

public final static int ACTION_FIRST

Specifies the beginning range of action event ID values.

ACTION_LAST

public final static int ACTION_LAST

Specifies the ending range of action event ID values.

ACTION_PERFORMED

public final static int ACTION_PERFORMED

The only action event type; it indicates that the user has performed an action.

ALT_MASK

public final static int ALT_MASK

A constant representing the ALT key. ORed with other masks to form modi-

fiers setting of an AWTEvent.

CTRL_MASK

public final static int CTRL_MASK

A constant representing the Control key. ORed with other masks to form mod-

ifiers setting of an AWTEvent.

META_MASK

public final static int META_MASK

A constant representing the META key. ORed with other masks to form modi-

fiers setting of an AWTEvent.

832 ACTIONEVENT

10 July 2002 22:26

SHIFT_MASK

public final static int SHIFT_MASK

A constant representing the Shift key. ORed with other masks to form modi-

fiers setting of an AWTEvent.

Constructors
ActionEvent

public ActionEvent (Object source, int id, String command)

Parameters source The object that generated the event.
id The type ID of the event.
command The action command string.

Description Constructs an ActionEvent with the given characteristics.

public ActionEvent (Object source, int id, String command,
int modifiers)

Parameters source The object that generated the event.
id The type ID of the event.
command The action command string.
modifiers A combination of the key mask constants.

Description Constructs an ActionEvent with the given characteristics.

Instance Methods
getActionCommand

public String getActionCommand()

Returns The action command string for this ActionEvent.
Description Generally the action command string is the label of the compo-

nent that generated the event. Also, when localization is neces-
sar y, the action command string can provide a setting that does
not get localized.

getModifiers

public int getModifiers()

Returns A combination of the key mask constants.
Description Returns the modifier keys that were held down when this action

was performed. This enables you to perform special processing
if, for example, the user holds down Shift while pushing a
button.

ACTIONEVENT 833

10 July 2002 22:26

paramString

public String paramString()

Returns String with current settings of ActionEvent.
Overrides AWTEvent.paramString()

Description Helper method for toString() to generate string of current
settings.

See Also
ActionListener, AWTEvent, String

21.2 ActionListener �

Description
Objects that implement the ActionListener inter face can receive ActionEvent
objects. Listeners must first register themselves with objects that produce events.
When events occur, they are then automatically propagated to all registered lis-
teners.

Interface Definition
public abstract interface java.awt.event.ActionListener

extends java.util.EventListener {

// Interface Methods

public abstract void actionPerformed (ActionEvent e);

}

Interface Methods
actionPerformed

public abstract void actionPerformed (ActionEvent e)

Parameters e The action event that occurred.

Description Notifies the ActionListener that an event occurred.

See Also
ActionEvent, AWTEventMulticaster, EventListener

834 ACTIONEVENT

10 July 2002 22:26

21.3 AdjustmentEvent �

Description
AdjustmentEvents are generated by objects that implement the Adjustable

inter face. Scrollbar is one example of such an object.

Class Definition
public class java.awt.event.AdjustmentEvent

extends java.awt.AWTEvent {

// Constants

public final static int ADJUSTMENT_FIRST;

public final static int ADJUSTMENT_LAST;

public final static int ADJUSTMENT_VALUE_CHANGED;

public final static int BLOCK_DECREMENT;

public final static int BLOCK_INCREMENT;

public final static int TRACK;

public final static int UNIT_DECREMENT;

public final static int UNIT_INCREMENT;

// Constructors

public AdjustmentEvent (Adjustable source, int id, int type, int value);

// Instance Methods

public Adjustable getAdjustable();

public int getAdjustmentType();

public int getValue();

public String paramString();

}

Constants
ADJUSTMENT_FIRST

public final static int ADJUSTMENT_FIRST

Specifies the beginning range of adjustment event ID values.

ADJUSTMENT_LAST

public final static int ADJUSTMENT_LAST

Specifies the ending range of adjustment event ID values.

ADJUSTMENT_VALUE_CHANGED

ADJUSTMENTEVENT 835

10 July 2002 22:26

public final static int ADJUSTMENT_VALUE_CHANGED

Event type ID for value changed.

BLOCK_DECREMENT

public final static int BLOCK_DECREMENT

Adjustment type for block decrement.

BLOCK_INCREMENT

public final static int BLOCK_INCREMENT

Adjustment type for block increment.

TRACK

public final static int TRACK

Adjustment type for tracking.

UNIT_DECREMENT

public final static int UNIT_DECREMENT

Adjustment type for unit decrement.

UNIT_INCREMENT

public final static int UNIT_INCREMENT

Adjustment type for unit increment.

Constructors
AdjustmentEvent

public AdjustmentEvent (Adjustable source, int id, int
type, int value)

Parameters source The object that generated the event.
id The event type ID of the event.
type The type of adjustment event.
value The value of the Adjustable object.

Description Constructs an AdjustmentEvent with the given characteris-
tics.

Instance Methods

836 ADJUSTMENTEVENT

10 July 2002 22:26

getAdjustable

public Adjustable getAdjustable()

Returns The source of this event.

getAdjustmentType

public int getAdjustmentType()

Returns One of the adjustment type constants.
Description The type will be BLOCK_DECREMENT, BLOCK_INCREMENT,

TRACK, UNIT_DECREMENT, or UNIT_INCREMENT.

getValue

public int getValue()

Returns The new value of the Adjustable object.

paramString

public String paramString()

Returns String with current settings of the AdjustmentEvent.
Overrides AWTEvent.paramString()

Description Helper method for toString() to generate string of current
settings.

See Also
Adjustable, AdjustmentListener, AWTEvent, Scrollbar

21.4 AdjustmentListener �

Description
Objects that implement the AdjustmentListener inter face can receive Adjust-
mentEvent objects. Listeners must first register themselves with objects that pro-
duce events. When events occur, they are then automatically propagated to all
registered listeners.

Interface Definition
public abstract interface java.awt.event.AdjustmentListener

extends java.util.Eventlistener {

// Interface Methods

public abstract void adjustmentValueChanged (AdjustmentEvent e);

}

ADJUSTMENTLISTENER 837

10 July 2002 22:26

Interface Methods
adjustmentPerformed

public abstract void adjustmentValueChanged
(AdjustmentEvent e)

Parameters e The adjustment event that occurred.

Description Notifies the AdjustmentListener that an event occurred.

See Also
AdjustmentEvent, AWTEventMulticaster, EventListener

21.5 ComponentAdapter �

java.awt.List

java.awt.event.TextEventjava.awt.Scrollbar

java.awt.TextComponent

java.awt.Label

java.awt.image.ImageObserverjava.lang.Object

java.awt.Choice

java.awt.Checkbox

java.awt.Canvas

java.awt.Button

java.awt.Container

java.awt.Component

java.awt.MenuContainer

java.io.Serializable

Description
ComponentAdapter is a class that implements the methods of ComponentLis-
tener with empty functions. It may be easier for you to extend Componen-

tAdapter, overriding only those methods you are interested in, than to
implement ComponentListener and provide the empty functions yourself.

838 ADJUSTMENTLISTENER

10 July 2002 22:26

Class Definition
public abstract class java.awt.event.ComponentAdapter

extends java.lang.Object

implements java.awt.event.ComponentListener {

// Instance Methods

public void componentHidden (ComponentEvent e);

public void componentMoved (ComponentEvent e);

public void componentResized (ComponentEvent e);

public void componentShown (ComponentEvent e);

}

Instance Methods
componentHidden

public void componentHidden (ComponentEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when a
component is hidden.

componentMoved

public void componentMoved (ComponentEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when a
component is moved.

componentResized

public void componentResized (ComponentEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when a
component is resized.

componentShown

public void componentShown (ComponentEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when a
component is shown.

COMPONENTADAPTER 839

10 July 2002 22:26

See Also
Component, ComponentEvent, ComponentListener

21.6 ComponentEvent �

Description
Component events are generated when a component is shown, hidden, moved, or
resized. AWT automatically deals with component moves and resizing; these events
are provided only for notification. Subclasses of ComponentEvent deal with other
specific component-level events.

Class Definition
public class java.awt.event.ComponentEvent

extends java.awt.AWTEvent {

// Constants

public final static int COMPONENT_FIRST;

public final static int COMPONENT_HIDDEN;

public final static int COMPONENT_LAST;

public final static int COMPONENT_MOVED;

public final static int COMPONENT_RESIZED;

public final static int COMPONENT_SHOWN;

// Constructors

public ComponentEvent (Component source, int id);

// Instance Methods

public Component getComponent();

public String paramString();

}

Constants
COMPONENT_FIRST

public final static int COMPONENT_FIRST

Specifies the beginning range of component event ID values.

COMPONENT_HIDDEN

public final static int COMPONENT_HIDDEN

Event type ID indicating that the component was hidden.

840 COMPONENTADAPTER

10 July 2002 22:26

COMPONENT_LAST

public final static int COMPONENT_LAST

Specifies the ending range of component event ID values.

COMPONENT_MOVED

public final static int COMPONENT_MOVED

Event type ID indicating that the component was moved.

COMPONENT_RESIZED

public final static int COMPONENT_RESIZED

Event type ID indicating that the component was resized.

COMPONENT_SHOWN

public final static int COMPONENT_SHOWN

Event type ID indicating that the component was shown.

Constructors
ComponentEvent

public ComponentEvent (Component source, int id)

Parameters source The object that generated the event.
id The event type ID of the event.

Description Constructs a ComponentEvent with the given characteristics.

Instance Methods
getComponent

public Component getComponent()

Returns The source of this event.

paramString

public String paramString()

Returns String with current settings of the ComponentEvent.
Overrides AWTEvent.paramString()

Description Helper method for toString() to generate string of current
settings.

COMPONENTEVENT 841

10 July 2002 22:26

See Also
AWTEvent, Component, ComponentAdapter, ComponentListener, Con-

tainerEvent, FocusEvent, InputEvent, PaintEvent, WindowEvent

21.7 ComponentListener �

Description
Objects that implement the ComponentListener inter face can receive Compo-

nentEvent objects. Listeners must first register themselves with objects that pro-
duce events. When events occur, they are then automatically propagated to all
registered listeners.

Interface Definition
public abstract interface java.awt.event.ComponentListener

extends java.util.EventListener {

// Instance Methods

public abstract void componentHidden (ComponentEvent e);

public abstract void componentMoved (ComponentEvent e);

public abstract void componentResized (ComponentEvent e);

public abstract void componentShown (ComponentEvent e);

}

Interface Methods
componentHidden

public abstract void componentHidden (ComponentEvent e)

Parameters e The component event that occurred.

Description Notifies the ComponentListener that a component was hid-
den.

componentMoved

public abstract void componentMoved (ComponentEvent e)

Parameters e The component event that occurred.

Description Notifies the ComponentListener that a component was
moved.

842 COMPONENTEVENT

10 July 2002 22:26

componentResized

public abstract void componentResized (ComponentEvent e)

Parameters e The component event that occurred.

Description Notifies the ComponentListener that a component was
resized.

componentShown

public abstract void componentShown (ComponentEvent e)

Parameters e The component event that occurred.

Description Notifies the ComponentListener that a component was
shown.

See Also
AWTEventMulticaster, ComponentAdapter, ComponentEvent, EventLis-
tener

21.8 ContainerAdapter �

java.lang.Object

java.awt.Window

java.awt.ScrollPane

java.awt.Panel

java.awt.Component java.awt.Container

Description
The ContainerAdapter class implements the methods of ContainerListener
with empty functions. It may be easier for you to extend ContainerAdapter,
overriding only those methods you are interested in, than to implement Contain-
erListener and provide the empty functions yourself.

Class Definition
public abstract class java.awt.event.ContainerAdapter

extends java.lang.Object

implements java.awt.event.ContainerListener {

// Instance Methods

CONTAINERADAPTER 843

10 July 2002 22:26

public void componentAdded (ContainerEvent e);

public void componentRemoved (ContainerEvent e);

}

Instance Methods
componentAdded

public void componentAdded (ComponentEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when a
component is added to a container.

componentRemoved

public void componentRemoved (ComponentEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when a
component is removed from a container.

See Also
ContainerEvent, ContainerListener

21.9 ContainerEvent �

Description
Container events are fired off when a component is added to or removed from a
container. The AWT automatically deals with adding components to containers;
these events are provided only for notification.

Class Definition
public class java.awt.event.ContainerEvent

extends java.awt.event.ComponentEvent {

// Constants

public final static int COMPONENT_ADDED;

public final static int COMPONENT_REMOVED;

public final static int CONTAINER_FIRST;

public final static int CONTAINER_LAST;

// Constructors

public ContainerEvent (Component source, int id, Component child);

// Instance Methods

844 CONTAINERADAPTER

10 July 2002 22:26

public Component getChild();

public Container getContainer();

public String paramString();

}

Constants
COMPONENT_ADDED

public final static int COMPONENT_ADDED

Event type ID indicating that a component was added to a container.

CONTAINER_FIRST

public final static int CONTAINER_FIRST

Specifies the beginning range of container event ID values.

CONTAINER_LAST

public final static int CONTAINER_LAST

Specifies the ending range of container event ID values.

COMPONENT_REMOVED

public final static int COMPONENT_REMOVED

Event type ID indicating that a component was removed from a container.

Constructors
ContainerEvent

public ContainerEvent (Component source, int id, Component
child)

Parameters source The object that generated the event.
id The event type ID of the event.
child The component that was added or removed.

Description Constructs a ContainerEvent with the given characteristics.

Instance Methods
getChild

public Component getChild()

Returns The component that is being added or removed.

CONTAINEREVENT 845

10 July 2002 22:26

getContainer

public Container getContainer()

Returns The container for this event.

paramString

public String paramString()

Returns String with current settings of the ContainerEvent.
Overrides ComponentEvent.paramString()

Description Helper method for toString() to generate string of current
settings.

See Also
Component, ComponentEvent, Container, ContainerAdapter, Contain-
erListener

21.10 ContainerListener �

Description
Objects that implement the ContainerListener inter face can receive Con-

tainerEvent objects. Listeners must first register themselves with objects that
produce events. When events occur, they are then automatically propagated to all
registered listeners.

Interface Definition
public abstract interface java.awt.event.ContainerListener

extends java.util.EventListener {

// Instance Methods

public abstract void componentAdded (ContainerEvent e);

public abstract void componentRemoved (ContainerEvent e);

}

Interface Methods
componentAdded

public abstract void componentAdded (ContainerEvent e)

Parameters e The event that occurred.

Description Notifies the ContainerListener that a component has been
added to the container.

846 CONTAINEREVENT

10 July 2002 22:26

componentRemoved

public abstract void componentRemoved (ContainerEvent e)

Parameters e The event that occurred.

Description Notifies the ContainerListener that a component has been
removed from the container.

See Also
ContainerAdapter, ContainerEvent, EventListener

21.11 FocusAdapter �

Description
The FocusAdapter class implements the methods of FocusListener with empty
functions. It may be easier for you to extend FocusAdapter, overriding only those
methods you are interested in, than to implement FocusListener and provide
the empty functions yourself.

Class Definition
public abstract class java.awt.event.FocusAdapter

extends java.lang.Object

implements java.awt.event.FocusListener {

// Instance Methods

public void focusGained (FocusEvent e);

public void focusLost (FocusEvent e);

}

Instance Methods
focusGained

public void focusGained (FocusEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when a
component gains focus.

focusLost

FOCUSADAPTER 847

10 July 2002 22:26

public void focusLost (FocusEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when a
component loses focus.

See Also
FocusEvent, FocusListener

21.12 FocusEvent �

Description
Focus events are generated when a component gets or loses input focus. Focus
events come in two flavors, permanent and temporary. Permanent focus events
occur with explicit focus changes. For example, when the user tabs through com-
ponents, this causes permanent focus events. An example of a temporary focus
event is when a component loses focus as its containing window is deactivated.

Class Definition
public class java.awt.event.FocusEvent

extends java.awt.event.ComponentEvent {

// Constants

public final static int FOCUS_FIRST;

public final static int FOCUS_GAINED;

public final static int FOCUS_LAST;

public final static int FOCUS_LOST;

// Constructors

public FocusEvent (Component source, int id);

public FocusEvent (Component source, int id, boolean temporary);

// Instance Methods

public boolean isTemporary();

public String paramString();

}

848 FOCUSADAPTER

10 July 2002 22:26

Constants
FOCUS_FIRST

public final static int FOCUS_FIRST

Specifies the beginning range of focus event ID values.

FOCUS_GAINED

public final static int FOCUS_GAINED

Event type ID indicating that the component gained the input focus.

FOCUS_LAST

public final static int FOCUS_LAST

Specifies the ending range of focus event ID values.

FOCUS_LOST

public final static int FOCUS_LOST

Event type ID indicating that the component lost the input focus.

Constructors
FocusEvent

public FocusEvent (Component source, int id)

Parameters source The object that generated the event.
id The event type ID of the event.

Description Constructs a non-temporar y FocusEvent with the given char-
acteristics.

public FocusEvent (Component source, int id, boolean
temporary)

Parameters source The object that generated the event.
id The event type ID of the event.
temporar y A flag indicating whether this is a temporary

focus event.

Description Constructs a FocusEvent with the given characteristics.

FOCUSEVENT 849

10 July 2002 22:26

Instance Methods
isTemporary

public boolean isTemporary()

Returns true if this is a temporary focus event; false other wise.

paramString

public String paramString()

Returns String with current settings of the FocusEvent.
Overrides ComponentEvent.paramString()

Description Helper method for toString() to generate string of current
settings.

See Also
Component, ComponentEvent, FocusAdapter, FocusListener

21.13 FocusListener �

Description
Objects that implement the FocusListener inter face can receive FocusEvent

objects. Listeners must first register themselves with objects that produce events.
When events occur, they are then automatically propagated to all registered lis-
teners.

Interface Definition
public abstract interface java.awt.event.FocusListener

extends java.util.EventListener {

// Instance Methods

public abstract void focusGained (FocusEvent e);

public abstract void focusLost (FocusEvent e);

}

Interface Methods
focusGained

public abstract void focusGained (FocusEvent e)

Parameters e The component event that occurred.

Description Notifies the FocusListener that a component gained the
input focus.

850 FOCUSEVENT

10 July 2002 22:26

focusLost

public abstract void focusLost (FocusEvent e)

Parameters e The component event that occurred.

Description Notifies the FocusListener that a component lost the input
focus.

See Also
AWTEventMulticaster, EventListener, FocusAdapter, FocusEvent

21.14 InputEvent �

Description
InputEvent is the root class for representing user input events. Input events are
passed to listeners before the event source processes them. If one of the listeners
consumes an event by using consume(), the event will not be processed by the
event source peer.

Class Definition
public abstract class java.awt.event.InputEvent

extends java.awt.event.ComponentEvent {

// Constants

public final static int ALT_MASK;

public final static int BUTTON1_MASK;

public final static int BUTTON2_MASK;

public final static int BUTTON3_MASK;

public final static int CTRL_MASK;

public final static int META_MASK;

public final static int SHIFT_MASK;

// Instance Methods

public void consume();

public int getModifiers();

public long getWhen();

public boolean isAltDown();

public boolean isConsumed();

public boolean isControlDown();

public boolean isMetaDown();

public boolean isShiftDown();

}

INPUTEVENT 851

10 July 2002 22:26

Constants
ALT_MASK

public final static int ALT_MASK

The ALT key mask. ORed with other masks to form modifiers setting of event.

BUTTON1_MASK

public final static int BUTTON1_MASK

The mouse button 1 key mask. ORed with other masks to form modifiers set-
ting of event.

BUTTON2_MASK

public final static int BUTTON2_MASK

The mouse button 2 key mask. ORed with other masks to form modifiers set-
ting of event. This constant is identical to ALT_MASK.

BUTTON3_MASK

public final static int BUTTON3_MASK

The mouse button 3 key mask. ORed with other masks to form modifiers set-
ting of event. This constant is identical to ALT_MASK.

CTRL_MASK

public final static int CTRL_MASK

The Control key mask. ORed with other masks to form modifiers setting of
event.

META_MASK

public final static int META_MASK

The Meta key mask. ORed with other masks to form modifiers setting of event.

SHIFT_MASK

public final static int SHIFT_MASK

The Shift key mask. ORed with other masks to form modifiers setting of event.

Instance Methods

852 INPUTEVENT

10 July 2002 22:26

consume

public void consume()

Description A consumed event will not be delivered to its source for default
processing.

getModifiers

public int getModifiers()

Returns The modifier flags, a combination of the _MASK constants.
Description Use this method to find out what modifier keys were pressed

when an input event occurred.

getWhen

public long getWhen()

Returns The time at which this event occurred.
Description The time of the event is returned as the number of millisec-

onds since the epoch (00:00:00 UTC, January 1, 1970). Conve-
niently, java.util.Date has a constructor that accepts such
values.

isAltDown

public boolean isAltDown()

Returns true if the Alt key was pressed; false other wise.

isConsumed

public boolean isConsumed()

Returns true if the event has been consumed; false other wise.

isControlDown

public boolean isControlDown()

Returns true if the Control key was pressed; false other wise.

isMetaDown

public boolean isMetaDown()

Returns true if the Meta key was pressed; false other wise.

INPUTEVENT 853

10 July 2002 22:26

isShiftDown

public boolean isShiftDown()

Returns true if the Shift key was pressed; false other wise.

See Also
ComponentEvent, KeyEvent, MouseEvent

21.15 ItemEvent �

Description
ItemEvents are generated by objects that implement the ItemSelectable inter-
face. Choice is one example of such an object.

Class Definition
public class java.awt.event.ItemEvent

extends java.awt.AWTEvent {

// Constants

public final static int DESELECTED;

public final static int ITEM_FIRST;

public final static int ITEM_LAST;

public final static int ITEM_STATE_CHANGED;

public final static int SELECTED;

// Constructors

public ItemEvent (ItemSelectable source, int id, Object item, int stateChange);

// Instance Methods

public Object getItem();

public ItemSelectable getItemSelectable();

public int getStateChange();

public String paramString();

}

Constants
DESELECTED

public final static int DESELECTED

Indicates that an item was deselected.

854 INPUTEVENT

10 July 2002 22:26

ITEM_FIRST

public final static int ITEM_FIRST

Specifies the beginning range of item event ID values.

ITEM_LAST

public final static int ITEM_LAST

Specifies the ending range of item event ID values.

ITEM_STATE_CHANGED

public final static int ITEM_STATE_CHANGED

An event type indicating that an item was selected or deselected.

SELECTED

public final static int SELECTED

Indicates that an item was selected.

Constructors
ItemEvent

public ItemEvent (ItemSelectable source, int id, Object
item, int stateChange)

Parameters source The object that generated the event.
id The type ID of the event.
item The item whose state is changing.
stateChange Either SELECTED or DESELECTED.

Description Constructs an ItemEvent with the given characteristics.

Instance Methods
getItem

public Object getItem()

Returns The item pertaining to this event.
Description Returns the item whose changed state triggered this event.

getItemSelectable

public ItemSelectable getItemSelectable()

Returns The source of this event.

ITEMEVENT 855

10 July 2002 22:26

Description Returns an object that implements the ItemSelectable inter-
face.

getStateChange

public int getStateChange()

Returns The change in state that triggered this event. The new state is
returned.

Description This method will return SELECTED or DESELECTED.

paramString

public String paramString()

Returns String with current settings of ItemEvent.
Overrides AWTEvent.paramString()

Description Helper method for toString() to generate string of current
settings.

See Also
AWTEvent, ItemSelectable, ItemListener

21.16 ItemListener �

Description
Objects that implement the ItemListener inter face can receive ItemEvent

objects. Listeners must first register themselves with objects that produce events.
When events occur, they are then automatically propagated to all registered lis-
teners.

Interface Definition
public abstract interface java.awt.event.ItemListener

extends java.util.EventListener {

// Interface Methods

public abstract void itemStateChanged (ItemEvent e);

}

Interface Methods

856 ITEMEVENT

10 July 2002 22:26

itemStateChanged

public abstract void itemStateChanged (ItemEvent e)

Parameters e The item event that occurred.

Description Notifies the ItemListener that an event occurred.

See Also
AWTEventMulticaster, EventListener, ItemEvent

21.17 KeyAdapter �

Description
The KeyAdapter class implements the methods of KeyListener with empty
functions. It may be easier for you to extend KeyAdapter, overriding only those
methods you are interested in, than to implement KeyListener and provide the
empty functions yourself.

Class Definition
public abstract class java.awt.event.KeyAdapter

extends java.lang.Object

implements java.awt.event.KeyListener {

// Instance Methods

public void keyPressed (KeyEvent e);

public void keyReleased (KeyEvent e);

public void keyTyped (KeyEvent e);

}

Instance Methods
keyPressed

public void keyPressed (KeyEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when a key
is pressed.

keyReleased

KEYADAPTER 857

10 July 2002 22:26

public void keyReleased (KeyEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when a
pressed key is released.

keyTyped

public void keyTyped (KeyEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when a key
has been pressed and released.

See Also
KeyEvent, KeyListener

21.18 KeyEvent �

Description
Key events are generated when the user types on the keyboard.

Class Definition
public class java.awt.event.KeyEvent

extends java.awt.event.InputEvent {

// Constants

public final static int CHAR_UNDEFINED;

public final static int KEY_FIRST;

public final static int KEY_LAST;

public final static int KEY_PRESSED;

public final static int KEY_RELEASED;

public final static int KEY_TYPED;

public final static int VK_0;

public final static int VK_1;

public final static int VK_2;

public final static int VK_3;

public final static int VK_4;

public final static int VK_5;

public final static int VK_6;

public final static int VK_7;

public final static int VK_8;

public final static int VK_9;

public final static int VK_A;

public final static int VK_ACCEPT;

public final static int VK_ADD;

858 KEYADAPTER

10 July 2002 22:26

public final static int VK_ALT;

public final static int VK_B;

public final static int VK_BACK_QUOTE;

public final static int VK_BACK_SLASH;

public final static int VK_BACK_SPACE;

public final static int VK_C;

public final static int VK_CANCEL;

public final static int VK_CAPS_LOCK;

public final static int VK_CLEAR;

public final static int VK_CLOSE_BRACKET;

public final static int VK_COMMA;

public final static int VK_CONTROL;

public final static int VK_CONVERT;

public final static int VK_D;

public final static int VK_DECIMAL;

public final static int VK_DELETE;

public final static int VK_DIVIDE;

public final static int VK_DOWN;

public final static int VK_E;

public final static int VK_END;

public final static int VK_ENTER;

public final static int VK_EQUALS;

public final static int VK_ESCAPE;

public final static int VK_F;

public final static int VK_F1;

public final static int VK_F2;

public final static int VK_F3;

public final static int VK_F4;

public final static int VK_F5;

public final static int VK_F6;

public final static int VK_F7;

public final static int VK_F8;

public final static int VK_F9;

public final static int VK_F10;

public final static int VK_F11;

public final static int VK_F12;

public final static int VK_FINAL;

public final static int VK_G;

public final static int VK_H;

public final static int VK_HELP;

public final static int VK_HOME;

public final static int VK_I;

public final static int VK_INSERT;

public final static int VK_J;

public final static int VK_K;

public final static int VK_KANA;

public final static int VK_KANJI;

public final static int VK_L;

public final static int VK_LEFT;

KEYEVENT 859

10 July 2002 22:26

public final static int VK_M;

public final static int VK_META;

public final static int VK_MODECHANGE;

public final static int VK_MULTIPLY;

public final static int VK_N;

public final static int VK_NONCONVERT;

public final static int VK_NUM_LOCK;

public final static int VK_NUMPAD0;

public final static int VK_NUMPAD1;

public final static int VK_NUMPAD2;

public final static int VK_NUMPAD3;

public final static int VK_NUMPAD4;

public final static int VK_NUMPAD5;

public final static int VK_NUMPAD6;

public final static int VK_NUMPAD7;

public final static int VK_NUMPAD8;

public final static int VK_NUMPAD9;

public final static int VK_O;

public final static int VK_OPEN_BRACKET;

public final static int VK_P;

public final static int VK_PAGE_DOWN;

public final static int VK_PAGE_UP;

public final static int VK_PAUSE;

public final static int VK_PERIOD;

public final static int VK_PRINTSCREEN;

public final static int VK_Q;

public final static int VK_QUOTE;

public final static int VK_R;

public final static int VK_RIGHT;

public final static int VK_S;

public final static int VK_SCROLL_LOCK;

public final static int VK_SEMICOLON;

public final static int VK_SEPARATER;

public final static int VK_SHIFT;

public final static int VK_SLASH;

public final static int VK_SPACE;

public final static int VK_SUBTRACT;

public final static int VK_T;

public final static int VK_TAB;

public final static int VK_U;

public final static int VK_UNDEFINED;

public final static int VK_UP;

public final static int VK_V;

public final static int VK_W;

public final static int VK_X;

public final static int VK_Y;

public final static int VK_Z;

// Constructors

860 KEYEVENT

10 July 2002 22:26

public KeyEvent (Component source, int id, long when, int modifiers,

int keyCode, char keyChar);

// Class Methods

public static String getKeyModifiersText(int modifiers);

public static String getKeyText(int keyCode);

// Instance Methods

public char getKeyChar();

public int getKeyCode();

public boolean isActionKey();

public String paramString();

public void setKeyChar (char keyChar);

public void setKeyCode (int keyCode);

public void setModifiers (int modifiers);

}

Constants
CHAR_UNDEFINED

public final static int CHAR_UNDEFINED

This constant is used for key presses have that no associated character.

KEY_FIRST

public final static int KEY_FIRST

Specifies the beginning range of key event ID values.

KEY_LAST

public final static int KEY_LAST

Specifies the ending range of key event ID values.

KEY_PRESSED

public final static int KEY_PRESSED

An event ID type for a key press.

KEY_RELEASED

public final static int KEY_RELEASED

An event ID type for a key release.

KEY_TYPED

KEYEVENT 861

10 July 2002 22:26

public final static int KEY_TYPED

An event ID type for a typed key (a press and a release).

VK_0

public final static int VK_0

The 0 key.

VK_1

public final static int VK_1

The 1 key.

VK_2

public final static int VK_2

The 2 key.

VK_3

public final static int VK_3

The 3 key.

VK_4

public final static int VK_4

The 4 key.

VK_5

public final static int VK_5

The 5 key.

VK_6

public final static int VK_6

The 6 key.

VK_7

public final static int VK_7

The 7 key.

862 KEYEVENT

10 July 2002 22:26

VK_8

public final static int VK_8

The 8 key.

VK_9

public final static int VK_9

The 9 key.

VK_A

public final static int VK_A

The ‘a’ key.

VK_ACCEPT

public final static int VK_ACCEPT

This constant is used for Asian keyboards.

VK_ADD

public final static int VK_ADD

The plus (+) key on the numeric keypad.

VK_ALT

public final static int VK_ALT

The Alt key.

VK_B

public final static int VK_B

The ‘b’ key.

VK_BACK_QUOTE

public final static int VK_BACK_QUOTE

The backquote (‘) key.

VK_BACK_SLASH

public final static int VK_BACK_SLASH

The backslash key.

KEYEVENT 863

10 July 2002 22:26

VK_BACK_SPACE

public final static int VK_BACK_SPACE

The Backspace key.

VK_C

public final static int VK_C

The ‘c’ key.

VK_CANCEL

public final static int VK_CANCEL

The Cancel key.

VK_CAPS_LOCK

public final static int VK_CAPS_LOCK

The Caps Lock key.

VK_CLEAR

public final static int VK_CLEAR

The Clear key.

VK_CLOSE_BRACKET

public final static int VK_CLOSE_BRACKET

The close bracket ‘]’ key.

VK_COMMA

public final static int VK_COMMA

The comma (,) key.

VK_CONTROL

public final static int VK_CONTROL

The Control key.

VK_CONVERT

public final static int VK_CONVERT

This constant is used for Asian keyboards.

864 KEYEVENT

10 July 2002 22:26

VK_D

public final static int VK_D

The ‘d’ key.

VK_DECIMAL

public final static int VK_DECIMAL

The decimal (.) key on the numeric keypad.

VK_DELETE

public final static int VK_DELETE

The Delete key.

VK_DIVIDE

public final static int VK_DIVIDE

The divide (/) key on the numeric keypad.

VK_DOWN

public final static int VK_DOWN

The Down arrow key.

VK_E

public final static int VK_E

The ‘e’ key.

VK_END

public final static int VK_END

The End key.

VK_ENTER

public final static int VK_ENTER

The Enter key.

VK_EQUALS

public final static int VK_ EQUALS

The equals (=) key.

KEYEVENT 865

10 July 2002 22:26

VK_ESCAPE

public final static int VK_ESCAPE

The Escape key.

VK_F

public final static int VK_F

The ‘f’ key.

VK_F1

public final static int VK_F1

The F1 key.

VK_F2

public final static int VK_F2

The F2 key.

VK_F3

public final static int VK_F3

The F3 key.

VK_F4

public final static int VK_F4

The F4 key.

VK_F5

public final static int VK_F5

The F5 key.

VK_F6

public final static int VK_F6

The F6 key.

VK_F7

public final static int VK_F7

The F7 key.

866 KEYEVENT

10 July 2002 22:26

VK_F8

public final static int VK_F8

The F8 key.

VK_F9

public final static int VK_F9

The F9 key.

VK_F10

public final static int VK_F10

The F10 key.

VK_F11

public final static int VK_F11

The F11 key.

VK_F12

public final static int VK_F12

The F12 key.

VK_FINAL

public final static int VK_FINAL

This constant is used for Asian keyboards.

VK_G

public final static int VK_G

The ‘g’ key.

VK_H

public final static int VK_H

The ‘h’ key.

VK_HELP

public final static int VK_HELP

The Help key.

KEYEVENT 867

10 July 2002 22:26

VK_HOME

public final static int VK_HOME

The Home key.

VK_I

public final static int VK_I

The ‘i’ key.

VK_INSERT

public final static int VK_INSERT

The Insert key.

VK_J

public final static int VK_J

The ‘j’ key.

VK_K

public final static int VK_K

The ‘k’ key.

VK_KANA

public final static int VK_KANA

This constant is used for Asian keyboards.

VK_KANJI

public final static int VK_KANJI

This constant is used for Asian keyboards.

VK_L

public final static int VK_L

The ‘l’ key.

VK_LEFT

public final static int VK_LEFT

The Left arrow key.

868 KEYEVENT

10 July 2002 22:26

VK_M

public final static int VK_M

The ‘m’ key.

VK_MODECHANGE

public final static int VK_MODECHANGE

This constant is used for Asian keyboards.

VK_META

public final static int VK_META

The Meta key.

VK_MULTIPLY

public final static int VK_MULTIPLY

The * key on the numeric keypad.

VK_N

public final static int VK_N

The ‘n’ key.

VK_NONCONVERT

public final static int VK_NONCONVERT

This constant is used for Asian keyboards.

VK_NUM_LOCK

public final static int VK_NUM_LOCK

The Num Lock key.

VK_NUMPAD0

public final static int VK_NUMPAD0

The 0 key on the numeric keypad.

VK_NUMPAD1

public final static int VK_NUMPAD1

The 1 key on the numeric keypad.

KEYEVENT 869

10 July 2002 22:26

VK_NUMPAD2

public final static int VK_NUMPAD2

The 2 key on the numeric keypad.

VK_NUMPAD3

public final static int VK_NUMPAD3

The 3 key on the numeric keypad.

VK_NUMPAD4

public final static int VK_NUMPAD4

The 4 key on the numeric keypad.

VK_NUMPAD5

public final static int VK_NUMPAD5

The 5 key on the numeric keypad.

VK_NUMPAD6

public final static int VK_NUMPAD6

The 6 key on the numeric keypad.

VK_NUMPAD7

public final static int VK_NUMPAD7

The 7 key on the numeric keypad.

VK_NUMPAD8

public final static int VK_NUMPAD8

The 8 key on the numeric keypad.

VK_NUMPAD9

public final static int VK_NUMPAD9

The 9 key on the numeric keypad.

VK_O

public final static int VK_O

The ‘o’ key.

870 KEYEVENT

10 July 2002 22:26

VK_OPEN_BRACKET

public final static int VK_OPEN_BRACKET

The open bracket ‘[‘ key.

VK_P

public final static int VK_P

The ‘p’ key.

VK_PAGE_DOWN

public final static int VK_PAGE_DOWN

The Page Down key.

VK_PAGE_UP

public final static int VK_PAGE_UP

The Page Up key.

VK_PAUSE

public final static int VK_PAUSE

The Pause key.

VK_PERIOD

public final static int VK_PERIOD

The period (.) key.

VK_PRINTSCREEN

public final static int VK_PRINTSCREEN

The Print Screen key.

VK_Q

public final static int VK_Q

The ‘q’ key.

VK_QUOTE

public final static int VK_QUOTE

The quotation mark (”) key.

KEYEVENT 871

10 July 2002 22:26

VK_R

public final static int VK_R

The ‘r’ key.

VK_RIGHT

public final static int VK_RIGHT

The Right arrow key.

VK_S

public final static int VK_S

The ‘s’ key.

VK_SCROLL_LOCK

public final static int VK_SCROLL_LOCK

The Scroll Lock key.

VK_SEMICOLON

public final static int VK_SEMICOLON

The semicolon (;) key.

VK_SEPARATER

public final static int VK_SEPARATER

The numeric separator key on the numeric keypad (i.e., the locale-dependent
key used to separate groups of digits). A misspelling of VK_SEPARATOR.

VK_SHIFT

public final static int VK_SHIFT

The Shift key.

VK_SLASH

public final static int VK_SLASH

The slash (/) key.

872 KEYEVENT

10 July 2002 22:26

VK_SPACE

public final static int VK_SPACE

The space key.

VK_SUBTRACT

public final static int VK_SUBTRACT

The subtract (−) key on the numeric keypad.

VK_T

public final static int VK_T

The ‘t’ key.

VK_TAB

public final static int VK_TAB

The Tab key.

VK_U

public final static int VK_U

The ‘u’ key.

VK_UNDEFINED

public final static int VK_UNDEFINED

An undefined key.

VK_UP

public final static int VK_UP

The Up arrow key.

VK_V

public final static int VK_V

The ‘v’ key.

VK_W

public final static int VK_W

The ‘w’ key.

KEYEVENT 873

10 July 2002 22:26

VK_X

public final static int VK_X

The ‘x’ key.

VK_Y

public final static int VK_Y

The ‘y’ key.

VK_Z

public final static int VK_Z

The ‘z’ key.

Constructors
KeyEvent

public KeyEvent (Component source, int id, long when, int
modifiers, int keyCode, char keyChar)

Parameters source The object that generated the event.
id The event type ID of the event.
when When the event occurred, in milliseconds from

the epoch.
modifiers What modifier keys were pressed with this key.
keyCode The code of the key.
keyChar The character for this key.

Description Constructs a KeyEvent with the given characteristics.

Class Methods
getKeyModifiersText

public static String getKeyModifiersText(int modifiers)

Parameters modifiers One or more modifier keys.

Returns A string describing the modifiers.

getKeyText

public static String getKeyText(int keyCode)

Parameters keyCode One of the key codes.

Returns A string describing the given key.

874 KEYEVENT

10 July 2002 22:26

Instance Methods
getKeyChar

public char getKeyChar()

Returns The character corresponding to this event. KEY_TYPED events
have characters.

getKeyCode

public int getKeyCode()

Returns The integer key code corresponding to this event. This will be
one of the constants defined above. KEY_PRESSED and
KEY_RELEASED events have codes. Key codes are virtual keys,
not actual. Pressing the ‘a’ key is identical to ‘A’, but has differ-
ent modifiers. Same for ‘/’ and ‘?’ on a standard keyboard.

isActionKey

public boolean isActionKey()

Returns true if this event is for one of the action keys; false other-
wise.

Description In general, an action key is a key that causes an action but has
no printing equivalent. The action keys are the function keys,
the arrow keys, Caps Lock, End, Home, Insert, Num Lock,
Pause, Page Down, Page Up, Print Screen, and Scroll Lock.
They do not generate a KEY_TYPED event, only KEY_PRESSED
and KEY_RELEASED.

paramString

public String paramString()

Returns A string with current settings of the KeyEvent.
Overrides ComponentEvent.paramString()

Description Helper method for toString() to generate string of current
settings.

setKeyChar

public void setKeyChar(char keyChar)

Parameters keyChar The new key character.

Description Sets the character code of this KeyEvent.

KEYEVENT 875

10 July 2002 22:26

setKeyCode

public void setKeyCode (int keyCode)

Parameters keyCode The new key code.

Description Sets the key code of this KeyEvent.

setModifiers

public void setModifiers (int modifiers)

Parameters modifiers The new modifiers.

Description This is a combination of the mask constants defined in
java.awt.event.InputEvent.

See Also
Component, ComponentEvent, InputEvent, KeyAdapter, KeyListener

21.19 KeyListener �

Description
Objects that implement the KeyListener inter face can receive KeyEvent

objects. Listeners must first register themselves with objects that produce events.
When events occur, they are then automatically propagated to all registered lis-
teners.

Interface Definition
public abstract interface java.awt.event.KeyListener

extends java.util.EventListener {

// Instance Methods

public abstract void keyPressed (KeyEvent e);

public abstract void keyReleased (KeyEvent e);

public abstract void keyTyped (KeyEvent e);

}

876 KEYEVENT

10 July 2002 22:26

Interface Methods
keyPressed

public abstract void keyPressed (KeyEvent e)

Parameters e The key event that occurred.

Description Notifies the KeyListener that a key was pressed.

keyReleased

public abstract void keyReleased (KeyEvent e)

Parameters e The key event that occurred.

Description Notifies the KeyListener that a key was released.

keyTyped

public abstract void keyTyped (KeyEvent e)

Parameters e The key event that occurred.

Description Notifies the KeyListener that a key was typed (pressed and
released).

See Also
AWTEventMulticaster, EventListener, KeyEvent, KeyListener

21.20 MouseAdapter �

Description
The MouseAdapter class implements the methods of MouseListener with empty
functions. It may be easier for you to extend MouseAdapter, overriding only those
methods you are interested in, than to implement MouseListener and provide
the empty functions yourself.

Class Definition
public abstract class java.awt.event.MouseAdapter

extends java.lang.Object

implements java.awt.event.MouseListener {

// Instance Methods

public void mouseClicked (MouseEvent e);

public void mouseEntered (MouseEvent e);

public void mouseExited (MouseEvent e);

public void mousePressed (MouseEvent e);

public void mouseReleased (MouseEvent e);

}

MOUSEADAPTER 877

10 July 2002 22:26

Instance Methods
mouseClicked

public void mouseClicked (MouseEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when the
mouse button is clicked (pressed and released).

mouseEntered

public void mouseEntered (MouseEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when the
user moves the mouse cursor into a component.

mouseExited

public void mouseExited (MouseEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when the
moves the mouse cursor out of a component.

mousePressed

public void mousePressed (MouseEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when the
mouse button is pressed.

mouseReleased

public void mouseReleased (MouseEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when the
mouse button is released.

See Also
MouseEvent, MouseListener

878 MOUSEADAPTER

10 July 2002 22:26

21.21 MouseEvent �

Description
Mouse events are generated when the user moves and clicks the mouse.

Class Definition
public class java.awt.event.MouseEvent

extends java.awt.event.InputEvent {

// Constants

public final static int MOUSE_CLICKED;

public final static int MOUSE_DRAGGED;

public final static int MOUSE_ENTERED;

public final static int MOUSE_EXITED;

public final static int MOUSE_FIRST;

public final static int MOUSE_LAST;

public final static int MOUSE_MOVED;

public final static int MOUSE_PRESSED;

public final static int MOUSE_RELEASED;

// Constructors

public MouseEvent (Component source, int id, long when, int modifiers, int x,

int y, int clickCount, boolean popupTrigger);

// Instance Methods

public int getClickCount();

public synchronized Point getPoint();

public int getX();

public int getY();

public boolean isPopupTrigger();

public String paramString();

public synchronized void translatePoint (int x, int y);

}

Constants
MOUSE_CLICKED

public final static int MOUSE_CLICKED

An event type ID indicating a mouse click.

MOUSE_DRAGGED

MOUSEEVENT 879

10 July 2002 22:26

public final static int MOUSE_DRAGGED

An event type ID indicating a mouse move with the button held down.

MOUSE_ENTERED

public final static int MOUSE_ENTERED

An event type ID indicating that a mouse entered a component.

MOUSE_EXITED

public final static int MOUSE_EXITED

An event type ID indicating that a mouse left a component.

MOUSE_FIRST

public final static int MOUSE_FIRST

Specifies the beginning range of mouse event ID values.

MOUSE_LAST

public final static int MOUSE_LAST

Specifies the ending range of mouse event ID values.

MOUSE_MOVED

public final static int MOUSE_MOVED

An event type ID indicating a mouse move.

MOUSE_PRESSED

public final static int MOUSE_PRESSED

An event type ID indicating a mouse button press.

MOUSE_RELEASED

public final static int MOUSE_RELEASED

An event type ID indicating a mouse button release.

Constructors
MouseEvent

public MouseEvent (Component source, int id, long when,
int modifiers, int x, int y, int clickCount, boolean
popupTrigger)

880 MOUSEEVENT

10 July 2002 22:26

Parameters source The object that generated the event.
id The event type ID of the event.
when When the event occurred, in milliseconds from

the epoch.
modifiers What modifier keys were pressed with this key.
x The horizontal location of the event.
y The vertical location of the event.
clickCount The number of times the mouse button has

been clicked.
popupTrigger A flag indicating if this event is a popup trigger

event.

Description Constructs a MouseEvent with the given characteristics.

Instance Methods
getClickCount

public int getClickCount()

Returns The number of consecutive mouse button clicks for this event.

getPoint

public synchronized Point getPoint()

Returns The location where the event happened.

getX

public int getX()

Returns The horizontal location where the event happened.

getY

public int getY()

Returns The vertical location where the event happened.

isPopupTrigger

public boolean isPopupTrigger()

Returns Returns true if this event is the popup menu event for the run-
time system.

MOUSEEVENT 881

10 July 2002 22:26

paramString

public String paramString()

Returns String with current settings of the MouseEvent.
Overrides ComponentEvent.paramString()

Description Helper method for toString() to generate string of current
settings.

translatePoint

public synchronized void translatePoint (int x, int y)

Parameters x The horizontal amount of translation.
y The vertical amount of translation.

Description Translates the location of the event by the given amounts.

See Also
Component, ComponentEvent, InputEvent, MouseAdapter, MouseListener,
Point

21.22 MouseListener �

Description
Objects that implement the MouseListener inter face can receive non-motion
oriented MouseEvent objects. Listeners must first register themselves with objects
that produce events. When events occur, they are then automatically propagated to
all registered listeners.

Interface Definition
public abstract interface java.awt.event.MouseListener

extends java.util.EventListener {

// Instance Methods

public abstract void mouseClicked (MouseEvent e);

public abstract void mouseEntered (MouseEvent e);

public abstract void mouseExited (MouseEvent e);

public abstract void mousePressed (MouseEvent e);

public abstract void mouseReleased (MouseEvent e);

}

882 MOUSEEVENT

10 July 2002 22:26

Interface Methods
mouseClicked

public abstract void mouseClicked (MouseEvent e)

Parameters e The key event that occurred.

Description Notifies the MouseListener that the mouse button was
clicked (pressed and released).

mouseEntered

public abstract void mouseEntered (MouseEvent e)

Parameters e The key event that occurred.

Description Notifies the MouseListener that the mouse cursor has been
moved into a component’s coordinate space.

mouseExited

public abstract void mouseExited (MouseEvent e)

Parameters e The key event that occurred.

Description Notifies the MouseListener that the mouse cursor has been
moved out of a component’s coordinate space.

mousePressed

public abstract void mousePressed (MouseEvent e)

Parameters e The key event that occurred.

Description Notifies the MouseListener that the mouse button was
pressed.

mouseReleased

public abstract void mouseReleased (MouseEvent e)

Parameters e The key event that occurred.

Description Notifies the MouseListener that the mouse button was
released.

See Also
EventListener, MouseAdapter, MouseEvent

MOUSELISTENER 883

10 July 2002 22:26

21.23 MouseMotionAdapter �

Description
The MouseMotionAdapter class implements the methods of MouseMotionLis-
tener with empty functions. It may be easier for you to extend MouseMotion-

Adapter, overriding only those methods you are interested in, than to implement
MouseMotionListener and provide the empty functions yourself.

Class Definition
public abstract class java.awt.event.MouseMotionAdapter

extends java.lang.Object

implements java.awt.event.MouseMotionListener {

// Instance Methods

public void mouseDragged (MouseEvent e);

public void mouseMoved (MouseEvent e);

}

Instance Methods
mouseDragged

public void mouseDragged (MouseEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when the
mouse is dragged.

mouseMoved

public void mouseEntered (MouseEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when the
mouse moves.

See Also
MouseEvent, MouseMotionListener

884 MOUSEMOTIONADAPTER

10 July 2002 22:26

21.24 MouseMotionListener �

Description
Objects that implement the MouseMotionListener inter face can receive motion-
oriented MouseEvent objects. Listeners must first register themselves with objects
that produce events. When events occur, they are automatically propagated to all
registered listeners.

Interface Definition
public abstract interface java.awt.event.MouseMotionListener

extends java.util.EventListener {

// Instance Methods

public abstract void mouseDragged (MouseEvent e);

public abstract void mouseMoved (MouseEvent e);

}

Interface Methods
mouseDragged

public abstract void mouseDragged (MouseEvent e)

Parameters e The key event that occurred.

Description Notifies the MouseMotionListener that the mouse has been
dragged.

mouseMoved

public abstract void mouseMoved (MouseEvent e)

Parameters e The key event that occurred.

Description Notifies the MouseMotionListener that the mouse has been
moved.

See Also
AWTEventMulticaster, EventListener, MouseEvent, MouseMotionAdapter

21.25 PaintEvent �

PAINTEVENT 885

10 July 2002 22:26

Description
The PaintEvent class represents the paint and update operations that the AWT
per forms on components. There is no PaintListener inter face, so the only way
to catch these events is to override paint(Graphics) and update(Graphics)

in Component. This class exists so that paint events will get serialized properly.

Class Definition
public class java.awt.event.PaintEvent

extends java.awt.event.ComponentEvent {

// Constants

public final static int PAINT;

public final static int PAINT_FIRST;

public final static int PAINT_LAST;

public final static int UPDATE;

// Constructor

public PaintEvent (Component source, int id, Rectangle updateRect);

// Instance Methods

public Rectangle getUpdateRect();

public String paramString();

public void setUpdateRect (Rectangle updateRect);

}

Class Definition
public class java.awt.event.PaintEvent

extends java.awt.event.ComponentEvent {

// Constants

public final static int PAINT;

public final static int PAINT_FIRST;

public final static int PAINT_LAST;

public final static int UPDATE;

//Constructor

public PaintEvent (Component source, int id, Rectangle updateRect);

// Instance Methods

public Rectangle getUpdateRect();

public String paramString();

public void setUpdateRect (Rectangle updateRect);

}

886 PAINTEVENT

10 July 2002 22:26

Constants
PAINT

public final static int PAINT

The paint event type.

PAINT_FIRST

public final static int PAINT_FIRST

Specifies the beginning range of paint event ID values.

PAINT_LAST

public final static int PAINT_LAST

Specifies the ending range of paint event ID values.

UPDATE

public final static int UPDATE

The update event type.

Constructor
PaintEvent

public PaintEvent (Component source, ind id, Rectangle
updateRect)

Parameters source The source of the event.
id The event type ID.
g The rectangular area to paint.

Description Constructs a PaintEvent with the given characteristics.

Instance Methods
getUpdateRect

public Rectangle getUpdateRect()

Returns The rectangular area that needs painting.

paramString

public String paramString()

Returns String with current settings of the PaintEvent.
Overrides ComponentEvent.paramString()

PAINTEVENT 887

10 July 2002 22:26

Description Helper method for toString() to generate string of current
settings.

setUpdateRect

public void setUpdateRect (Rectangle updateRect)

Parameters updateRect The rectangular area to paint.

Description Changes the rectangular area that this PaintEvent will paint.

See Also
Component, ComponentEvent, Graphics

21.26 TextEvent �

Description
Text events are generated by text components when their contents change, either
programmatically or by a user typing.

Class Definition
public class java.awt.event.TextEvent

extends java.awt.AWTEvent {

// Constants

public final static int TEXT_FIRST;

public final static int TEXT_LAST;

public final static int TEXT_VALUE_CHANGED;

// Constructors

public TextEvent (Object source, int id);

// Instance Methods

public String paramString();

}

Constants
TEXT_FIRST

public final static int TEXT_FIRST

Specifies the beginning range of text event ID values.

888 PAINTEVENT

10 July 2002 22:26

TEXT_LAST

public final static int TEXT_LAST

Specifies the ending range of text event ID values.

TEXT_VALUE_CHANGED

public final static int TEXT_VALUE_CHANGED

The only text event type; it indicates that the contents of something have
changed.

Constructors
TextEvent

public TextEvent (Object source, int id)

Parameters source The object that generated the event.
id The type ID of the event.

Description Constructs a TextEvent with the given characteristics.

Instance Methods
paramString

public String paramString()

Returns String with current settings of the TextEvent.
Overrides AWTEvent.paramString()

Description Helper method for toString() to generate string of current
settings.

See Also
AWTEvent, TextListener

21.27 TextListener �

Description
Objects that implement the TextListener inter face can receive TextEvent

objects. Listeners must first register themselves with objects that produce events.
When events occur, they are then automatically propagated to all registered lis-
teners.

TEXTLISTENER 889

10 July 2002 22:26

Interface Definition
public abstract interface java.awt.event.TextListener

extends java.util.EventListener {

// Interface Methods

public abstract void textValueChanged (TextEvent e);

}

Interface Methods
textValueChanged

public abstract void textValueChanged (TextEvent e)

Parameters e The text event that occurred.

Description Notifies the TextListener that an event occurred.

See Also
AWTEventMulticaster, EventListener, TextEvent

21.28 WindowAdapter �

Description
The WindowAdapter class implements the methods of WindowListener with
empty functions. It may be easier for you to extend WindowAdapter, overriding
only those methods you are interested in, than to implement WindowListener
and provide the empty functions yourself.

Class Definition
public abstract class java.awt.event.WindowAdapter

extends java.lang.Object

implements java.awt.event.WindowListener {

// Instance Methods

public void windowActivated (WindowEvent e);

public void windowClosed (WindowEvent e);

public void windowClosing (WindowEvent e);

public void windowDeactivated (WindowEvent e);

public void windowDeiconified (WindowEvent e);

public void windowIconified (WindowEvent e);

public void windowOpened (WindowEvent e);

}

890 TEXTLISTENER

10 July 2002 22:26

Instance Methods
windowActivated

public void windowActivated (WindowEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when a win-
dow is activated.

windowClosed

public void windowClosed (WindowEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when a win-
dow is closed.

windowClosing

public void windowClosing (WindowEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when a win-
dow is in the process of closing.

windowDeactivated

public void windowDeactivated (WindowEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when a win-
dow is deactivated.

windowDeiconified

public void windowDeiconified (WindowEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when an
iconified window is restored.

WINDOWADAPTER 891

10 July 2002 22:26

windowIconified

public void windowIconified (WindowEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when a win-
dow is iconified (minimized).

windowOpened

public void windowOpened (WindowEvent e)

Parameters e The event that has occurred.

Description Does nothing. Override this function to be notified when a win-
dow is opened.

See Also
WindowEvent, WindowListener

21.29 WindowEvent �

Description
Window events are generated when a window is opened, closed, iconified, or
deiconified.

Class Definition
public class java.awt.event.WindowEvent

extends java.awt.event.ComponentEvent {

// Constants

public final static int WINDOW_ACTIVATED;

public final static int WINDOW_CLOSED;

public final static int WINDOW_CLOSING;

public final static int WINDOW_DEACTIVATED;

public final static int WINDOW_DEICONIFIED;

public final static int WINDOW_FIRST;

public final static int WINDOW_ICONIFIED;

public final static int WINDOW_LAST;

public final static int WINDOW_OPENED;

// Constructors

public WindowEvent (Window source, int id);

// Instance Methods

public Window getWindow();

public String paramString();

892 WINDOWADAPTER

10 July 2002 22:26

}

Constants
WINDOW_ACTIVATED

public final static int WINDOW_ACTIVATED

Event type ID indicating the window has been activated, brought to the fore-
ground.

WINDOW_CLOSED

public final static int WINDOW_CLOSED

Event type ID indicating the window has closed.

WINDOW_CLOSING

public final static int WINDOW_CLOSING

Event type ID indicating the window is closing.

WINDOW_DEACTIVATED

public final static int WINDOW_DEACTIVATED

Event type ID indicating the window has been deactivated, placed in the back-
ground.

WINDOW_DEICONIFIED

public final static int WINDOW_DEICONIFIED

Event type ID indicating the window has been restored from an iconified state.

WINDOW_FIRST

public final static int WINDOW_FIRST

Specifies the beginning range of window event ID values.

WINDOW_ICONIFIED

public final static int WINDOW_ICONIFIED

Event type ID indicating the window has been iconified (minimized).

WINDOW_LAST

public final static int WINDOW_LAST

Specifies the ending range of window event ID values.

WINDOWEVENT 893

10 July 2002 22:26

WINDOW_OPENED

public final static int WINDOW_OPENED

Event type ID indicating the window has opened.

Constructors
WindowEvent

public WindowEvent (Window source, int id)

Parameters source The object that generated the event.
id The event type ID of the event.

Description Constructs a WindowEvent with the given characteristics.

Instance Methods
getWindow

public Window getWindow()

Returns The window that generated this event.

paramString

public String paramString()

Returns String with current settings of the WindowEvent.
Overrides ComponentEvent.paramString()

Description Helper method for toString() to generate string of current
settings.

See Also
ComponentEvent, Window, WindowAdapter, WindowListener

21.30 WindowListener �

Description
Objects that implement the WindowListener inter face can receive WindowEvent
objects. Listeners must first register themselves with objects that produce events.
When events occur, they are then automatically propagated to all registered lis-
teners.

Interface Definition
public abstract interface java.awt.event.WindowListener

extends java.util.EventListener {

// Instance Methods

894 WINDOWEVENT

10 July 2002 22:26

public abstract void windowActivated (WindowEvent e);

public abstract void windowClosed (WindowEvent e);

public abstract void windowClosing (WindowEvent e);

public abstract void windowDeactivated (WindowEvent e);

public abstract void windowDeiconified (WindowEvent e);

public abstract void windowIconified (WindowEvent e);

public abstract void windowOpened (WindowEvent e);

}

Interface Methods
windowActivated

public abstract void windowActivated (WindowEvent e)

Parameters e The event that occurred.

Description Notifies the WindowListener that a window has been acti-
vated.

windowClosed

public abstract void windowClosed (WindowEvent e)

Parameters e The event that occurred.

Description Notifies the WindowListener that a window has closed.

windowClosing

public abstract void windowClosing (WindowEvent e)

Parameters e The event that occurred.

Description Notifies the WindowListener that a window is closing.

windowDeactivated

public abstract void windowDeactivated (WindowEvent e)

Parameters e The event that occurred.

Description Notifies the WindowListener that a window has been deacti-
vated.

windowDeiconified

public abstract void windowDeiconified (WindowEvent e)

Parameters e The event that occurred.

WINDOWLISTENER 895

10 July 2002 22:26

Description Notifies the WindowListener that a window has been restored
from an iconified state.

windowIconified

public abstract void windowIconified (WindowEvent e)

Parameters e The event that occurred.

Description Notifies the WindowListener that a window has iconified
(minimized).

windowOpened

public abstract void windowOpened (WindowEvent e)

Parameters e The event that occurred.

Description Notifies the WindowListener that a window has opened.

See Also
AWTEventMulticaster, EventListener, Window, WindowAdapter, Window-
Event

896 WINDOWLISTENER

10 July 2002 22:26

22

java.awt.image Reference

22.1 AreaAveragingScaleFilter �

Description
The AreaAveragingScaleFilter class scales an image using a simple smooth-
ing algorithm.

Class Definition
public class java.awt.image.AreaAveragingScaleFilter

extends java.awt.image.ReplicateScaleFilter {

// Constructor

public AreaAveragingScaleFilter (int width, int height);

// Instance Methods

public void setHints (int hints);

public void setPixels (int x, int y, int w, int h, ColorModel model,

byte[] pixels, int off, int scansize);

public void setPixels (int x, int y, int w, int h, ColorModel model,

int[] pixels, int off, int scansize);

}

897

10 July 2002 22:26

Constructor
AreaAveragingScaleFilter

public AreaAveragingScaleFilter (int width, int height)

Parameters width Width of scaled image.
height Height of scaled image.

Description Constructs an AverageScaleFilter that scales the original
image to the specified size.

Instance Methods
setHints

public void setHints (int hints)

Parameters hints Flags indicating how data will be delivered.
Overrides ImageFilter.setHints(int)

Description Gives this filter hints about how data will be delivered.

setPixels

public void setPixels (int x, int y, int w, int h,
ColorModel model, byte[] pixels, int off, int scansize)

Parameters x x-coordinate of top-left corner of pixel data
delivered with this method call.

y y-coordinate of top-left corner of pixel data
delivered with this method call.

w Width of the rectangle of pixel data delivered
with this method call.

h Height of the rectangle of pixel data delivered
with this method call.

model Color model of image data.
pixels Image data.
off Offset from beginning of the pixels array.
scansize Size of each line of data in pixels array.

Overrides ReplicateScaleFilter.setPixels(int, int, int,

int, ColorModel, byte[], int, int)

Description Receives a rectangle of image data from the ImageProducer;
scales these pixels and delivers them to any ImageConsumers.

public void setPixels (int x, int y, int w, int h,
ColorModel model, int[] pixels, int off, int scansize)

898 AREAAVERAGINGSCALEFILTER

10 July 2002 22:26

Parameters x x-coordinate of top-left corner of pixel data
delivered with this method call.

y y-coordinate of top-left corner of pixel data
delivered with this method call.

w Width of the rectangle of pixel data delivered
with this method call.

h Height of the rectangle of pixel data delivered
with this method call.

model Color model of image data.
pixels Image data.
off Offset from beginning of the pixels array.
scansize Size of each line of data in pixels array.

Overrides ReplicateScaleFilter.setPixels(int, int, int,

int, ColorModel, int[], int, int)

Description Receives a rectangle of image data from the ImageProducer;
scales these pixels and delivers them to any ImageConsumers.

See Also
ColorModel, ReplicateScaleFilter

22.2 ColorModel

Description
The abstract ColorModel class defines the way a Java program represents colors.
It provides methods for extracting different color components from a pixel.

Class Definition
public class java.awt.image.ColorModel

extends java.lang.Object {

// Variables

protected int pixel_bits;

// Constructors

public ColorModel (int bits);

// Class Methods

public static ColorModel getRGBdefault();

// Instance Methods

public void finalize(); �
public abstract int getAlpha (int pixel);

public abstract int getBlue (int pixel);

COLORMODEL 899

10 July 2002 22:26

public abstract int getGreen (int pixel);

public int getPixelSize();

public abstract int getRed (int pixel);

public int getRGB (int pixel);

}

ProtectedVariables
pixel_bits

protected int pixel_bits

The pixel_bits variable saves the ColorModel’s bits setting (the total num-
ber of bits per pixel).

Constructors
ColorModel

public ColorModel (int bits)

Parameters bits The number of bits required per pixel using this
model.

Description Constructs a ColorModel object.

Class Methods
getRGBdefault

public static ColorModel getRGBdefault()

Returns The default ColorModel format, which uses 8 bits for each of a
pixel’s color components: alpha (transparency), red, green,
and blue.

Instance Methods
finalize

public void finalize() �

Overrides Object.finalize()

Description Cleans up when this object is garbage collected.

getAlpha

public abstract int getAlpha (int pixel)

Parameters pixel A pixel encoded with this ColorModel.
Returns The current alpha setting of the pixel.

900 COLORMODEL

10 July 2002 22:26

getBlue

public abstract int getBlue (int pixel)

Parameters pixel A pixel encoded with this ColorModel.
Returns The current blue setting of the pixel.

getGreen

public abstract int getGreen (int pixel)

Parameters pixel A pixel encoded with this ColorModel.
Returns The current green setting of the pixel.

getPixelSize

public int getPixelSize()

Returns The current pixel size for the color model.

getRed

public abstract int getRed (int pixel)

Parameters pixel A pixel encoded with this ColorModel.
Returns The current red setting of the pixel.

getRGB

public int getRGB (int pixel)

Parameters pixel A pixel encoded with this ColorModel.
Returns The current combined red, green, and blue settings of the

pixel.
Description Gets the color of pixel in the default RGB color model.

See Also
DirectColorModel, IndexColorModel, Object

22.3 CropImageFilter

Description
The CropImageFilter class creates a smaller image by cropping (i.e., extracting
a rectangular region from) a larger image.

CROPIMAGEFILTER 901

10 July 2002 22:26

Class Definition
public class java.awt.image.CropImageFilter

extends java.awt.image.ImageFilter {

// Constructors

public CropImageFilter (int x, int y, int width, int height);

// Instance Methods

public void setDimensions (int width, int height);

public void setPixels (int x, int y, int width, int height, ColorModel model,

byte[] pixels, int offset, int scansize);

public void setPixels (int x, int y, int width, int height, ColorModel model,

int[] pixels, int offset, int scansize);

public void setProperties (Hashtable properties);

}

Constructors
CropImageFilter

public CropImageFilter (int x, int y, int width, int
height)

Parameters x x-coordinate of top-left corner of piece to crop.
y y-coordinate of top-left corner of piece to crop.
width Width of image to crop.
height Height of image to crop.

Description Constructs a CropImageFilter that crops the specified region
from the original image.

Instance Methods
setDimensions

public void setDimensions (int width, int height)

Parameters width Ignored parameter.
height Ignored parameter.

Overrides ImageFilter.setDimensions(int, int)

Description Called with the original image’s dimensions; these dimensions
are ignored. The method in turn calls the ImageConsumer

with the dimensions of the cropped image.

setPixels

902 CROPIMAGEFILTER

10 July 2002 22:26

public void setPixels (int x, int y, int width, int
height, ColorModel model, byte[] pixels, int offset, int
scansize)

Parameters x x-coordinate of top-left corner of pixel data
delivered with this method call.

y y-coordinate of top-left corner of pixel data
delivered with this method call.

width Width of the rectangle of pixel data delivered
with this method call.

height Height of the rectangle of pixel data delivered
with this method call.

model Color model of image data.
pixels Image data.
offset Offset from beginning of the pixels array.
scansize Size of each line of data in pixels array.

Overrides ImageFilter.setPixels(int, int, int, int,

ColorModel, byte[], int, int)

Description Receives a rectangle of image data from the ImageProducer;
crops these pixels and delivers them to any ImageConsumers.

public void setPixels (int x, int y, int width, int
height, ColorModel model, int[] pixels, int offset, int
scansize)

Parameters x x-coordinate of top-left corner of pixel data
delivered with this method call.

y y-coordinate of top-left corner of pixel data
delivered with this method call.

width Width of the rectangle of pixel data delivered
with this method call.

height Height of the rectangle of pixel data delivered
with this method call.

model Color model of image data.
pixels Image data.
offset Offset from beginning of the pixels array.
scansize Size of each line of data in pixels array.

Overrides ImageFilter.setPixels(int, int, int, int,

ColorModel, int[], int, int)

Description Receives a rectangle of image data from the ImageProducer;
crops these pixels and delivers them to any ImageConsumers.

CROPIMAGEFILTER 903

10 July 2002 22:26

setProperties

public void setProperties (Hashtable properties)

Parameters properties The properties for the image.
Overrides ImageFilter.setProperties(Hashtable)

Description Adds the “croprect” image property to the properties list.

See Also
ColorModel, Hashtable, ImageFilter

22.4 DirectColorModel

Description
The DirectColorModel class provides a ColorModel that specifies a translation
between pixels and alpha, red, green, and blue component values, where the color
values are embedded directly within the pixel.

Class Definition
public class java.awt.image.DirectColorModel

extends java.awt.image.ColorModel {

// Constructors

public DirectColorModel (int bits, int redMask, int greenMask,

int blueMask);

public DirectColorModel (int bits, int redMask, int greenMask,

int blueMask,

int alphaMask);

// Instance Methods

public final int getAlpha (int pixel);

public final int getAlphaMask();

public final int getBlue (int pixel);

public final int getBlueMask();

public final int getGreen (int pixel);

public final int getGreenMask()

public final int getRed (int pixel);

public final int getRedMask();

public final int getRGB (int pixel);

}

904 CROPIMAGEFILTER

10 July 2002 22:26

Constructors
DirectColorModel

public DirectColorModel (int bits, int redMask, int
greenMask, int blueMask)

Parameters bits The number of bits required per pixel of an
image using this model.

redMask The location of the red component of a pixel.
greenMask The location of the green component of a pixel.
blueMask The location of the blue component of a pixel.

Throws IllegalArgumentException

If the mask bits are not contiguous or overlap.
Description Constructs a DirectColorModel object with the given size

and color masks; the alpha (transparency) component is not
used.

public DirectColorModel (int bits, int redMask, int
greenMask, int blueMask, int alphaMask)

Parameters bits The number of bits required per pixel of an
image using this model.

redMask The location of the red component of a pixel.
greenMask The location of the green component of a pixel.
blueMask The location of the blue component of a pixel.
alphaMask The location of the alpha component of a pixel.

Throws IllegalArgumentException

If the mask bits are not contiguous or overlap.
Description Constructs a DirectColorModel object with the given size

and color masks.

Instance Methods
getAlpha

public final int getAlpha (int pixel)

Parameters pixel A pixel encoded with this ColorModel.
Returns The current alpha setting of the pixel.
Overrides ColorModel.getAlpha(int)

getAlphaMask

DIRECTCOLORMODEL 905

10 July 2002 22:26

public final int getAlphaMask()

Returns The current alpha mask setting of the color model.

getBlue

public final int getBlue (int pixel)

Parameters pixel A pixel encoded with this ColorModel.
Returns The current blue setting of the pixel.
Overrides ColorModel.getBlue(int)

getBlueMask

public final int getBlueMask()

Returns The current blue mask setting of the color model.

getGreen

public final int getGreen (int pixel)

Parameters pixel A pixel encoded with this ColorModel.
Returns The current green setting of the pixel.
Overrides ColorModel.getGreen(int)

getGreenMask

public final int getGreenMask()

Returns The current green mask setting of the color model.

getRed

public final int getRed (int pixel)

Parameters pixel A pixel encoded with this ColorModel.
Returns The current red setting of the pixel.
Overrides ColorModel.getRed(int)

getRedMask

public final int getRedMask()

Returns The current red mask setting of the color model.

getRGB

906 DIRECTCOLORMODEL

10 July 2002 22:26

public final int getRGB (int pixel)

Parameters pixel A pixel encoded with this ColorModel.
Returns The current combined red, green, and blue settings of the

pixel.
Overrides ColorModel.getRGB(int)

Description Gets the color of pixel in the default RGB color model.

See Also
ColorModel

22.5 FilteredImageSource

Description
The FilteredImageSource class acts as glue to put an original ImageProducer
and ImageFilter together to create a new image. As the ImageProducer for the
new image, FilteredImageSource is responsible for registering image con-
sumers for the new image.

Class Definition
public class java.awt.image.FilteredImageSource

extends java.lang.Object

implements java.awt.image.ImageProducer {

// Constructors

public FilteredImageSource (ImageProducer original,

ImageFilter filter);

// Instance Methods

public synchronized void addConsumer (ImageConsumer ic);

public synchronized boolean isConsumer (ImageConsumer ic);

public synchronized void removeConsumer (ImageConsumer ic);

public void requestTopDownLeftRightResend (ImageConsumer ic);

public void startProduction (ImageConsumer ic);

}

Constructors
FilteredImageSource

public FilteredImageSource (ImageProducer original,
ImageFilter filter)

FILTEREDIMAGESOURCE 907

10 July 2002 22:26

Parameters original An ImageProducer that generates the image to
be filtered.

filter The ImageFilter to use to process image data
delivered by original.

Description Constructs a FilteredImageSource object to filter an image
generated by an ImageProducer.

Class Methods
addConsumer

public synchronized void addConsumer (ImageConsumer ic)

Parameters ic ImageConsumer interested in receiving the new
image.

Implements ImageProducer.addConsumer(ImageConsumer)

Description Registers an ImageConsumer as interested in Image

information.

isConsumer

public synchronized boolean isConsumer (ImageConsumer ic)

Parameters ic ImageConsumer to check.
Returns true if ImageConsumer is registered with this ImagePro-

ducer, false other wise.
Implements ImageProducer.isConsumer(ImageConsumer)

removeConsumer

public synchronized void removeConsumer (ImageConsumer ic)

Parameters ic ImageConsumer to remove.
Implements ImageProducer.removeConsumer(ImageConsumer)

Description Removes an ImageConsumer from the registered consumers
for this ImageProducer.

requestTopDownLeftRightResend

public void requestTopDownLeftRightResend (ImageConsumer
ic)

Parameters ic ImageConsumer to communicate with.
Implements ImageProducer.requestTopDownLeftRightResend()

Description Requests the retransmission of the Image data in top-down,
left-to-right order.

908 FILTEREDIMAGESOURCE

10 July 2002 22:26

startProduction

public void startProduction (ImageConsumer ic)

Parameters ic ImageConsumer to communicate with.
Implements ImageProducer.startProduction(ImageConsumer)

Description Registers ImageConsumer as interested in Image information
and tells ImageProducer to start creating the filtered Image

data immediately.

See Also
ImageFilter, ImageConsumer, ImageProducer, Object

22.6 ImageConsumer

Description
ImageConsumer is an interface that provides the means to consume pixel data
and render it for display.

Interface Definition
public abstract interface java.awt.image.ImageConsumer {

// Constants

public final static int COMPLETESCANLINES;

public final static int IMAGEABORTED;

public final static int IMAGEERROR;

public final static int RANDOMPIXELORDER;

public final static int SINGLEFRAME;

public final static int SINGLEFRAMEDONE;

public final static int SINGLEPASS;

public final static int STATICIMAGEDONE;

public final static int TOPDOWNLEFTRIGHT;

// Interface Methods

public abstract void imageComplete (int status);

public abstract void setColorModel (ColorModel model);

public abstract void setDimensions (int width, int height);

public abstract void setHints (int hints);

public abstract void setPixels (int x, int y, int width, int height,

ColorModel model, byte[] pixels, int offset, int scansize);

public abstract void setPixels (int x, int y, int width, int height,

ColorModel model, int[] pixels, int offset, int scansize);

public abstract void setProperties (Hashtable properties);

}

IMAGECONSUMER 909

10 July 2002 22:26

Constants
COMPLETESCANLINES

public final static int COMPLETESCANLINES

Hint flag for the setHints(int) method; indicates that the image will be
delivered one or more scanlines at a time.

IMAGEABORTED

public final static int IMAGEABORTED

Status flag for the imageComplete(int) method indicating that the loading
process for the image aborted.

IMAGEERROR

public final static int IMAGEERROR

Status flag for the imageComplete(int) method indicating that an error
happened during image loading.

RANDOMPIXELORDER

public final static int RANDOMPIXELORDER

Hint flag for the setHints(int) method; indicates that the pixels will be
delivered in no particular order.

SINGLEFRAME

public final static int SINGLEFRAME

Hint flag for the setHints(int) method; indicates that the image consists of
a single frame.

SINGLEFRAMEDONE

public final static int SINGLEFRAMEDONE

Status flag for the imageComplete(int) method indicating a single frame of
the image has loaded.

SINGLEPASS

public final static int SINGLEPASS

Hint flag for the setHints(int) method; indicates that each pixel will be
delivered once (i.e., the producer will not make multiple passes over the
image).

910 IMAGECONSUMER

10 July 2002 22:26

STATICIMAGEDONE

public final static int STATICIMAGEDONE

Status flag for the imageComplete(int) method indicating that the image
has fully and successfully loaded, and that there are no additional frames.

TOPDOWNLEFTRIGHT

public final static int TOPDOWNLEFTRIGHT

Hint flag for the setHints(int) method; indicates that pixels will be deliv-
ered in a top to bottom, left to right order.

Interface Methods
imageComplete

public abstract void imageComplete (int status)

Parameters status Image loading status flags.
Description Called when the image, or a frame of an image sequence, is

complete to report the completion status.

setColorModel

public abstract void setColorModel (ColorModel model)

Parameters model The color model for the image.
Description Tells the ImageConsumer the color model used for most of the

pixels in the image.

setDimensions

public abstract void setDimensions (int width, int height)

Parameters width Width for image.
height Height for image.

Description Tells the consumer the image’s dimensions.

setHints

public abstract void setHints (int hints)

Parameters hints Image consumption hints.
Description Gives the consumer information about how pixels will be deliv-

ered.

IMAGECONSUMER 911

10 July 2002 22:26

setPixels

public abstract void setPixels (int x, int y, int width,
int height, ColorModel model, byte[] pixels, int offset,
int scansize)

Parameters x x-coordinate of top-left corner of pixel data
delivered with this method call.

y y-coordinate of top-left corner of pixel data
delivered with this method call.

width Width of the rectangle of pixel data delivered
with this method call.

height Height of the rectangle of pixel data delivered
with this method call.

model Color model of image data.
pixels Image data.
offset Offset from beginning of the pixels array.
scansize Size of each line of data in pixels array.

Description Delivers a rectangular block of pixels to the image consumer.

public abstract void setPixels (int x, int y, int width,
int height, ColorModel model, int[] pixels, int offset,
int scansize)

Parameters x x-coordinate of top-left corner of pixel data
delivered with this method call.

y y-coordinate of top-left corner of pixel data
delivered with this method call.

width Width of the rectangle of pixel data delivered
with this method call.

height Height of the rectangle of pixel data delivered
with this method call.

model Color model of image data.
pixels Image data.
offset Offset from beginning of the pixels array.
scansize Size of each line of data in pixels array.

Description Delivers a rectangular block of pixels to the image consumer.

setProperties

public abstract void setProperties (Hashtable properties)

Parameters properties The properties for the image.

912 IMAGECONSUMER

10 July 2002 22:26

Description Delivers a Hashtable that contains the image’s properties.

See Also
ColorModel, Hashtable, ImageFilter, PixelGrabber, Object

22.7 ImageFilter

Description
The ImageFilter class sits between the ImageProducer and ImageConsumer as
an image is being created to provide a filtered version of that image. Image filters
are always used in conjunction with a FilteredImageSource. As an implementer
of the ImageConsumer inter face, an image filter receives pixel data from the orig-
inal image’s source and delivers it to another image consumer. The ImageFilter

class implements a null filter (i.e., the new image is the same as the original); to
produce a filter that modifies an image, create a subclass of ImageFilter.

Class Definition
public class java.awt.image.ImageFilter

extends java.lang.Object

implements java.awt.image.ImageConsumer, java.lang.Cloneable {

// Variables

protected ImageConsumer consumer;

// Constructors

public ImageFilter();

// Instance Methods

public Object clone();

public ImageFilter getFilterInstance (ImageConsumer ic);

public void imageComplete (int status);

public void resendTopDownLeftRight (ImageProducer ip);

public void setColorModel (ColorModel model);

public void setDimensions (int width, int height);

public void setHints (int hints);

public void setPixels (int x, int y, int width, int height,

ColorModel model, byte[] pixels, int offset, int scansize);

public void setPixels (int x, int y, int width, int height,

ColorModel model, int[] pixels, int offset, int scansize);

public void setProperties (Hashtable properties);

}

IMAGEFILTER 913

10 July 2002 22:26

Protected Variables
consumer

protected ImageConsumer consumer

The consumer variable is a reference to the actual ImageConsumer for the
Image.

Constructors
ImageFilter

public ImageFilter()

Description Constructs an empty ImageFilter instance.

Instance Methods
clone

public Object clone()

Overrides Object.clone()

Returns A copy of the ImageFilter instance.

getFilterInstance

public ImageFilter getFilterInstance (ImageConsumer ic)

Parameters ic The consumer in question.
Returns A copy of the ImageFilter instance.
Description Returns the filter that will do the filtering for ic.

imageComplete

void imageComplete (int status)

Parameters status Image loading completion status flags.
Implements ImageConsumer.imageComplete(int)

Description Called by the ImageProducer to indicate an image’s comple-
tion status. ImageFilter passes these flags to the consumer
unchanged.

resendTopDownLeftRight

public void resendTopDownLeftRight (ImageProducer ip)

Parameters ip The ImageProducer generating the original
image.

Description Called by the ImageConsumer to ask the filter to resend the
image data in the top-down, left-to-right order. In Image-

Filter, this method calls the same method in the ImagePro-

ducer, thus relaying the request.

914 IMAGEFILTER

10 July 2002 22:26

setColorModel

void setColorModel (ColorModel model)

Parameters model The color model for the image.
Implements ImageConsumer.setColorModel(ColorModel)

Description Sets the image’s color model.

setDimensions

void setDimensions (int width, int height)

Parameters width Width for image.
height Height for image.

Implements ImageConsumer.setDimensions(int, int)

Description Sets the image’s dimensions.

setHints

void setHints (int hints)

Parameters hints Image consumption hints.
Implements ImageConsumer.setHints(int)

Description Called by the ImageProducer to deliver hints about how the
image data will be delivered. ImageFilter passes these hints
on to the ImageConsumer.

setPixels

void setPixels (int x, int y, int width, int height,
ColorModel model, byte[] pixels, int offset, int scansize)

Parameters x x-coordinate of top-left corner of pixel data
delivered with this method call.

y y-coordinate of top-left corner of pixel data
delivered with this method call.

width Width of the rectangle of pixel data delivered
with this method call.

height Height of the rectangle of pixel data delivered
with this method call.

model Color model of image data.
pixels Image data.
offset Offset from beginning of the pixels array.
scansize Size of each line of data in pixels array.

Implements ImageConsumer.setPixels(int, int, int, int,

ColorModel, byte[], int, int)

IMAGEFILTER 915

10 July 2002 22:26

Description Delivers a rectangular block of pixels to the ImageFilter.
ImageFilter passes these pixels on to the consumer
unchanged.

void setPixels (int x, int y, int width, int height,
ColorModel model, int[] pixels, int offset, int scansize)

Parameters x x-coordinate of top-left corner of pixel data
delivered with this method call.

y y-coordinate of top-left corner of pixel data
delivered with this method call.

width Width of the rectangle of pixel data delivered
with this method call.

height Height of the rectangle of pixel data delivered
with this method call.

model Color model of image data.
pixels Image data.
offset Offset from beginning of the pixels array.
scansize Size of each line of data in pixels array.

Implements ImageConsumer.setPixels(int, int, int, int,

ColorModel, int[], int, int)

Description Delivers a rectangular block of pixels to the ImageFilter.
ImageFilter passes these pixels on to the consumer
unchanged.

setProperties

void setProperties (Hashtable properties)

Parameters properties The properties for the image.
Implements ImageConsumer.setProperties(Hashtable)

Description Initializes the image’s properties. ImageFilter adds the prop-
erty “filter” to the Hashtable, and passes the result on to the
image consumer; the value of the property is the string
returned by the filter’s toString() method. If the property
“filter” is already in the Hashtable, ImageFilter adds the
string returned by its toString() method to the value already
associated with that property.

See Also
Cloneable, ColorModel, CropImageFilter, Hashtable, ImageConsumer,
ImageProducer, Object, ReplicateImageFilter, RGBImageFilter

916 IMAGEFILTER

10 July 2002 22:26

22.8 ImageObserver

Description
ImageObserver is an interface that provides constants and the callback mecha-
nism to receive asynchronous information about the status of an image as it loads.

Interface Definition
public abstract interface java.awt.image.ImageObserver {

// Constants

public static final int ABORT;

public static final int ALLBITS;

public static final int ERROR;

public static final int FRAMEBITS;

public static final int HEIGHT;

public static final int PROPERTIES;

public static final int SOMEBITS;

public static final int WIDTH;

// Interface Methods

public abstract boolean imageUpdate (Image image, int infoflags,

int x, int y, int width, int height);

}

Constants
ABORT

public static final int ABORT

The ABORT flag indicates that the image aborted during loading. An attempt
to reload the image may succeed, unless ERROR is also set.

ALLBITS

public static final int ALLBITS

The ALLBITS flag indicates that the image has completely loaded successfully.
The x, y, width, and height arguments to imageUpdate() should be
ignored.

ERROR

public static final int ERROR

The ERROR flag indicates that an error happened during the image loading
process. An attempt to reload the image will fail.

IMAGEOBSERVER 917

10 July 2002 22:26

FRAMEBITS

public static final int FRAMEBITS

The FRAMEBITS flag indicates that a complete frame of a multi-frame image
has loaded. The x, y, width, and height arguments to imageUpdate()

should be ignored.

HEIGHT

public static final int HEIGHT

The HEIGHT flag indicates that the height information is available for an
image; the image’s height is in the height argument to imageUpdate().

PROPERTIES

public static final int PROPERTIES

The PROPERTIES flag indicates that the properties information is available for
an image.

SOMEBITS

public static final int SOMEBITS

The SOMEBITS flag indicates that the image has started loading and some pix-
els are available. The bounding rectangle for the pixels that have been deliv-
ered so far is indicated by the x, y, width, and height arguments to
imageUpdate().

WIDTH

public static final int WIDTH

The WIDTH flag indicates that the width information is available for an image;
the image’s width is in the width argument to imageUpdate().

Interface Methods
imageUpdate

public abstract boolean imageUpdate (Image image, int
infoflags, int x, int y, int width, int height)

Parameters image Image that is being loaded.
infoflags The ImageObserver flags for the information

that is currently available.
x Meaning depends on infoflags that are set.
y Meaning depends on infoflags that are set.

918 IMAGEOBSERVER

10 July 2002 22:26

width Meaning depends on infoflags that are set.
height Meaning depends on infoflags that are set.

Returns true if image has completed loading (successfully or unsuc-
cessfully), false if additional information needs to be loaded.

Description Provides the callback mechanism for the asynchronous loading
of images.

See Also
Component, Image, Object

22.9 ImageProducer

Description
ImageProducer is an interface that provides the methods necessary for the pro-
duction of images and the communication with classes that implement the
ImageConsumer inter face.

Interface Definition
public abstract interface java.awt.image.ImageProducer {

// Interface Methods

public abstract void addConsumer (ImageConsumer ic);

public abstract boolean isConsumer (ImageConsumer ic);

public abstract void removeConsumer (ImageConsumer ic);

public abstract void requestTopDownLeftRightResend (ImageConsumer ic);

public abstract void startProduction (ImageConsumer ic);

}

Interface Methods
addConsumer

public abstract void addConsumer (ImageConsumer ic)

Parameters ic An ImageConsumer that wants to receive image
data.

Description Registers an ImageConsumer as interested in image
information.

isConsumer

IMAGEPRODUCER 919

10 July 2002 22:26

public abstract boolean isConsumer (ImageConsumer ic)

Parameters ic ImageConsumer to check.
Returns true if ImageConsumer has registered with the ImagePro-

ducer, false other wise.

removeConsumer

public abstract void removeConsumer (ImageConsumer ic)

Parameters ic ImageConsumer to remove.
Description Removes an ImageConsumer from registered consumers for

this ImageProducer.

requestTopDownLeftRightResend

public abstract void requestTopDownLeftRightResend
(ImageConsumer ic)

Parameters ic ImageConsumer to communicate with.
Description Requests the retransmission of the image data in top-down, left-

to-right order.

startProduction

public abstract void startProduction (ImageConsumer ic)

Parameters ic ImageConsumer to communicate with.
Description Registers ImageConsumer as interested in image information

and tells ImageProducer to start sending the image data
immediately.

See Also
FilteredImageSource, Image, ImageConsumer, ImageFilter, MemoryIm-
ageSource, Object

22.10 IndexColorModel

Description
The IndexColorModel class is a ColorModel that uses a color map lookup table
(with a maximum size of 256) to convert pixel values into their alpha, red, green,
and blue component parts.

920 IMAGEPRODUCER

10 July 2002 22:26

Class Definition
public class java.awt.image.IndexColorModel

extends java.awt.image.ColorModel {

// Constructors

public IndexColorModel (int bits, int size,

byte[] colorMap, int start, boolean hasalpha);

public IndexColorModel (int bits, int size,

byte[] colorMap, int start, boolean hasalpha, int transparent);

public IndexColorModel (int bits, int size,

byte[] red, byte[] green, byte[] blue);

public IndexColorModel (int bits, int size,

byte[] red, byte[] green, byte[] blue, byte[] alpha);

public IndexColorModel (int bits, int size,

byte[] red, byte[] green, byte[] blue, int transparent);

// Instance Methods

public final int getAlpha (int pixel);

public final void getAlphas (byte[] alphas);

public final int getBlue (int pixel);

public final void getBlues (byte[] blues);

public final int getGreen (int pixel);

public final void getGreens (byte[] greens);

public final int getMapSize();

public final int getRed (int pixel);

public final void getReds (byte[] reds);

public final int getRGB (int pixel);

public final int getTransparentPixel();

}

Constructors
IndexColorModel

public IndexColorModel (int bits, int size, byte[]
colorMap, int start, boolean hasalpha)

Parameters bits The number of bits in a pixel.
size The number of entries in the color map. Note:

this is not the size of the colorMap parameter.
colorMap Color component values in red, green, blue,

alpha order; the alpha component is optional,
and may not be present.

start The starting position in colorMap array.
hasalpha If hasalpha is true, alpha components are

present in colorMap array.

INDEXCOLORMODEL 921

10 July 2002 22:26

Throws ArrayIndexOutOfBoundsException

If size is invalid.
Description Constructs an IndexColorModel object with the given compo-

nent settings. The size of colorMap must be at least
3*size+start, if hasalpha is false; if hasalpha is true,
colorMap.length must be at least 4*size+start.

public IndexColorModel (int bits, int size, byte[]
colorMap, int start, boolean hasalpha, int transparent)

Parameters bits The number of bits in a pixel.
size The number of entries in the color map. Note:

this is not the size of the colorMap parameter.
colorMap Color component values in red, green, blue,

alpha order; the alpha component is optional,
and may not be present.

start The starting position in colorMap array.
hasalpha If hasalpha is true, alpha components are

present in colorMap array.
transparent Position of colorMap entr y for transparent

pixel entry.
Throws ArrayIndexOutOfBoundsException

If size invalid.
Description Constructs an IndexColorModel object with the given compo-

nent settings. The size of colorMap must be at least
3*size+start, if hasalpha is false; if hasalpha is true,
colorMap.length must be at least 4*size+start. The color
map has a transparent pixel; its location is given by transpar-
ent.

public IndexColorModel (int bits, int size, byte[] red,
byte[] green, byte[] blue)

Parameters bits The number of bits in a pixel.
size The number of entries in the color map.
red Red color component values.
green Green color component values.
blue Blue color component values.

Throws ArrayIndexOutOfBoundsException

If size invalid.
Description Constructs an IndexColorModel object with the given compo-

nent settings. There is no alpha component. The length of the
red, green, and blue arrays must be greater than size.

922 INDEXCOLORMODEL

10 July 2002 22:26

public IndexColorModel (int bits, int size, byte[] red,
byte[] green, byte[] blue, byte[] alpha)

Parameters bits The number of bits in a pixel.
size The number of entries in the color map.
red Red color component values.
green Green color component values.
blue Blue color component values.
alpha Alpha component values.

Throws ArrayIndexOutOfBoundsException

If size is invalid.
NullPointerException

If size is positive and alpha array is null.
Description Constructs an IndexColorModel object with the given compo-

nent settings. The length of the red, green, blue, and alpha

arrays must be greater than size.

public IndexColorModel (int bits, int size, byte[] red,
byte[] green, byte[] blue, int transparent)

Parameters bits The number of bits in a pixel.
size The number of entries in the color map.
red Red color component values.
green Green color component values.
blue Blue color component values.
transparent Position of transparent pixel entry.

Throws ArrayIndexOutOfBoundsException

If size is invalid.
Description Constructs an IndexColorModel object with the given compo-

nent settings. The length of the red, green, blue, and alpha

arrays must be greater than size. The color map has a trans-
parent pixel; its location is given by transparent.

Instance Methods
getAlpha

public final int getAlpha (int pixel)

Parameters pixel A pixel encoded with this ColorModel.
Returns The current alpha setting of the pixel.
Overrides ColorModel.getAlpha(int)

INDEXCOLORMODEL 923

10 July 2002 22:26

getAlphas

public final void getAlphas (byte[] alphas)

Parameters alphas The alpha values of the pixels in the color
model.

Description Copies the alpha values from the color map into the array
alphas[].

getBlue

public final int getBlue (int pixel)

Parameters pixel A pixel encoded with this ColorModel.
Returns The current blue setting of the pixel.
Overrides ColorModel.getBlue(int)

getBlues

public final void getBlues (byte[] blues)

Parameters blues The blue values of the pixels in the color model.
Description Copies the blue values from the color map into the array

blues[].

getGreen

public final int getGreen (int pixel)

Parameters pixel A pixel encoded with this ColorModel.
Returns The current green setting of the pixel.
Overrides ColorModel.getGreen(int)

getGreens

public final void getGreens (byte[] greens)

Parameters greens The green values of the pixels in the color
model.

Description Copies the green values from the color map into the array
greens[].

getMapSize

public final int getMapSize()

Returns The current size of the color map table.

924 INDEXCOLORMODEL

10 July 2002 22:26

getRed

public final int getRed (int pixel)

Parameters pixel A pixel encoded with this ColorModel.
Returns The current red setting of the pixel.
Overrides ColorModel.getRed(int)

getReds

public final void getReds (byte[] reds)

Parameters reds The red values of the pixels in the color model.
Description Copies the red values from the color map into the array

reds[].

getRGB

public final int getRGB (int pixel)

Parameters pixel A pixel encoded with this ColorModel.
Returns The current combined red, green, and blue settings of the

pixel.
Overrides ColorModel.getRGB(int)

Description Gets the color of pixel in the default RGB color model.

getTransparentPixel

public final int getTransparentPixel()

Returns The array index for the transparent pixel in the color model.

See Also
ColorModel

22.11 MemoryImageSource

Description
The MemoryImageSource class allows you to create images completely in mem-
or y. You provide an array of data; it serves as an image producer for that data. In
the 1.1 release, new methods support using this class for animation (notably
setAnimated() and the various overrides of newPixels()).

MEMOR YIMAGESOURCE 925

10 July 2002 22:26

Class Definition
public class java.awt.image.MemoryImageSource

extends java.lang.Object

implements java.awt.image.ImageProducer {

// Constructors

public MemoryImageSource (int w, int h, ColorModel cm,

byte[] pix, int off, int scan);

public MemoryImageSource (int w, int h, ColorModel cm,

byte[] pix, int off, int scan, Hashtable props);

public MemoryImageSource (int w, int h, ColorModel cm,

int[] pix, int off, int scan);

public MemoryImageSource (int w, int h, ColorModel cm,

int[] pix, int off, int scan, Hashtable props);

public MemoryImageSource (int w, int h, int[] pix,

int off, int scan);

public MemoryImageSource (int w, int h, int[] pix,

int off, int scan, Hashtable props);

// Instance Methods

public synchronized void addConsumer (ImageConsumer ic);

public synchronized boolean isConsumer (ImageConsumer ic);

public void newPixels(); �
public synchronized void newPixels (int x, int y,

int w, int h); �
public synchronized void newPixels (int x, int y,

int w, int h, boolean framenotify); �
public synchronized void newPixels (byte[] newpix,

ColorModel newmodel, int offset, int scansize); �
public synchronized void newPixels (int[] newpix,

ColorModel newmodel, int offset, int scansize); �
public synchronized void removeConsumer (ImageConsumer ic);

public void requestTopDownLeftRightResend (ImageConsumer ic);

public synchronized void setAnimated (boolean animated); �
public synchronized void setFullBufferUpdates

(boolean fullbuffers); �
public void startProduction (ImageConsumer ic);

}

Constructors
MemoryImageSource

public MemoryImageSource (int w, int h, ColorModel cm,
byte[] pix, int off, int scan)

Parameters w Width of the image being created.

926 MEMOR YIMAGESOURCE

10 July 2002 22:26

h Height of the image being created.
cm ColorModel of the image being created.
pix Array of pixel information.
off The offset of the first pixel in the array; elements

prior to this pixel are ignored.
scan The number of pixels per scan line in the array.

Description Constructs a MemoryImageSource object with the given
parameters to serve as an ImageProducer for a new image.

public MemoryImageSource (int w, int h, ColorModel cm,
byte[] pix, int off, int scan, Hashtable props)

Parameters w Width of the image being created.
h Height of the image being created.
cm ColorModel of the image being created.
pix Array of pixel information.
off The offset of the first pixel in the array; elements

prior to this pixel are ignored.
scan The number of pixels per scan line in the array.
props Hashtable of properties associated with image.

Description Constructs a MemoryImageSource object with the given
parameters to serve as an ImageProducer for a new image.

public MemoryImageSource (int w, int h, ColorModel cm,
int[] pix, int off, int scan)

Parameters w Width of the image being created.
h Height of the image being created.
cm ColorModel of the image being created.
pix Array of pixel information.
off The offset of the first pixel in the array; elements

prior to this pixel are ignored.
scan The number of pixels per scan line in the array.

Description Constructs a MemoryImageSource object with the given
parameters to serve as an ImageProducer for a new image.

public MemoryImageSource (int w, int h, ColorModel cm,
int[] pix, int off, int scan, Hashtable props)

Parameters w Width of the image being created.
h Height of the image being created.
cm ColorModel of the image being created.
pix Array of pixel information.

MEMOR YIMAGESOURCE 927

10 July 2002 22:26

off The offset of the first pixel in the array; elements
prior to this pixel are ignored.

scan The number of pixels per scan line in the array.
props Hashtable of properties associated with image.

Description Constructs a MemoryImageSource object with the given
parameters to serve as an ImageProducer for a new image.

public MemoryImageSource (int w, int h, int[] pix, int
off, int scan)

Parameters w Width of the image being created.
h Height of the image being created.
pix Array of pixel information.
off The offset of the first pixel in the array; elements

prior to this pixel are ignored.
scan The number of pixels per scan line in the array.

Description Constructs a MemoryImageSource object with the given
parameters to serve as an ImageProducer for a new image.

public MemoryImageSource (int w, int h, int[] pix, int
off, int scan, Hashtable props)

Parameters w Width of the image being created.
h Height of the image being created.
pix Array of pixel information.
off The offset of the first pixel in the array; elements

prior to this pixel are ignored.
scan The number of pixels per scan line in the array.
props Hashtable of properties associated with image.

Description Constructs a MemoryImageSource object with the given
parameters to serve as an ImageProducer for a new image.

Class Methods
addConsumer

public synchronized void addConsumer (ImageConsumer ic)

Parameters ic ImageConsumer requesting image data.
Implements ImageProducer.addConsumer(ImageConsumer)

Description Registers an ImageConsumer as interested in Image

information.

928 MEMOR YIMAGESOURCE

10 July 2002 22:26

isConsumer

public synchronized boolean isConsumer (ImageConsumer ic)

Parameters ic ImageConsumer to check.
Returns true if ImageConsumer is registered with this ImagePro-

ducer, false other wise.
Implements ImageProducer.isConsumer(ImageConsumer)

newPixels

public synchronized void newPixels() �

Description Notifies the MemoryImageSource that there is new data avail-
able. The MemoryImageSource notifies all ImageConsumers
that there is new data, sending the full rectangle and notifying
the consumers that the frame is complete.

public synchronized void newPixels (int x, int y, int w,
int h, boolean framenotify) �

Parameters x x coordinate of the top left corner of the new
image data.

y y coordinate of the top left corner of the new
image data.

w Width of the new image data.
h Height of the new image data.

Description Notifies the MemoryImageSource that there is new data avail-
able. The MemoryImageSource notifies all ImageConsumers
that there is new data in the rectangle described by x, y, w, and
h. The consumers are notified that the frame is complete.

public synchronized void newPixels (int x, int y, int w,
int h, boolean framenotify) �

Parameters x x coordinate of the top left corner of the new
image data.

y y coordinate of the top left corner of the new
image data.

w Width of the new image data.
h Height of the new image data.
framenotify Determines whether this is a complete frame or

not.
Description Notifies the MemoryImageSource that there is new data avail-

able. The MemoryImageSource notifies all ImageConsumers
that there is new data in the rectangle described by x, y, w, and
h. If framenotify is true, the consumers will also be notified
that a frame is complete.

MEMOR YIMAGESOURCE 929

10 July 2002 22:26

public synchronized void newPixels (byte[] newpix,
ColorModel newmodel, int offset, int scansize) �

Parameters newpix New array of image data.
newmodel The color model to use for the new data.
offset Offset into the data array
scansize Size of each line.

Description Changes the image data for this MemoryImageSource and
notifies its ImageConsumers that new data is available.

public synchronized void newPixels (int[] newpix,
ColorModel newmodel, int offset, int scansize) �

Parameters newpix New array of image data.
newmodel The color model to use for the new data.
offset Offset into the data array
scansize Size of each line.

Description Changes the image data for this MemoryImageSource and
notifies its ImageConsumers that new data is available.

removeConsumer

public void removeConsumer (ImageConsumer ic)

Parameters ic ImageConsumer to remove.
Implements ImageProducer.removeConsumer(ImageConsumer)

Description Removes an ImageConsumer from registered consumers for
this ImageProducer.

requestTopDownLeftRightResend

public void requestTopDownLeftRightResend (ImageConsumer
ic)

Parameters ic ImageConsumer requesting image data.
Implements ImageProducer.requestTopDownLeftRightRe-

send(ImageConsumer)

Description Requests the retransmission of the Image data in top-down,
left-to-right order.

setAnimated

public void setAnimated (boolean animated) �

Parameters animated Flag indicating whether this image is animated.
Description To use this MemoryImageSource for animation, call setAni-

mated(true). The newPixels() methods will not work oth-
er wise.

930 MEMOR YIMAGESOURCE

10 July 2002 22:26

setFullBufferUpdates

public void setFullBufferUpdates (boolean fullbuffers) �

Parameters fullbuffers true to send full buffers; false other wise.
Description This method is only important for animations; i.e., you should

call setAnimated(true) before using this function. If you do
request to send full buffers, then any rectangle parameters
passed to newPixels() will be ignored and the entire image
will be sent to the consumers.

startProduction

public void startProduction (ImageConsumer ic)

Parameters ic ImageConsumer requesting image data.
Implements ImageProducer.startProduction(ImageConsumer)

Description Registers ImageConsumer as interested in Image information
and tells ImageProducer to start sending the image data
immediately.

See Also
ColorModel, Hashtable, ImageConsumer, ImageProducer, Object

22.12 PixelGrabber

Description
The PixelGrabber class is an ImageConsumer that captures the pixels from an
image and saves them in an array.

Class Definition
public class java.awt.image.PixelGrabber

extends java.lang.Object

implements java.awt.image.ImageConsumer {

// Constructors

public PixelGrabber (Image img, int x, int y, int w, int h,

boolean forceRGB); �
public PixelGrabber (Image image, int x, int y, int width,

int height, int[] pixels, int offset, int scansize);

public PixelGrabber (ImageProducer ip, int x, int y, int width,

int height, int[] pixels, int offset, int scansize);

// Instance Methods

public synchronized void abortGrabbing(); �
public synchronized ColorModel getColorModel(); �

PIXELGRABBER 931

10 July 2002 22:26

public synchronized int getHeight(); �
public synchronized Object getPixels(); �
public synchronized int getStatus(); �
public synchronized int getWidth(); �
public boolean grabPixels() throws InterruptedException;

public synchronized boolean grabPixels (long ms)

throws InterruptedException;

public synchronized void imageComplete (int status);

public void setColorModel (ColorModel model);

public void setDimensions (int width, int height);

public void setHints (int hints);

public void setPixels (int x, int y, int width, int height,

ColorModel model, byte[] pixels, int offset, int scansize);

public void setPixels (int x, int y, int width, int height,

ColorModel model, int[] pixels, int offset, int scansize);

public void setProperties (Hashtable properties);

public synchronized void startGrabbing(); �
public synchronized int status(); ✩

}

Constructors
PixelGrabber

public PixelGrabber (Image img, int x, int y, int w, int
h, boolean forceRGB) �

Parameters img Image to use as source of pixel data.
x x-coordinate of top-left corner of pixel data.
y y-coordinate of top-left corner of pixel data.
w Width of pixel data.
h Height of pixel data.
forceRGB true to force the use of the RGB color model;

false other wise.
Description Constructs a PixelGrabber instance to grab the specified area

of the image.

public PixelGrabber (Image image, int x, int y, int width,
int height, int[] pixels, int offset, int scansize)

Parameters image Image to use as source of pixel data.
x x-coordinate of top-left corner of pixel data.
y y-coordinate of top-left corner of pixel data.
width Width of pixel data.
height Height of pixel data.
pixels Where to store pixel data when grabPixels()

called.

932 PIXELGRABBER

10 July 2002 22:26

offset Offset from beginning of each line in pixels
array.

scansize Size of each line of data in pixels array.
Description Constructs a PixelGrabber instance to grab the specified area

of the image and store the pixel data from this area in the array
pixels[].

public PixelGrabber (ImageProducer ip, int x, int y, int
width, int height, int[] pixels, int offset, int scansize)

Parameters ip ImageProducer to use as source of pixel data.
x x-coordinate of top-left corner of pixel data.
y y-coordinate of top-left corner of pixel data.
width Width of pixel data.
height Height of pixel data.
pixels Where to store pixel data when grabPixels()

called.
offset Offset from beginning of each line in pixels

array.
scansize Size of each line of data in pixels array.

Description Constructs a PixelGrabber instance to grab data from the
specified area of the image generated by an ImageProducer

and store the pixel data from this area in the array pixels[].

Instance Methods
abortGrabbing

public synchronized void abortGrabbing() �

Description Stops the PixelGrabber’s image-grabbing process.

getColorModel

public synchronized ColorModel getColorModel() �

Returns The color model the PixelGrabber is using for its array.

getHeight

public synchronized int getHeight() �

Returns The height of the grabbed image, or -1 if the height is not
known.

PIXELGRABBER 933

10 July 2002 22:26

getPixels

public synchronized Object getPixels() �

Returns The array of pixels.
Description Either a byte array or an integer array is returned, or null if

the size and format of the image are not yet known. Because
the PixelGrabber may change its mind about what
ColorModel it’s using, different calls to this method may
return different arrays until the image acquisition is complete.

getStatus

public synchronized int getStatus() �

Returns A combination of ImageObserver flags indicating what data is
available.

getWidth

public synchronized int getWidth() �

Returns The width of the grabbed image, or -1 if the width is not
known.

grabPixels

public boolean grabPixels() throws InterruptedException

Throws InterruptedException

If image grabbing is interrupted before comple-
tion.

Returns true if the image has completed loading, false if the loading
process aborted or an error occurred.

Description Starts the process of grabbing the pixel data from the source
and storing it in the array pixels[] from constructor. Returns
when the image is complete, loading aborts, or an error occurs.

public synchronized boolean grabPixels (long ms) throws
InterruptedException

Parameters ms Milliseconds to wait for completion.
Returns true if image has completed loading, false if the loading pro-

cess aborted, or an error or a timeout occurred.
Throws InterruptedException

If image grabbing is interrupted before comple-
tion.

934 PIXELGRABBER

10 July 2002 22:26

Description Starts the process of grabbing the pixel data from the source
and storing it in the array pixels[] from constructor. Returns
when the image is complete, loading aborts, an error occurs, or
a timeout occurs.

imageComplete

public synchronized void imageComplete (int status)

Parameters status Image loading completion status flags.
Implements ImageConsumer.imageComplete(int)

Description Called by the ImageProducer to indicate that the image has
been delivered.

setColorModel

void setColorModel (ColorModel model)

Parameters model The color model for the image.
Implements ImageConsumer.setColorModel(ColorModel)

Description Does nothing.

setDimensions

void setDimensions (int width, int height)

Parameters width Width for image.
height Height for image.

Implements ImageConsumer.setDimensions(int, int)

Description Does nothing.

setHints

void setHints (int hints)

Parameters hints Image consumption hints.
Implements ImageConsumer.setHints(int)

Description Does nothing.

setPixels

void setPixels (int x, int y, int width, int height,
ColorModel model, byte[] pixels, int offset, int scansize)

Parameters x x-coordinate of top-left corner of pixel data
delivered with this method call.

y y-coordinate of top-left corner of pixel data
delivered with this method call.

PIXELGRABBER 935

10 July 2002 22:26

width Width of the rectangle of pixel data delivered
with this method call.

height Height of the rectangle of pixel data delivered
with this method call.

model Color model of image data.
pixels Image data.
offset Offset from beginning of the pixels array.
scansize Size of each line of data in pixels array.

Implements ImageConsumer.setPixels(int, int, int, int,

ColorModel, byte[], int, int)

Description Called by the ImageProducer to deliver pixel data from the
image.

void setPixels (int x, int y, int width, int height,
ColorModel model, int[] pixels, int offset, int scansize)

Parameters x x-coordinate of top-left corner of pixel data
delivered with this method call.

y y-coordinate of top-left corner of pixel data
delivered with this method call.

width Width of the rectangle of pixel data delivered
with this method call.

height Height of the rectangle of pixel data delivered
with this method call.

model Color model of image data.
pixels Image data.
offset Offset from beginning of the pixels array.
scansize Size of each line of data in pixels array.

Implements ImageConsumer.setPixels(int, int, int, int,

ColorModel, int[], int, int)

Description Called by the ImageProducer to deliver pixel data from the
image.

setProperties

void setProperties (Hashtable properties)

Parameters properties The properties for the image.
Implements ImageConsumer.setProperties(Hashtable)

Description Does nothing.

936 PIXELGRABBER

10 July 2002 22:26

startGrabbing

public synchronized void startGrabbing() �

Description Starts the PixelGrabber’s image-grabbing process.

status

public synchronized int status () ✩

Returns The ImageObserver flags OR’ed together representing the
available information about the image. Replaced by getSta-

tus().

See Also
ColorModel, Hashtable, Image, ImageConsumer, ImageProducer, Inter-
ruptedException, MemoryImageSource, Object

22.13 ReplicateScaleFilter �

Description
The ReplicateScaleFilter class uses a simple-minded algorithm to scale an
image. If the image is to be reduced, rows and columns of pixels are removed. If
the image is to be expanded, rows and columns are duplicated (replicated).

Class Definition
public class ReplicateScaleFilter

extends java.awt.image.ImageFilter {

// Variables

protected int destHeight;

protected int destWidth;

protected Object outpixbuf;

protected int srcHeight;

protected int srcWidth;

protected int[] srccols;

protected int[] srcrows;

// Constructor

public ReplicateScaleFilter(int width, int height);

// Instance Methods

public void setDimensions (int w, int h);

public void setPixels(int x, int y, int w, int h, ColorModel model,

byte[] pixels, int off, int scansize);

public void setPixels(int x, int y, int w, int h, ColorModel model,

int[] pixels, int off, int scansize);

REPLICATESCALEFILTER 937

10 July 2002 22:26

public void setProperties(Hashtable props);

}

Variables
destHeight

protected int destHeight

Height of the scaled image.

destWidth

protected int destWidth

Width of the scaled image.

outpixbuf

protected Object outpixbuf

An internal buffer.

srcHeight

protected int srcHeight

Height of the original image.

srcWidth

protected int srcWidth

Width of the original image.

srccols

protected int[] srccols

Internal array used to map incoming columns to outgoing columns.

srcrows

protected int[] srcrows

Internal array used to map incoming rows to outgoing rows.

Constructor
ReplicateScaleFilter

public ReplicateScaleFilter (int width, int height)

Parameters width Width of scaled image.

938 REPLICATESCALEFILTER

10 July 2002 22:26

height Height of scaled image.
Description Constructs a ReplicateScaleFilter that scales the original

image to the specified size. If both width and height are -1,
the destination image size will be set to the source image size. If
either one of the parameters is -1, it will be set to preserve the
aspect ratio of the original image.

Instance Methods
setDimensions

public void setDimensions (int w, int h)

Parameters w Width of the source image.
h Height of the source image.

Overrides ImageFilter.setDimensions(int, int)

Description Sets the size of the source image.

setPixels

void setPixels (int x, int y, int w, int h, ColorModel
model, byte[] pixels, int off, int scansize)

Parameters x x-coordinate of top-left corner of pixel data
delivered with this method call.

y y-coordinate of top-left corner of pixel data
delivered with this method call.

w Width of the rectangle of pixel data delivered
with this method call.

h Height of the rectangle of pixel data delivered
with this method call.

model Color model of image data.
pixels Image data.
off Offset from beginning of the pixels array.
scansize Size of each line of data in pixels array.

Overrides ImageFilter.setPixels(int, int, int, int,

ColorModel, byte[], int, int)

Description Receives a rectangle of image data from the ImageProducer;
scales these pixels and delivers them to any ImageConsumers.

void setPixels (int x, int y, int w, int h, ColorModel
model, int[] pixels, int off, int scansize)

Parameters x x-coordinate of top-left corner of pixel data
delivered with this method call.

REPLICATESCALEFILTER 939

10 July 2002 22:26

y y-coordinate of top-left corner of pixel data
delivered with this method call.

w Width of the rectangle of pixel data delivered
with this method call.

h Height of the rectangle of pixel data delivered
with this method call.

model Color model of image data.
pixels Image data.
off Offset from beginning of the pixels array.
scansize Size of each line of data in pixels array.

Overrides ImageFilter.setPixels(int, int, int, int,

ColorModel, int[], int, int)

Description Receives a rectangle of image data from the ImageProducer;
scales these pixels and delivers them to any ImageConsumers.

setProperties

public void setProperties (Hashtable props)

Parameters props The properties for the image.
Overrides ImageFilter.setProperties(Hashtable)

Description Adds the “rescale” image property to the properties list.

See Also
ColorModel, Hashtable, ImageConsumer, ImageFilter, ImagePro-

ducer

22.14 RGBImageFilter

Description
RGBImageFilter is an abstract class that helps you filter images based on each
pixel’s color and position. In most cases, the only method you need to implement
in subclasses is filterRGB(), which returns a new pixel value based on the old
pixel’s color and position. RGBImageFilter cannot be used to implement filters
that depend on the value of neighboring pixels, or other factors aside from color
and position.

Class Definition
public abstract class java.awt.image.RGBImageFilter

extends java.awt.image.ImageFilter {

// Variables

protected boolean canFilterIndexColorModel;

940 REPLICATESCALEFILTER

10 July 2002 22:26

protected ColorModel newmodel;

protected ColorModel oldmodel;

// Instance Methods

public IndexColorModel filterIndexColorModel (IndexColorModel icm);

public abstract int filterRGB (int x, int y, int rgb);

public void filterRGBPixels (int x, int y, int width,

int height, int[] pixels, int off, int scansize);

public void setColorModel (ColorModel model);

public void setPixels (int x, int y, int width, int height,

ColorModel model, byte[] pixels, int offset, int scansize);

public void setPixels (int x, int y, int width, int height,

ColorModel model, int[] pixels, int offset, int scansize);

public void substituteColorModel (ColorModel oldModel,

ColorModel newModel);

}

Variables
canFilterIndexColorModel

protected boolean canFilterIndexColorModel

Setting the canFilterIndexColorModel variable to true indicates the filter
can filter IndexColorModel images. To filter an IndexColorModel, the fil-
ter must depend only on color, not on position.

newmodel

protected ColorModel newmodel

A place to store a new ColorModel.

origmodel

protected ColorModel origmodel

A place to store an old ColorModel.

Instance Methods
filterIndexColorModel

public IndexColorModel filterIndexColorModel
(IndexColorModel icm)

Parameters icm Color model to filter.
Returns Filtered color model.
Description Helper method for setColorModel() that runs the entire

color table of icm through the filterRGB() method of the
subclass. Used only if canFilterIndexColorModel is true,
and the image uses an IndexColorModel.

RGBIMAGEFILTER 941

10 July 2002 22:26

filterRGB

public abstract int filterRGB (int x, int y, int rgb)

Parameters x x-coordinate of pixel data.
y y-coordinate of pixel data.
rgb Color value of pixel to filter.

Returns New color value of pixel.
Description Subclasses implement this method to provide a filtering func-

tion that generates new pixels.

filterRGBPixels

public void filterRGBPixels (int x, int y, int width, int
height, int[] pixels, int off, int scansize)

Parameters x x-coordinate of top-left corner of pixel data
within entire image.

y y-coordinate of top-left corner of pixel data
within entire image.

width Width of pixel data within entire image.
height Height of pixel data within entire image.
pixels Image data.
off Offset from beginning of each line in pixels

array.
scansize Size of each line of data in pixels array.

Description Helper method for setPixels() that filters each element of
the pixels buffer through the subclass’s filterRGB()

method.

setColorModel

public void setColorModel (ColorModel model)

Parameters model The color model for the image.
Overrides ImageFilter.setColorModel(ColorModel)

Description Sets the image’s color model.

setPixels

public void setPixels (int x, int y, int width, int
height, ColorModel model, byte[] pixels, int offset, int
scansize)

Parameters x x-coordinate of top-left corner of pixel data
delivered with this method call.

942 RGBIMAGEFILTER

10 July 2002 22:26

y y-coordinate of top-left corner of pixel data
delivered with this method call.

width Width of the rectangle of pixel data delivered
with this method call.

height Height of the rectangle of pixel data delivered
with this method call.

model Color model of image data.
pixels Image data.
offset Offset from beginning of the pixels array.
scansize Size of each line of data in pixels array.

Overrides ImageFilter.setPixels(int, int, int, int,

ColorModel, byte[], int, int)

Description Called by the ImageProducer to deliver a rectangular block of
pixels for filtering.

public void setPixels (int x, int y, int width, int
height, ColorModel model, int[] pixels, int offset, int
scansize)

Parameters x x-coordinate of top-left corner of pixel data
delivered with this method call.

y y-coordinate of top-left corner of pixel data
delivered with this method call.

width Width of the rectangle of pixel data delivered
with this method call.

height Height of the rectangle of pixel data delivered
with this method call.

model Color model of image data.
pixels Image data.
offset Offset from beginning of the pixels array.
scansize Size of each line of data in pixels array.

Overrides ImageFilter.setPixels(int, int, int, int,

ColorModel, int[], int, int)

Description Called by the ImageProducer to deliver a rectangular block of
pixels for filtering.

substituteColorModel

public void substituteColorModel (ColorModel oldModel,
ColorModel newModel)

Parameters oldModel New value for origmodel variable.

RGBIMAGEFILTER 943

10 July 2002 22:26

newModel New value for newmodel variable.
Description Helper method for setColorModel() to initialize the pro-

tected variables newmodel and origmodel.

See Also
ColorModel, ImageFilter

944 RGBIMAGEFILTER

10 July 2002 22:26

23

java.awt.peer Reference

23.1 ButtonPeer

Description
ButtonPeer is an interface that defines the basis for buttons.

Interface Definition
public abstract interface java.awt.peer.ButtonPeer

extends java.awt.peer.ComponentPeer {

// Interface Methods

public abstract void setLabel (String label);

}

Interface Methods
setLabel

public abstract void setLabel (String label)

Parameters label New text for label of button’s peer.
Description Changes the text of the label of button’s peer.

See Also
ComponentPeer, String

945

10 July 2002 22:27

23.2 CanvasPeer

Description
CanvasPeer is an interface that defines the basis for canvases.

Interface Definition
public abstract interface java.awt.peer.CanvasPeer

extends java.awt.peer.ComponentPeer {

}

See Also
ComponentPeer

23.3 CheckboxMenuItemPeer

java.awt.Componentjava.lang.Object java.awt.ItemSelectablejava.awt.Checkbox

Description
CheckboxMenuItemPeer is an interface that defines the basis for checkbox menu
items.

Interface Definition
public abstract interface java.awt.peer.CheckboxMenuItemPeer

extends java.awt.peer.MenuItemPeer {

// Interface Methods

public abstract void setState (boolean condition);

}

Interface Methods
setState

public abstract void setState (boolean condition)

Parameters condition New state for checkbox menu item’s peer.
Description Changes the state of checkbox menu item’s peer.

946 CANVASPEER

10 July 2002 22:27

See Also
MenuComponentPeer, MenuItemPeer

23.4 CheckboxPeer

java.lang.Object java.awt.CheckboxGroup java.io.Serializable

Description
CheckboxPeer is an interface that defines the basis for checkbox components.

Interface Definition
public abstract interface java.awt.peer.CheckboxPeer

extends java.awt.peer.ComponentPeer {

// Interface Methods

public abstract void setCheckboxGroup (CheckboxGroup group);

public abstract void setLabel (String label);

public abstract void setState (boolean state);

}

Interface Methods
setCheckboxGroup

public abstract void setCheckboxGroup (CheckboxGroup
group)

Parameters group New group to put the checkbox peer in.
Description Changes the checkbox group to which the checkbox peer

belongs; implicitly removes the peer from its old group, if any.

setLabel

public abstract void setLabel (String label)

Parameters label New text for label of checkbox’s peer.
Description Changes the text of the label of the checkbox’s peer.

setState

CHECKBOXPEER 947

10 July 2002 22:27

public abstract void setState (boolean state)

Parameters state New state for the checkbox’s peer.
Description Changes the state of the checkbox’s peer.

See Also
CheckboxGroup, ComponentPeer, String

23.5 ChoicePeer

Description
ChoicePeer is an interface that defines the basis for choice components.

Interface Definition
public abstract interface java.awt.peer.ChoicePeer

extends java.awt.peer.ComponentPeer {

// Interface Methods

public abstract void add (String item, int index); �
public abstract void addItem (String item, int position); ✩

public abstract void remove (int index); �
public abstract void select (int position);

}

Interface Methods
add

public abstract void add (String item, int index) �

Parameters item Text of the entry to add.
index Position in which to add the entry; position 0 is

the first entry in the list.
Description Adds a new entry to the available choices at the designated posi-

tion.

addItem

public abstract void addItem (String item, int position)
✩

Parameters item Text of the entry to add.
position Position in which to add the entry; position 0 is

the first entry in the list.

948 CHECKBOXPEER

10 July 2002 22:27

Description Adds a new entry to the available choices at the designated posi-
tion.

remove

public abstract void remove (int index) �

Parameters index Position of the item to remove.
Description Removes an entry at the given position.

select

public abstract void select (int position)

Parameters position Position to make selected entry.
Description Makes the given entry the selected one for the choice’s peer.

See Also
ComponentPeer, String

23.6 ComponentPeer

Description
ComponentPeer is an interface that defines the basis for all non-menu GUI peer
inter faces.

Interface Definition
public abstract interface java.awt.peer.ComponentPeer {

// Interface Methods

public abstract int checkImage (Image image, int width, int height,

ImageObserver observer);

public abstract Image createImage (ImageProducer producer);

public abstract Image createImage (int width, int height);

public abstract void disable(); ✩
public abstract void dispose();

public abstract void enable(); ✩
public abstract ColorModel getColorModel();

public abstract FontMetrics getFontMetrics (Font f);

public abstract Graphics getGraphics();

public abstract Point getLocationOnScreen(); �
public abstract Dimension getMinimumSize(); �
public abstract Dimension getPreferredSize(); �
public abstract Toolkit getToolkit();

public abstract boolean handleEvent (Event e);

public abstract void hide(); ✩
public abstract boolean isFocusTraversable(); �
public abstract Dimension minimumSize(); ✩

COMPONENTPEER 949

10 July 2002 22:27

public abstract void paint (Graphics g);

public abstract Dimension preferredSize (); ✩
public abstract boolean prepareImage (Image image, int width, int height,

ImageObserver observer);

public abstract void print (Graphics g);

public abstract void repaint (long tm, int x, int y, int width, int height);

public abstract void requestFocus();

public abstract void reshape (int x, int y, int width, int height); ✩
public abstract void setBackground (Color c);

public abstract void setBounds (int x, int y, int width, int height); �
public abstract void setCursor (Cursor cursor); �
public abstract void setEnabled (boolean b); �
public abstract void setFont (Font f);

public abstract void setForeground (Color c);

public abstract void setVisible (boolean b); �
public abstract void show(); ✩

}

Interface Methods
checkImage

public abstract int checkImage (Image image, int width,
int height, ImageObserver observer)

Parameters image Image to check.
width Horizontal size to which the image will be

scaled.
height Vertical size to which the image will be scaled.
obser ver An ImageObserver to monitor image loading;

normally, the object on which the image will be
rendered.

Returns ImageObserver flags ORed together indicating status.
Description Checks status of image construction.

createImage

public abstract Image createImage (ImageProducer producer)

Parameters producer An object that implements the ImageProducer

inter face to create a new image.
Returns Newly created image instance.
Description Creates an Image based upon an ImageProducer.

950 COMPONENTPEER

10 July 2002 22:27

public abstract Image createImage (int width, int height)

Parameters width Horizontal size for in-memory Image.
height Vertical size for in-memory Image.

Returns Newly created image instance.
Description Creates an in-memory Image for double buffering.

disable

public abstract void disable() ✩

Description Disables component so that it is unresponsive to user interac-
tions. Replaced by setEnabled(false).

dispose

public abstract void dispose()

Description Releases resources used by peer.

enable

public abstract void enable() ✩

Description Enables component so that it is responsive to user interactions.
Replaced by setEnabled(true).

getColorModel

public abstract ColorModel getColorModel()

Returns ColorModel used to display the current component.

getFontMetrics

public abstract FontMetrics getFontMetrics (Font f)

Parameters f A font whose metrics are desired.
Returns Font sizing information for the desired font.

getGraphics

public abstract Graphics getGraphics()

Throws InternalException
If acquiring a graphics context is unsupported

Returns Component’s graphics context.

COMPONENTPEER 951

10 July 2002 22:27

getLocationOnScreen

public abstract Point getLocationOnScreen() �

Returns The location of the component in the screen’s coordinate
space.

getMinimumSize

public abstract Dimension getMinimumSize() �

Returns The minimum dimensions of the component.

getPreferredSize

public abstract Dimension getPreferredSize() �

Returns The preferred dimensions of the component.

getToolkit

public abstract Toolkit getToolkit()

Returns Toolkit of Component.

handleEvent

public abstract boolean handleEvent (Event e)

Parameters e Event instance identifying what caused the
method to be called.

Returns true if the peer handled the event, false to propagate the
event to the parent container.

Description High-level event handling routine.

hide

public abstract void hide() ✩

Description Hides the component. Replaced by setVisible(false).

isFocusTraversable

public abstract boolean isFocusTraversable() �

Returns true if the peer can be tabbed onto, false other wise.
Description Determines if this peer is navigable using the keyboard.

952 COMPONENTPEER

10 July 2002 22:27

minimumSize

public abstract Dimension minimumSize() ✩

Returns The minimum dimensions of the component. Replaced by
getMinimumSize().

paint

public abstract void paint (Graphics g)

Parameters g Graphics context of the component.
Description Draws something in graphics context.

preferredSize

public abstract Dimension preferredSize() ✩

Returns The preferred dimensions of the component. Replaced by
getPreferredSize().

prepareImage

public abstract boolean prepareImage (Image image, int
width,
int height, ImageObserver observer)

Parameters image Image to load.
width Horizontal size to which the image will be

scaled.
height Vertical size to which the image will be scaled.
obser ver An ImageObserver to monitor image loading;

normally, the object on which the image will be
rendered.

Returns true if the image has already loaded, false other wise.
Description Forces the image to start loading.

print

public abstract void print (Graphics g)

Parameters g Graphics context of component.
Description Print something from the graphics context.

COMPONENTPEER 953

10 July 2002 22:27

repaint

public abstract void repaint (long tm, int x, int y, int
width, int height)

Parameters tm Millisecond delay allowed before repaint.
x Horizontal origin of bounding box to redraw.
y Vertical origin of bounding box to redraw.
width Width of bounding box to redraw.
height Height of bounding box to redraw.

Description Requests scheduler to redraw portion of component within a
time period.

requestFocus

public abstract void requestFocus()

Description Requests this Component gets the input focus.

reshape

public abstract void reshape (int x, int y, int width,
int height) ✩

Parameters x New horizontal position for component.
y New vertical position for component.
width New width for component.
height New height for component.

Description Relocates and resizes the component’s peer. Replaced by set-
Bounds(int, int, int, int).

setBackground

public abstract void setBackground (Color c)

Parameters c New color for the background.
Description Changes the background color of the component.

setBounds

public abstract void setBounds (int x, int y, int width,
int height) �

Parameters x New horizontal position for component.
y New vertical position for component.
width New width for component.
height New height for component.

954 COMPONENTPEER

10 July 2002 22:27

Description Relocates and resizes the component’s peer.

setCursor

public abstract void setCursor (Cursor cursor) �

Parameters cursor New cursor.
Description Changes the cursor of the component.

setEnabled

public abstract void setEnabled (boolean b) �

Parameters b true to enable the peer; false to disable it.
Description Enables or disables the peer.

setFont

public abstract void setFont (Font f)

Parameters f New font for the component.
Description Changes the font used to display text in the component.

setForeground

public abstract void setForeground (Color c)

Parameters c New foreground color for the component.
Description Changes the foreground color of the component.

setVisible

public abstract void setVisible (boolean b) �

Parameters b true to show the peer; false to hide it.
Description Shows or hides the peer.

show

public abstract void show() ✩

Description Makes the peer visible. Replaced by setVisible(true).

See Also
ButtonPeer, CanvasPeer, CheckboxPeer, ChoicePeer, Color, ColorModel,
ContainerPeer, Cursor, Dimension, Event, Font, FontMetrics, Graphics,
Image, ImageObserver, ImageProducer, LabelPeer, ListPeer, Scroll-
barPeer, TextComponentPeer, Toolkit

COMPONENTPEER 955

10 July 2002 22:27

23.7 ContainerPeer

Description
ContainerPeer is an interface that defines the basis for containers.

Interface Definition
public abstract interface java.awt.peer.ContainerPeer

extends java.awt.peer.ComponentPeer {

// Interface Methods

public abstract void beginValidate(); �
public abstract void endValidate(); �
public abstract Insets getInsets(); �
public abstract Insets insets(); ✩

}

Interface Methods
beginValidate

public abstract void beginValidate() �

Description Notifies the peer that the Container is going to validate its
contents.

endValidate

public abstract void endValidate() �

Description Notifies the peer that the Container is finished validating its
contents.

getInsets

public Insets getInsets() �

Returns Current Insets of container’s peer.

insets

public Insets insets() ✩

Returns Current Insets of container’s peer. Replaced by
getInsets().

See Also
ComponentPeer, Insets, PanelPeer, ScrollPanePeer, WindowPeer

956 CONTAINERPEER

10 July 2002 22:27

23.8 DialogPeer

Description
DialogPeer is an interface that defines the basis for a dialog box.

Interface Definition
public abstract interface java.awt.peer.DialogPeer

extends java.awt.peer.WindowPeer {

// Interface Methods

public abstract void setResizable (boolean resizable);

public abstract void setTitle (String title);

}

Interface Methods
setResizable

public abstract void setResizable (boolean resizable)

Parameters resizable true if the dialog’s peer should allow resizing;
false to prevent resizing.

Description Changes the resize state of the dialog’s peer.

setTitle

public abstract void setTitle (String title)

Parameters title New title for the dialog’s peer.
Description Changes the title of the dialog’s peer.

See Also
FileDialogPeer, String, WindowPeer

23.9 FileDialogPeer

Description
FileDialogPeer is an interface that defines the basis for a file dialog box.

Interface Definition
public abstract interface java.awt.peer.FileDialogPeer

extends java.awt.peer.DialogPeer {

// Interface Methods

public abstract void setDirectory (String directory);

public abstract void setFile (String file);

public abstract void setFilenameFilter (FilenameFilter filter);

FILEDIALOGPEER 957

10 July 2002 22:27

java.awt.Component java.awt.Container

java.awt.Window

java.lang.Object

java.awt.Dialog java.awt.FileDialog

}

Interface Methods
setDirectory

public abstract void setDirectory (String directory)

Parameters director y Initial directory for file dialog’s peer.
Description Changes the directory displayed in the file dialog’s peer.

setFile

public abstract void setFile (String file)

Parameters file Initial filename for the file dialog’s peer.
Description Changes the default file selection for the file dialog’s peer.

setFilenameFilter

public abstract void setFilenameFilter (FilenameFilter
filter)

Parameters filter Initial filter for file dialog’s peer.
Description Changes the current filename filter of the file dialog’s peer.

See Also
DialogPeer, FilenameFilter, String

23.10 FontPeer �

Description
FontPeer is an interface that defines the basis for fonts.

Interface Definition
public abstract interface java.awt.peer.FontPeer {

}

958 FILEDIALOGPEER

10 July 2002 22:27

See Also
ComponentPeer

23.11 FramePeer

Description
FramePeer is an interface that defines the basis for a frame.

Interface Definition
public abstract interface java.awt.peer.FramePeer

extends java.awt.peer.WindowPeer {

// Interface Methods

public abstract void setIconImage (Image image);

public abstract void setMenuBar (MenuBar bar);

public abstract void setResizable (boolean resizable);

public abstract void setTitle (String title);

}

Interface Methods
setIconImage

public abstract void setIconImage (Image image)

Parameters image New image to use for frame peer’s icon.
Description Changes the icon associated with the frame’s peer.

setMenuBar

public abstract void setMenuBar (MenuBar bar)

Parameters bar New MenuBar to use for the frame’s peer.
Description Changes the menu bar of the frame.

setResizable

public abstract void setResizable (boolean resizable)

Parameters resizable true if the frame’s peer should allow resizing,
false to prevent resizing.

Description Changes the resize state of the frame’s peer.

FRAMEPEER 959

10 July 2002 22:27

setTitle

public abstract void setTitle (String title)

Parameters title New title to use for the frame’s peer.
Description Changes the title of the frame’s peer.

See Also
Image, MenuBar, String, WindowPeer

23.12 LabelPeer

Description
LabelPeer is an interface that defines the basis for label components.

Interface Definition
public abstract interface java.awt.peer.LabelPeer

extends java.awt.peer.ComponentPeer {

// Interface Methods

public abstract void setAlignment (int alignment);

public abstract void setText (String label);

}

Interface Methods
setAlignment

public abstract void setAlignment (int alignment)

Parameters alignment New alignment for label’s peer.
Description Changes the current alignment of label’s peer.

setText

public abstract void setText (String label)

Parameters label New text for label’s peer.
Description Changes the current text of label’s peer.

See Also
ComponentPeer, String

960 FRAMEPEER

10 July 2002 22:27

23.13 LightweightPeer �

Description
LightweightPeer is an interface that defines the basis for components that
don’t have a visual representation. When you directly subclass Component or Con-
tainer, a LightweightPeer is used.

Interface Definition
public abstract interface java.awt.peer.LightweightPeer

extends java.awt.peer.ComponentPeer {

}

See Also
ComponentPeer

23.14 ListPeer

Description
ListPeer is an interface that defines the basis for list components.

Interface Definition
public abstract interface java.awt.peer.ListPeer

extends java.awt.peer.ComponentPeer {

// Interface Methods

public abstract void add (String item, int index); �
public abstract void addItem (String item, int index); ✩
public abstract void clear(); ✩
public abstract void delItems (int start, int end);

public abstract void deselect (int index);

public abstract Dimension getMinimumSize (int rows); �
public abstract Dimension getPreferredSize (int rows); �
public abstract int[] getSelectedIndexes();

public abstract void makeVisible (int index);

public abstract Dimension minimumSize (int rows); ✩
public abstract Dimension preferredSize (int rows); ✩
public abstract void removeAll(); �
public abstract void select (int position);

public abstract void setMultipleMode (boolean b); �
public abstract void setMultipleSelections (boolean value); ✩

}

LISTPEER 961

10 July 2002 22:27

Interface Methods
add

public abstract void add (String item, int index) �

Parameters item Text of an entry to add to the list.
index Position in which to add the entry; position 0 is

the first entry in the list.
Description Adds a new entry to the available choices of the list’s peer at the

designated position.

addItem

public abstract void addItem (String item, int index) ✩

Parameters item Text of an entry to add to the list.
index Position in which to add the entry; position 0 is

the first entry in the list.
Description Adds a new entry to the available choices of the list’s peer at the

designated position. Replaced by add(String, int).

clear

public abstract void clear() ✩

Description Clears all the entries out of the list’s peer. Replaced by
removeAll().

delItems

public abstract void delItems (int start, int end)

Parameters start Starting position of entries to delete.
end Ending position of entries to delete.

Description Removes a set of entries from the list’s peer.

deselect

public abstract void deselect (int index)

Parameters index Position to deselect.
Description Deselects entr y at designated position, if selected.

getMinimumSize

962 LISTPEER

10 July 2002 22:27

public abstract Dimension getMinimumSize (int rows) �

Parameters rows Number of rows within list’s peer to size.
Returns The minimum dimensions of a list’s peer of the given size.

getPreferredSize

public abstract Dimension getPreferredSize (int rows) �

Parameters rows Number of rows within list’s peer to size.
Returns The preferred dimensions of a list’s peer of the given size.

getSelectedIndexes

public abstract int[] getSelectedIndexes()

Returns Array of positions of currently selected entries in list’s peer.

makeVisible

public abstract void makeVisible (int index)

Parameters index Position to make visible on screen.
Description Ensures an item is displayed on the screen in the list’s peer.

minimumSize

public abstract Dimension minimumSize (int rows) ✩

Parameters rows Number of rows within list’s peer to size.
Returns The minimum dimensions of a list’s peer of the given size.

Replaced by getMinimumSize(int).

preferredSize

public abstract Dimension preferredSize (int rows) ✩

Parameters rows Number of rows within list’s peer to size.
Returns The preferred dimensions of a list’s peer of the given size.

Replaced by getPreferredSize(int).

removeAll

public abstract void removeAll() �

Description Clears all the entries out of the list’s peer.

LISTPEER 963

10 July 2002 22:27

select

public abstract void select (int position)

Parameters position Position to select; 0 indicates the first item in the
list.

Description Makes the given entry the selected item for the list’s peer; dese-
lects other selected entries if multiple selections are not
enabled.

setMultipleMode

public abstract void setMultipleMode (boolean value) �

Parameters value true to allow multiple selections within the list’s
peer; false to disallow multiple selections.

Description Changes list peer’s selection mode.

setMultipleSelections

public abstract void setMultipleSelections (boolean value)
✩

Parameters value true to allow multiple selections within the list’s
peer; false to disallow multiple selections.

Description Changes list peer’s selection mode. Replaced by setMulti-
pleMode(boolean).

See Also
ComponentPeer, Dimension, String

23.15 MenuBarPeer

java.lang.Object java.awt.MenuComponent java.awt.MenuBar java.awt.MenuContainer

Description
MenuBarPeer is an interface that defines the basis for menu bars.

Interface Definition
public abstract interface java.awt.peer.MenuBarPeer

extends java.awt.peer.MenuComponentPeer {

// Interface Methods

public abstract void addHelpMenu (Menu m);

964 LISTPEER

10 July 2002 22:27

public abstract void addMenu (Menu m);

public abstract void delMenu (int index);

}

Interface Methods
addHelpMenu

public abstract void addHelpMenu (Menu m)

Parameters m Menu to designate as the help menu with the
menu bar’s peer.

Description Sets a particular menu to be the help menu of the menu bar’s
peer.

addMenu

public abstract void addMenu (Menu m)

Parameters m Menu to add to the menu bar’s peer
Description Adds a menu to the menu bar’s peer.

delMenu

public abstract void delMenu (int index)

Parameters index Menu position to delete from the menu bar’s
peer.

Description Deletes a menu from the menu bar’s peer.

See Also
Menu, MenuComponentPeer

23.16 MenuComponentPeer

java.lang.Object java.awt.MenuComponent

java.awt.MenuBar

java.awt.io.Serializable

java.awt.MenuItem

MENUCOMPONENTPEER 965

10 July 2002 22:27

Description
MenuComponentPeer is an interface that defines the basis for all menu GUI peer
inter faces.

Interface Definition
public abstract interface java.awt.peer.MenuComponentPeer {

// Interface Methods

public abstract void dispose();

}

Interface Methods
dispose

public abstract void dispose()

Description Releases resources used by peer.

See Also
MenuBarPeer, MenuItemPeer

23.17 MenuItemPeer

java.awt.CheckboxMenuItem

java.lang.Object java.awt.MenuComponent java.awt.MenuItem

java.awt.Menu

Description
MenuBarPeer is an interface that defines the basis for menu bars.

Interface Definition
public abstract interface java.awt.peer.MenuItemPeer

extends java.awt.peer.MenuComponentPeer {

// Interface Methods

public abstract void disable(); ✩
public abstract void enable(); ✩
public abstract void setEnabled (boolean b); �
public abstract void setLabel (String label);

}

966 MENUCOMPONENTPEER

10 July 2002 22:27

Interface Methods
disable

public abstract void disable() ✩

Description Disables the menu item’s peer so that it is unresponsive to user
interactions. Replaced by setEnabled(false).

enable

public abstract void enable() ✩

Description Enables the menu item’s peer so that it is responsive to user
interactions. Replaced by setEnabled(true).

setEnabled

public abstract void setEnabled (boolean b) �

Parameters b true to enable the peer; false to disable it.
Description Enables or disables the menu item’s peer.

setLabel

public abstract void setLabel (String label)

Parameters label New text to appear on the menu item’s peer.
Description Changes the label of the menu item’s peer.

See Also
CheckboxMenuItemPeer, MenuComponentPeer, MenuPeer, String

23.18 MenuPeer

Description
MenuPeer is an interface that defines the basis for menus.

Interface Definition
public abstract interface java.awt.peer.MenuPeer

extends java.awt.peer.MenuItemPeer {

// Interface Methods

public abstract void addItem (MenuItem item);

public abstract void addSeparator();

public abstract void delItem (int index);

}

MENUPEER 967

10 July 2002 22:27

Interface Methods
addItem

public abstract void addItem (MenuItem item)

Parameters item MenuItem to add to the menu’s peer
Description Adds a menu item to the menu’s peer.

addSeparator

public abstract void addSeparator()

Description Adds a menu separator to the menu’s peer.

delItem

public abstract void delItem (int index)

Parameters index MenuItem position to delete from the menu’s
peer.

Description Deletes a menu item from the menu’s peer.

See Also
MenuItem, MenuItemPeer

23.19 PanelPeer

Description
PanelPeer is an interface that defines the basis for a panel.

Interface Definition
public abstract interface java.awt.peer.PanelPeer

extends java.awt.peer.ContainerPeer {

}

See Also
ContainerPeer

23.20 PopupMenuPeer �

968 MENUPEER

10 July 2002 22:27

java.awt.Menu java.awt.PopupMenujava.awt.MenuItem

java.lang.Object java.awt.MenuComponent

Description
PopupMenuPeer is an interface that defines the basis for a popup menu.

Interface Definition
public abstract interface java.awt.peer.PopupMenuPeer

extends java.awt.peer.MenuPeer {

// Interface Methods

public abstract void show (Event e);

}

Interface Methods
show

public abstract void show (Event e)

Parameters e A mouse down event that begins the display of
the popup menu.

Description Shows the peer at the location encapsulated in e.

See Also
Event, MenuPeer

23.21 ScrollbarPeer

java.awt.Componentjava.lang.Object java.awt.Adjustablejava.awt.Scrollbar

Description
ScrollbarPeer is an interface that defines the basis for scrollbar components.

SCROLLBARPEER 969

10 July 2002 22:27

Interface Definition
public abstract interface java.awt.peer.ScrollbarPeer

extends java.awt.peer.ComponentPeer {

// Interface Methods

public abstract void setLineIncrement (int amount);

public abstract void setPageIncrement (int amount);

public abstract void setValues (int value, int visible, int minimum, int maximum);

}

Interface Methods
setLineIncrement

public abstract void setLineIncrement (int amount)

Parameters amount New line increment amount.
Description Changes the line increment amount for the scrollbar’s peer.

setPageIncrement

public abstract void setPageIncrement (int amount)

Parameters amount New paging increment amount.
Description Changes the paging increment amount for the scrollbar’s peer.

setValues

public abstract void setValues (int value, int visible,
int minimum, int maximum)

Parameters value New value for the scrollbar’s peer.
visible New slider width.
minimum New minimum value for the scrollbar’s peer.
maximum New maximum value for the scrollbar’s peer.

Description Changes the settings of the scrollbar’s peer to the given
amounts.

See Also
ComponentPeer

970 SCROLLBARPEER

10 July 2002 22:27

23.22 ScrollPanePeer �

java.awt.Component java.awt.Container java.awt.ScrollPanejava.lang.Object

Description
ScrollPanePeer is an interface that defines the basis for a scrolling container.

Interface Definition
public abstract interface java.awt.peer.ScrollPanePeer

extends java.awt.peer.ContainerPeer {

// Interface Methods

public abstract void childResized (int w, int h);

public abstract int getHScrollbarHeight();

public abstract int getVScrollbarWidth();

public abstract void setScrollPosition (int x, int y);

public abstract void setUnitIncrement (Adjustable adj, int u);

public abstract void setValue (Adjustable adj, int v);

}

Interface Methods
childResized

public abstract void childResized (int w, int h)

Parameters w The new child width.
h The new child height.

Description Tells the peer that the child has a new size.

getHScrollbarHeight

public abstract int getHScrollbarHeight()

Returns Height that a horizontal scrollbar would occupy.
Description The height is returned regardless of whether the scrollbar is

showing or not.

getVScrollbarWidth

public abstract int getVScrollbarWidth()

Returns Width that a vertical scrollbar would occupy.

SCROLLPANEPEER 971

10 July 2002 22:27

Description The width is returned regardless of whether the scrollbar is
showing or not.

setScrollPosition

public abstract void setScrollPosition (int x, int y)

Parameters x The new horizontal position.
y The new vertical position.

Description Changes the coordinate of the child component that is dis-
played at the origin of the ScrollPanePeer.

setUnitIncrement

public abstract void setUnitIncrement (Adjustable adj, int
u)

Parameters adj The Adjustable object to change.
u The new value.

Description Changes the unit increment of the given Adjustable object.

setValue

public abstract void setValue (Adjustable adj, int v)

Parameters adj The Adjustable object to change.
v The new value.

Description Changes the value of the given Adjustable object.

See Also
Adjustable, ContainerPeer, Scrollbar

23.23 TextAreaPeer

java.awt.TextAreajava.awt.TextComponentjava.lang.Object java.awt.Component

Description
TextAreaPeer is an interface that defines the basis for text areas.

972 SCROLLPANEPEER

10 July 2002 22:27

Interface Definition
public abstract interface java.awt.peer.TextAreaPeer

extends java.awt.peer.TextComponentPeer {

// Interface Methods

public abstract Dimension getMinimumSize (int rows, int columns); �
public abstract Dimension getPreferredSize (int rows, int columns); �
public abstract void insert (String string, int position); �
public abstract void insertText (String string, int position); ✩
public abstract Dimension minimumSize (int rows, int columns); ✩
public abstract Dimension preferredSize (int rows, int columns); ✩
public abstract void replaceRange (String string, int startPosition, int endPosition); �
public abstract void replaceText (String string, int startPosition, int endPosition); ✩

}

Interface Methods
getMinimumSize

public abstract Dimension getMinimumSize
(int rows, int columns) �

Parameters rows Number of rows within the text area’s peer.
columns Number of columns within the text area’s peer.

Returns The minimum dimensions of a text area’s peer of the given
size.

getPreferredSize

public abstract Dimension getPreferredSize
(int rows, int columns) �

Parameters rows Number of rows within the text area’s peer.
columns Number of columns within the text area’s peer.

Returns The preferred dimensions of a text area’s peer of the given size.

insert

public abstract void insert (String string, int position)
�

Parameters string Content to place within the text area’s peer.
position Location at which to insert the content.

Description Places additional text within the text area’s peer.

TEXTAREAPEER 973

10 July 2002 22:27

insertText

public abstract void insertText (String string, int
position) ✩

Parameters string Content to place within the text area’s peer.
position Location at which to insert the content.

Description Places additional text within the text area’s peer. Replaced by
insert(String, int).

minimumSize

public abstract Dimension minimumSize (int rows, int
columns) ✩

Parameters rows Number of rows within the text area’s peer.
columns Number of columns within the text area’s peer.

Returns The minimum dimensions of a text area’s peer of the given
size. Replaced by getMinimumSize(int, int).

preferredSize

public abstract Dimension preferredSize (int rows, int
columns) ✩

Parameters rows Number of rows within the text area’s peer.
columns Number of columns within the text area’s peer.

Returns The preferred dimensions of a text area’s peer of the given size.
Replaced by getPreferredSize(int, int).

replaceRange

public abstract void replaceRange (String string,
int startPosition, int endPosition) �

Parameters string New content to place in the text area’s peer.
startPosition Starting position of the content to replace.
endPosition Ending position of the content to replace.

Description Replaces a portion of the text area peer’s content with the
given text.

replaceText

public abstract void replaceText (String string,
int startPosition, int endPosition) ✩

Parameters string New content to place in the text area’s peer.

974 TEXTAREAPEER

10 July 2002 22:27

startPosition Starting position of the content to replace.
endPosition Ending position of the content to replace.

Description Replaces a portion of the text area peer’s content with the
given text. Replaced by replaceRange(String, int, int).

See Also
Dimension, String, TextComponentPeer

23.24 TextComponentPeer

java.awt.TextComponentjava.lang.Object java.awt.Component

java.awt.TextArea

java.awt.TextField

Description
TextComponentPeer is an interface that defines the basis for text components.

Interface Definition
public abstract interface java.awt.peer.TextComponentPeer

extends java.awt.peer.ComponentPeer {

// Interface Methods

public abstract int getCaretPosition(); �
public abstract int getSelectionEnd();

public abstract int getSelectionStart();

public abstract String getText();

public abstract void select (int selectionStart, int selectionEnd);

public abstract void setCaretPosition (int pos); �
public abstract void setEditable (boolean state);

public abstract void setText (String text);

}

Interface Methods
getCaretPosition

TEXTCOMPONENTPEER 975

10 July 2002 22:27

public abstract int getCaretPosition() �

Returns The current position of the caret (text cursor).

getSelectionEnd

public abstract int getSelectionEnd()

Returns The ending cursor position of any selected text.

getSelectionStart

public abstract int getSelectionStart()

Returns The initial position of any selected text.

getText

public abstract String getText()

Returns The current contents of the text component’s peer.

select

public abstract void select (int selectionStart, int
selectionEnd)

Parameters selectionStart Beginning position of the text to select.
selectionEnd Ending position of the text to select.

Description Selects text in the text component’s peer.

selectCaretPosition

public abstract void selectCaretPosition (int pos)

Parameters pos New caret position.
Description Changes the position of the caret (text cursor).

setEditable

public abstract void setEditable (boolean state)

Parameters state true if the user can change the contents of the
text component’s peer (i.e., true to make the
peer editable); false to make the peer read-
only.

Description Allows you to change the current editable state of the text com-
ponent’s peer.

976 TEXTCOMPONENTPEER

10 July 2002 22:27

setText

public abstract void setText (String text)

Parameters text New text for the text component’s peer .
Description Sets the content of the text component’s peer.

See Also
ComponentPeer, String, TextAreaPeer, TextFieldPeer

23.25 TextFieldPeer

java.awt.TextFieldjava.awt.TextComponentjava.lang.Object java.awt.Component

Description
TextFieldPeer is an interface that defines the basis for text fields.

Interface Definition
public abstract interface java.awt.peer.TextFieldPeer

extends java.awt.peer.TextComponentPeer {

// Interface Methods

public abstract Dimension getMinimumSize (int rows, int columns); �
public abstract Dimension getPreferredSize (int rows, int columns); �
public abstract Dimension minimumSize (int rows, int columns); ✩
public abstract Dimension preferredSize (int rows, int columns); ✩
public abstract void setEchoChar (char echoChar); �
public abstract void setEchoCharacter (char c); ✩

}

Interface Methods
getMinimumSize

public abstract Dimension getMinimumSize (int rows) �

Parameters rows Number of rows within the text field’s peer.
Returns The minimum dimensions of a text field’s peer of the given

size.

TEXTFIELDPEER 977

10 July 2002 22:27

getPreferredSize

public abstract Dimension getPreferredSize (int rows) �

Parameters rows Number of rows within the text field’s peer.
Returns The preferred dimensions of a text field’s peer of the given

size.

minimumSize

public abstract Dimension minimumSize (int rows) ✩

Parameters rows Number of rows within the text field’s peer.
Returns Replaced by getMinimumSize(int).

preferredSize

public abstract Dimension preferredSize (int rows) ✩

Parameters rows Number of rows within the text field’s peer.
Returns Replaced by getPreferredSize(int).

setEchoChar

public abstract void setEchoChar (char c) �

Parameters c The character to display for all input.
Description Changes the character that is displayed to the user for every

character he or she types in the text field.

setEchoCharacter

public abstract void setEchoCharacter (char c) ✩

Parameters c The character to display for all input.
Description Replaced by setEchoChar(char).

See Also
Dimension, TextComponentPeer

23.26 WindowPeer

Description
WindowPeer is an interface that defines the basis for a window.

978 TEXTFIELDPEER

10 July 2002 22:27

Interface Definition
public abstract interface java.awt.peer.WindowPeer

extends java.awt.peer.ContainerPeer {

// Interface Methods

public abstract void toBack();

public abstract void toFront();

}

Interface Methods
toBack

public abstract void toBack()

Description Puts the window’s peer in the background of the display.

toFront

public abstract void toFront()

Description Brings the window’s peer to the foreground of the display.

See Also
ContainerPeer, DialogPeer, FramePeer

WINDOWPEER 979

10 July 2002 22:27

A

Using Properties and Resources

In this appendix:
• System Properties
• Server Properties
• Resource Bundles

Java provides “property lists” that are similar to Xdefaults in the X Window system.
Programs can use properties to customize their behavior or find out information
about the run-time environment; by reading a property list, a program can set
defaults, choose colors and fonts, and more, without any changes to the code. Java
1.1 makes property lists much more general. Although the basic features of prop-
erty lists did not change between Java 1.0 and 1.1, the way you access them did.
Instead of providing specific locations for files, Java 1.1 provides access to these
resource bundles in a more general scheme, described in Section A.3.

A.1 System Properties
Although Java applications can define property lists as conveniences, there is one
special property list that is common to all applications and applets: System Proper-
ties. This list currently has 14 properties in Java 1.0 and 21 in Java 1.1, although
you may add to it, and more standard properties may be added in the future. An
application has access to all of them. Because of security restrictions, an applet has
access only to 9. Among other things, these properties allow you to customize your
code for different platforms if you want to provide workarounds for platform-spe-
cific deficiencies or load native methods if available.

Table A-1 contains the complete list of system properties. The last column specifies
whether an applet can access each property; applications can access all properties.
As a word of caution, different vendors may report different values for the same
environment (for example, os.arch could be x86 or 80486). The values in the
property list reflect the run-time environment, not the development environment.

981

10 July 2002 22:27

982 APPENDIX A: USING PROPERTIES AND RESOURCES

Table A–1: System Properties

Name Description Sample Value Applet

awt.toolkit � NoToolkit vendor sun.awt.window.Wtoolkit

file.encoding � 8859_1 NoFile encoding

file.encoding.pkg � sun.io NoFile encoding
package

file.separator YesFile separator “\” or “/”

java.class.path NoJava’s CLASSPATH C:\JAVA\LIB;.;
C:\JAVA\BIN\..\classes;
C:\JAVA\BIN\..\lib\classes.zip

java.class.version 45.3 YesJava’s class library
version

java.home C:\JAVA NoJava’s installation
director y

java.vendor YesJava’s virtual
machine vendor

Netscape Communications

java.vendor.url http://www.netscape.com YesJava vendor’s URL

java.version 1.021 YesJava version

line.separator YesLine separator “\n”

os.arch YesOperating system
architecture

x86 or 80486

os.name YesOperating system
name

Windows NT

os.version � 4.0 YesOperating system
version

path.separator YesPath separator “;” or “:”

user.dir NoUser’s working
director y

C:\JAZ\AWTCode\Chapter2

user.home C:\JAVA NoUser’s home
director y

user.language � en NoUser’s language

user.name � JOHNZ NoUser’s login name

user.region � US NoUser’s geographic
region

user.timezone � EST NoUser’s time zone

10 July 2002 22:27

To read one of the system properties, use the getProperty() method of the Sys-

tem class:

System.getProperty (String s); // for the property you want

If s is a valid property and is accessible by your program, the system retrieves the
current value as a String. If it is not, the return value is null. For example, the fol-
lowing line of code retrieves the vendor for the Java platform you are working
with:

String s = System.getProperty ("java.vendor");

If an applet tries to access a property it does not have permission to read, a security
exception is thrown.

For an application, the Java interpreter can add additional system properties at
run-time with the -D flag. The following command runs the program className,
adding the program.name property to the list of available properties; the value of
this property is the string Foo:

java -Dprogram.name=Foo className

An application can also modify its property list by calling various methods of the
Properties class. The following code duplicates the effect of the -D flag in the pre-
vious example:

Properties p = System.getProperties ();
p.put ("program.name", "Foo"); // To add a new one
p.put ("java.vendor", "O’Reilly"); // To replace the current one
System.setProperties(p);

An applet running within Netscape Navigator or Internet Explorer may not add or
change system properties since Netscape Navigator and Internet Explorer do not
let applets touch the local filesystem, and calls to getProperties() generate a
security violation. Version 1.0 of HotJava, the JDK, and the appletviewer allow you to
set properties with the properties file in the .hotjava director y. Other browsers may
or may not enable this option.

NOTE The location of the system properties file depends on the run-time
environment you are using. Ordinarily, the file will go into a subdi-
rector y of the installation directory or, for environments where users
have home directories, in a subdirectory for the user.

Users may add properties to the system property file by hand; of course, in this
case, it’s the Java developer’s responsibility to document what properties the pro-
gram reads, and to provide reasonable defaults in case those properties aren’t set.
The Color and Font classes have methods to read colors and fonts from the system

A.1 SYSTEM PROPERTIES 983

10 July 2002 22:27

984 APPENDIX A: USING PROPERTIES AND RESOURCES

properties list. These are two areas in which it would be appropriate for a program
to define its own properties, expecting the user to set an appropriate value. For
example, a program might expect the property myname.awt.drawingColor to
define a default color for drawing; it would be the user’s responsibility to add a
line defining this property in the property file:

myname.awt.drawingColor=0xe0e0e0 #default drawing color: light gray

A.2 Server Properties
Java programs can read properties from any file to which they have access. Applica-
tions, of course, can open files on the platform where they execute; applets can-
not. However, applets can read certain files from the server. Example A-1 is an
applet that reads a properties file from its server and uses those properties to cus-
tomize itself. This is a useful technique for developers working on commercial
applets: you can deliver an applet to a customer and let the customer customize
the applet by providing a property sheet. The alternative, having the applet read
all of its customizations from HTML parameter tags, is a bit more clumsy. Ser ver
properties let you distinguish between global customizations like company name
(which would be the same on all instances of the applet) and situation-specific cus-
tomizations, like the name of the animation the user wants to display (the user
may use the same applet for many animation sequences). The company name
should be configured through a style sheet; the animation filename should be con-
figured by using a <PARAM> tag.

Example A-1 uses a properties list to read a message and font information. Follow-
ing the source is the actual property file. The property file must be in the same
director y as the HTML file because we use getDocumentBase() to build the prop-
erty file’s URL. Once we have loaded the property list, we can use getProperty()

to read individual properties. Unfortunately, in Java 1.0, we cannot use the Font

class’s methods to read the font information directly; getFont() can only read
properties from the system property list. Therefore, we need to read the font size,
name, and type as strings, and call the Font constructor using the pieces as argu-
ments. Java 1.1 does a lot to fix this problem; we’ll see how in the next section.

Example A–1: Getting Properties from a Server File

import java.util.Properties;
import java.awt.*;
import java.io.IOException;
import java.io.InputStream;
import java.net.URL;
import java.net.MalformedURLException;

public class Prop extends java.applet.Applet {
Properties p;

10 July 2002 22:27

Example A–1: Getting Properties from a Server File (continued)

String theMessage;
public void init () {

p = new Properties();
try {

URL propSource = new URL (getDocumentBase(), "prop.list");
InputStream propIS = propSource.openStream();
p.load(propIS);
p.list(System.out);
initFromProps(p);
propIS.close();

} catch (MalformedURLException e) {
System.out.println ("Invalid URL");

} catch (IOException e) {
System.out.println ("Error loading properties");

}
}
public void initFromProps (Properties p) {

String fontsize = p.getProperty ("MyProg.font.size");
String fontname = p.getProperty ("MyProg.font.name");
String fonttype = p.getProperty ("MyProg.font.type");
String message = p.getProperty ("MyProg.message");
int size;
int type;
if (fontsize == null) {

size = 12;
} else {

size = Integer.parseInt (fontsize);
}
if (fontname == null) {

fontname = "TimesRoman";
}
type = Font.PLAIN;
if (fonttype != null) {

fonttype.toLowerCase();
boolean bold = (fonttype.indexOf ("bold") != -1);
boolean italic = (fonttype.indexOf ("italic") != -1);
if (bold) type |= Font.BOLD;
if (italic) type |= Font.ITALIC;

}
if (message == null) {

theMessage = "Welcome to Java";
} else {

theMessage = message;
}
setFont (new Font (fontname, type, size));

}
public void paint (Graphics g) {

g.drawString (theMessage, 50, 50);
}

}

A.2 SERVER PROPERTIES 985

10 July 2002 22:27

986 APPENDIX A: USING PROPERTIES AND RESOURCES

The file prop.list :

MyProg.font.size=20
MyProg.font.type=italic-bold
MyProg.font.name=Helvetica
MyProg.message=Hello World

Figure A-1 results from using this applet with this property file.

Figure A–1: Reading server properties

A.3 Resource Bundles
Java 1.1 adds two new pieces to make its property lists more general and flexible.
The first is the ability to use localized resource bundles; the second is the use of
resource files.

Resource bundles let you write internationalized programs. The general idea is
that any string you want to display (for example, a button label) shouldn’t be spec-
ified as a literal constant. Instead, you want to look up the string in a table of equiv-
alents — a “resource bundle”—that contains equivalent strings for different
locales. For example, the string “yes” is equivalent to “ja”, “si”, “oui”, and many
other language-specific alternatives. A resource bundle lets your program look up
the right alternative at run-time, depending on the user’s locale. The list of alter-
natives must be implemented as a subclass of ResourceBundle or ListResource-
Bundle, in which you provide a key value pair for each label. For each locale you
support, a separate subclass and list must be provided. Then you look up the
appropriate string through the ResourceBundle.getString() method. A complete
example of how to use resource bundles could easily require an entire chapter; I
hope this is enough information to get you started.*

Resource bundles have one important implication for more mundane programs.
Resource bundles can be saved in files and read at run-time. To support them, Java
1.1 has added the ability to load arbitrary properties files. In Example A-1, we
looked for the prop.list file on the applet server. What if we want to permit users to

* See the Java Fundamental Classes Reference for a more complete description.

10 July 2002 22:27

modify the default font to be what they want, not what we think they want? With
Java 1.0, that could not be done because there was no way for an applet to access
the local filesystem. Now, with Java 1.1, you can access read-only resource files
located in the CLASSPATH. To do so, you use the Class.getResource() method,
which takes the name of a properties list file as an argument. This method returns
the URL of the file requested, which could be available locally or on the applet
ser ver; where it actually looks depends on the ClassLoader. Once the file is found,
treat it as a Properties file, as in Example A-1, or do anything you want with it. A
similar method, Class.getResourceAsStream(), returns the InputStream to work
with, instead of the URL.

Example A-2 is similar to Example A-1. The file prop11.list includes three proper-
ties: the font to use, a message, and an image. We need only a single property
because we can use the new Font.decode() method to convert a complete font
specification into a Font object: we don’t need to load the font information in
pieces, as we did in the earlier example. As an added bonus, this example displays
an image. The name of the image is given by the property MyProg.image. Like the
property file itself, the image file can be located anywhere. Here’s the properties
list, which should be placed in the file prop11.list:

MyProg.font=Helvetica-italic-30
MyProg.message=Hello World
MyProg.image=ora-icon.gif

And the code for the applet is in Example A-2.

Example A–2: Getting Properties from a Resource File

// Java 1.1 only
import java.io.*;
import java.net.*;
import java.awt.*;
import java.util.Properties;
import java.applet.Applet;
public class Prop11 extends Applet {

Image im;
Font f;
String msg;
public void paint (Graphics g) {

g.setFont (f);
if (im != null)

g.drawImage (im, 50, 100, this);
if (msg != null)

g.drawString (msg, 50, 50);
}
public void init () {

InputStream is = getClass().getResourceAsStream("prop11.list");
Properties p = new Properties();
try {

p.load (is);

A.3 RESOURCE BUNDLES 987

10 July 2002 22:27

988 APPENDIX A: USING PROPERTIES AND RESOURCES

Example A–2: Getting Properties from a Resource File (continued)

f = Font.decode(p.getProperty("MyProg.font"));
msg = p.getProperty("MyProg.message");
String name = p.getProperty("MyProg.image");
URL url = getClass().getResource(name);
im = getImage (url);

} catch (IOException e) {
System.out.println ("error loading props...");

}
}

}

10 July 2002 22:27

B

HTML Markup For Applets

In this appendix:
• The Applet Tag

B.1 The Applet Tag
The introduction of Java created the need for additional HTML tags. In the alpha
release of Java, the HotJava browser used the <APP> tag to include applets within
HTML files. However, <APP> was unacceptable to the standards committee
because it could have an infinite number of parameters. It was replaced by the
<APPLET> tag, used in conjunction with the <PARAM> tag. Apparently, the standards
folks did not like the <APPLET> tag either, so you can expect it to be replaced even-
tually, although at this point, there is no agreement about its successor, and it is
highly unlikely that any production browser would stop supporting <APPLET>.

The syntax of the <APPLET> tag is shown below; the order of the parameters does
not matter:

<APPLET
[ALIGN = alignment]
[ALT = alternate-text]
CODE = applet-filename or OBJECT = serialized-applet
[CODEBASE = applet-directory-url]
[ARCHIVE = filename.zip/filename.jar]
HEIGHT = applet-pixel-height
[HSPACE = horizontal-pixel-margin]
[MAYSCRIPT = true/false]
[NAME = applet-name]
[VSPACE = vertical-pixel-margin]
WIDTH = applet-pixel-width

>
<PARAM NAME=parameter1 VALUE=value1>
<PARAM NAME=parameter2 VALUE=value2>
<PARAM NAME=parameter3 VALUE=value3>
...
[alternate-html]
</APPLET>

999

10 July 2002 22:27

1000 APPENDIX B: HTML MARKUP FOR APPLETS

<APPLET>
The <APPLET> tag specifies where and how to display an applet within the
HTML document. If the browser does not understand the <APPLET> and
<PARAM> tags, it displays the alternate-html. (It displays the alternate-html

because it doesn’t understand the surrounding tags and ignores them. There’s
no magic to the alternate-html itself.) If a browser does understand
<APPLET> but cannot run Java (for example, a browser on Windows 3.1) or
Java has been disabled, the browser displays the alternate-html or the alter-
nate-text specified by the optional ALT parameter. The CODE, WIDTH, and
HEIGHT parameters are required. Parameters within the <APPLET> tag are sep-
arated by spaces, not by commas.

</APPLET>
Closes the <APPLET> tag. Anything prior to </APPLET> is considered alter-

nate-html if it is not a <PARAM> tag. The alternate-html is displayed when
Java is disabled, when Java cannot be run in the current browser, or when the
browser does not understand the <APPLET> tag.

The following parameters may appear inside the <APPLET> tag.

ALIGN

alignment, optional. Specifies the applet’s alignment on the Web page. Valid
values are: left, right, top, texttop, middle, absmiddle, baseline, bottom,
absbottom. Default: left. The alignment values have the same meanings as
they do in the tag.

ALT

alternate-text, optional. The alternate text is displayed when the browser
understands the <APPLET> tag but is incapable of executing applets, either
because Java is disabled or not supported on the platform. Support of this tag
is browser dependent; most browsers just display the alternate-html since
that is not restricted to text.

ARCHIVE

filename.zip/filename.jar, optional. Points to a comma-separated list of
uncompressed ZIP or JAR files that contain one or more Java classes. Each file
is downloaded once to the user’s disk and searched for the class named in the
CODE parameter, and any helper classes required to execute that class. JAR files
may be signed to grant additional access. (JAR files are Java archives, a new
archive format defined in Java 1.1. JAR files support features like digital signa-
tures and compression. While they are not yet in wide use, they should
become an important way of distributing sets of Java classes.)

10 July 2002 22:27

CODE

applet-filename. This parameter or the OBJECT parameter is required. Name
of applet .class file. The .class extension is not required in the <APPLET> tag
but is required in the class’s actual filename. The filename has to be a quoted
string only if it includes whitespace.

CODEBASE

applet-directory-url, optional. Relative or absolute URL specifying the
director y in which to locate the .class file or ZIP archive for the applet. Default:
html directory.

HEIGHT

applet-pixel-height, required. Initial height of applet in pixels. Many
browsers do not allow applets to change their height.

HSPACE

horizontal-pixel-margin, optional. Horizontal margin left and right of the
applet, in pixels.

MAYSCRIPT

Required for applets that wish to use LiveConnect and the
netscape.javascript classes to interact with JavaScript. Set to true to commu-
nicate with JavaScript. Set to false, or omit this parameter to disable commu-
nication with JavaScript. Both Java and JavaScript must be enabled in the
browser.

NAME

applet-name, optional. Allows simultaneously running applets to communi-
cate by this name. Default: the applet’s class name.

OBJECT

serialized-applet. This parameter or the CODE parameter is required. Name
of applet saved to a file as a serialized object. When loaded, init() is not
called again but start() is. Parameters for running the applet are taken from
this <APPLET> tag, not the original.

VSPACE

vertical-pixel-margin, optional. Vertical margin above and below the
applet, in pixels.

WIDTH

applet-pixel-width, required. Initial width of applet in pixels. Many browsers
do not allow applets to change their width.

The <PARAM> tag may appear between the <APPLET> and </APPLET> tags:

B.1 THE APPLET TAG 1001

10 July 2002 22:27

1002 APPENDIX B: HTML MARKUP FOR APPLETS

<PARAM>
The <PARAM> tag allows the HTML author to provide run-time parameters to
the applet as a series of NAME and VALUE pairs. The NAME is case insensitive, a
String. See Chapter 14, And Then There Were Applets for a discussion of how to
read parameters in an applet. Quotes are required around the parameter
name or its value if there are any embedded spaces. There can be an infinite
number of <PARAM> tags, and they all must appear between <APPLET> and
</APPLET>

The special parameter name CABBASE is used for sending CAB files with Inter-
net Explorer 3.0. CAB files are similar to ZIP files but are compressed into a
CABinet file and can store audio and image files, in addition to classes. (For a
full explanation see: http://207.68.137.43/workshop/java/overview.htm.)
When .class files are placed within a CAB file, they are decompressed at the
local end. Here’s an example:

<APPLET CODE="oreilly.class" WIDTH=400 HEIGHT=400>
<PARAM NAME="cabbase" VALUE="ora.cab>
</APPLET>

The special parameter name ARCHIVES is reserved for sending JAR files. JAR
files can also be specified using the ARCHIVES parameter to the <APPLET> tag.*

Here’s an example:

<APPLET CODE="oreilly.class" WIDTH=400 HEIGHT=400>
<PARAM NAME="archives" VALUE="ora.jar>
</APPLET>

* For a full explanation see http://www.javasoft.com/products/JDK/1.1/docs/guide/jar/index.html.

10 July 2002 22:27

C

Platform-Specific Event Handling

In this appendix:
• The Results
• Test Program

My life with Java began in September of 1995. I started on a Sun Sparc20 and have
since used Java on Windows 95, Windows NT (3.51/4.0), a PowerMac, and an early
version of a Java terminal. At the time I started using Java, it was in its alpha 3
release. Even before the beta release, the Internet crowd was hailing Java as the
programming language for the next millennium, and people were lining up to
take Sun’s Java training classes.

Although Java has many important features, probably the most important is plat-
form independence: you can compile a program once and run it anywhere. At
least, that was the goal; and Java came impressively close to meeting that goal.
However, there are some problems, particularly in the area of event handling. Java
programs just do not act the same, from platform to platform, environment to
environment. Even if you stay within Sun’s Java Developer’s Kit, you cannot take a
program created on one platform, move it to another, and be guaranteed that it
will react the same way to the user’s interactions. To make matters worse, Netscape,
the makers of the first run-time environment for beta API applets, Netscape,
decided to take matters into its own hands with Navigator version 3.0; its version of
AWT behaves slightly differently than the JDK’s. On top of that, Navigator itself dif-
fers from platform to platform. Version 1.1 of the JDK introduces more idiosyn-
crasies, even as it resolves some others.

With more Java environments available, HotJava, Internet Explorer, and Java termi-
nals to name a few, and new official extensions to AWT coming out, the differences
are expanding, instead of contracting. Hopefully, there will be a day when this
appendix can go away, completely. Until that time, I’ve tried to document the
behavior of different run-time systems, on different platforms. If the platform is

1003

10 July 2002 22:28

1004 APPENDIX C: PLATFORM-SPECIFIC EVENT HANDLING

not included in this appendix, the source for a test program is. If you run the pro-
gram on your platform and send the results to me at jaz@ora.com, they will be
included in a future printing or provided online. The test program requires user-
interaction, so please follow directions carefully. Between printings, the book’s
Web site will maintain the latest information at http://www.ora.com/cata-
log/javawt/. Only the results from using the latest releases of each platform are
included in Table C-1.

C.1 The Results
Table C-1 shows the events delivered to each component on the major platforms in
Java 1.0. An � in a particular entry means that the event is passed to Java from the
component’s peer; a dash means it is not.

Table C–1: Component Events in Java 1.0

Component/Events vs. NN3.0 NN3.0 NN3.0 SDK JDK JDK JDK IE3.0 HJ HJ
Run-time/Platform NT/ Mac Sun NT/ NT/ Mac Sun NT/ NT/ Sun

Win95 Win95 Win95 Win95 Win95

Button

KEY_PRESS � — � � � — � � � �

KEY_RELEASE � — � � � — � � � �

KEY_ACTION � — — � � — � � � �

KEY_ACTION_RELEASE � — — � � — � � � �

MOUSE_DOWN � — — — — — — — —

MOUSE_UP � � — — — — — — —

MOUSE_MOVE � � — — — � — — — —

MOUSE_ENTER � � — — — � — — — —

MOUSE_EXIT � � — — — � — — — —

MOUSE_DRAG � � — — — — — — — —

ACTION_EVENT � � � � � � � � � �

GOT_FOCUS � — — — — — � — — —

LOST_FOCUS � — — — — — � — — —

Canvas

KEY_PRESS � � � � � � — � � —

KEY_RELEASE � � � � � � — � � —

KEY_ACTION � � — � � � — � � —

KEY_ACTION_RELEASE � � — � � — — � � —

MOUSE_DOWN � � � � � � � � � �

MOUSE_UP � � � � � � � � � �

10 July 2002 22:28

Table C–1: Component Events in Java 1.0 (continued)

Component/Events vs. NN3.0 NN3.0 NN3.0 SDK JDK JDK JDK IE3.0 HJ HJ
Run-time/Platform NT/ Mac Sun NT/ NT/ Mac Sun NT/ NT/ Sun

Win95 Win95 Win95 Win95 Win95

MOUSE_MOVE � � � � � � � � � �

MOUSE_ENTER � � � � � � � � � �

MOUSE_EXIT � � � � � � � � � �

MOUSE_DRAG � � � � � � � � � �

ACTION_EVENT — — — — — — — — — —

GOT_FOCUS � � — � � � — � � —

LOST_FOCUS � � — � � � — � � —

Checkbox

KEY_PRESS � — � � � — � � � —

KEY_RELEASE � — � � � — � � � —

KEY_ACTION � — — � � — � � � —

KEY_ACTION_RELEASE � — — � � — � � � —

MOUSE_DOWN � — — — — — — — — —

MOUSE_UP � � — — — — — — — —

MOUSE_MOVE � � — — — � — — — —

MOUSE_ENTER � � — — — � — — — —

MOUSE_EXIT � � — — — � — — — —

MOUSE_DRAG � � — — — — — — — —

ACTION_EVENT � � � � � � � � � �

GOT_FOCUS � — — — — — � — — —

LOST_FOCUS � — — — — — � — — —

Choice

KEY_PRESS � — — � � — — � � —

KEY_RELEASE � — — � � — — � � —

KEY_ACTION � — — � � — — � � —

KEY_ACTION_RELEASE � — — � � — — � � —

MOUSE_DOWN � — — — — — — — — —

MOUSE_UP � — � — — — — — — —

MOUSE_MOVE � � � — — � — — — —

MOUSE_ENTER � � � — — � — — — —

MOUSE_EXIT � � � — — � — — — —

MOUSE_DRAG � � — — — — — — — —

ACTION_EVENT � � � � � � � � � �

C.1 THE RESULTS 1005

10 July 2002 22:28

1006 APPENDIX C: PLATFORM-SPECIFIC EVENT HANDLING

Table C–1: Component Events in Java 1.0 (continued)

Component/Events vs. NN3.0 NN3.0 NN3.0 SDK JDK JDK JDK IE3.0 HJ HJ
Run-time/Platform NT/ Mac Sun NT/ NT/ Mac Sun NT/ NT/ Sun

Win95 Win95 Win95 Win95 Win95

GOT_FOCUS � — — — — — — — — —

LOST_FOCUS � — — — — — — — — —

Label

KEY_PRESS � — � — — — � — — —

KEY_RELEASE � — � — — — � — — —

KEY_ACTION � — — — — — � — — —

KEY_ACTION_RELEASE � — — — — — � — — —

MOUSE_DOWN � — — — — — — — — —

MOUSE_UP � � — — — — — — — —

MOUSE_MOVE � � — — — � — — — —

MOUSE_ENTER � � — — — � — — — —

MOUSE_EXIT � � — — — � — — — —

MOUSE_DRAG � � — — — — — — — —

ACTION_EVENT — — — — — — — — — —

GOT_FOCUS � — — — — — — — — —

LOST_FOCUS � — — — — — — — — —

List

KEY_PRESS � — — � � — � � � —

KEY_RELEASE � — — � � — � � � —

KEY_ACTION � — — � � — � � � —

KEY_ACTION_RELEASE � — — � � — � � � —

MOUSE_DOWN � — — — — — — — — —

MOUSE_UP � � — — — — — — — —

MOUSE_MOVE � � — — — � — — — —

MOUSE_ENTER � � — — — � — — — —

MOUSE_EXIT � � — — — � — — — —

MOUSE_DRAG � � — — — — — — — —

LIST_SELECT � � � � � � � � � �

LIST_DESELECT � � � � � � � � � �

ACTION_EVENT � � � � � � � � � �

GOT_FOCUS � — — — — — � — — —

LOST_FOCUS � — — — — — � — — —

10 July 2002 22:28

Table C–1: Component Events in Java 1.0 (continued)

Component/Events vs. NN3.0 NN3.0 NN3.0 SDK JDK JDK JDK IE3.0 HJ HJ
Run-time/Platform NT/ Mac Sun NT/ NT/ Mac Sun NT/ NT/ Sun

Win95 Win95 Win95 Win95 Win95

Scrollbar

KEY_PRESS — — � — — — — — — —

KEY_RELEASE — — � — — — — — — —

KEY_ACTION — — — — — — — — — —

KEY_ACTION_RELEASE — — — — — — — — — —

MOUSE_DOWN � — — — — — — — — —

MOUSE_UP — � — — — — — — — —

MOUSE_MOVE � � — — — � — — — —

MOUSE_ENTER � � — — — � — — — —

MOUSE_EXIT � � — — — � — — — —

MOUSE_DRAG — � — — — — — — — —

SCROLL_LINE_UP � � � � � � � � � �

SCROLL_LINE_DOWN � � � � � � � � � �

SCROLL_PAGE_UP � � � � � � � � � �

SCROLL_PAGE_DOWN � � � � � � � � � �

SCROLL_ABSOLUTE � � � � � � � � � �

ACTION_EVENT — — — — — — — — — —

GOT_FOCUS — — — — — — � — — —

LOST_FOCUS — — — — — — � — — —

TextArea

KEY_PRESS � � — � � � � � � �

KEY_RELEASE � � — � � � � � � �

KEY_ACTION � — — � � � � � � �

KEY_ACTION_RELEASE � — — � � — � � � �

MOUSE_DOWN � — — — — — — — — —

MOUSE_UP � � — — — — — — — —

MOUSE_MOVE � � — — — � — — — —

MOUSE_ENTER � � — — — � — — — —

MOUSE_EXIT � � — — — � — — — —

MOUSE_DRAG � � — — — — — — — —

ACTION_EVENT — — — — — — — — — —

GOT_FOCUS � � � — — � � — — �

LOST_FOCUS � � � — — � � — — �

C.1 THE RESULTS 1007

10 July 2002 22:28

1008 APPENDIX C: PLATFORM-SPECIFIC EVENT HANDLING

Table C–1: Component Events in Java 1.0 (continued)

Component/Events vs. NN3.0 NN3.0 NN3.0 SDK JDK JDK JDK IE3.0 HJ HJ
Run-time/Platform NT/ Mac Sun NT/ NT/ Mac Sun NT/ NT/ Sun

Win95 Win95 Win95 Win95 Win95

TextField

KEY_PRESS � � � � � � � � � �

KEY_RELEASE � � � � � � � � � �

KEY_ACTION � � — � � � � � � �

KEY_ACTION_RELEASE � � — � � — � � � �

MOUSE_DOWN � — — — — — — — — —

MOUSE_UP � � — — — — — — — —

MOUSE_MOVE � � — — — � — — — —

MOUSE_ENTER � � — — — � — — — —

MOUSE_EXIT � � — — — � — — — —

MOUSE_DRAG � � — — — — — — — —

ACTION_EVENT � � � � � � � � � �

GOT_FOCUS � � � — — � � — — �

LOST_FOCUS � � � — — � � — — �

Key:

IE Microsoft’s Internet Explorer

HJ Sun’s Hot Java Prebeta 1

JDK
Java Developer’s Kit 1.0.2 (appletviewer/Java)

NN
Netscape Navigator

SDK
Microsoft SDK

Sun
Solaris 2.x (UNIX/Motif)

Yes, things changed again with the 1.1 release. Table C-2 shows which Java 1.0
events are generated for each component in Java 1.1. Fortunately, there is one
clear improvement: the Java 1.1 event model promises much more uniform event
processing, since it’s largely under your control. For example, you can attach a
MouseListener to a Label and receive mouse events that would not be generated
with the 1.0 event model.

10 July 2002 22:28

Table C–2: Java 1.0 Component Events in Java 1.1

Component/Events vs. HJ/JDK HJ/JDK
Run-time/Platform WinNT/95 Sun

Button

KEY_PRESS � �

KEY_RELEASE � �

KEY_ACTION � �

KEY_ACTION_RELEASE � �

MOUSE_DOWN — —

MOUSE_UP — —

MOUSE_MOVE — —

MOUSE_ENTER — —

MOUSE_EXIT — —

MOUSE_DRAG — —

ACTION_EVENT � �

GOT_FOCUS � �

LOST_FOCUS � �

Canvas

KEY_PRESS — —

KEY_RELEASE — —

KEY_ACTION — —

KEY_ACTION_RELEASE — —

MOUSE_DOWN � �

MOUSE_UP � �

MOUSE_MOVE � �

MOUSE_ENTER � �

MOUSE_EXIT � �

MOUSE_DRAG � �

ACTION_EVENT — —

GOT_FOCUS — —

LOST_FOCUS — —

Checkbox

KEY_PRESS � �

KEY_RELEASE � �

KEY_ACTION � —

KEY_ACTION_RELEASE � —

MOUSE_DOWN — —

C.1 THE RESULTS 1009

10 July 2002 22:28

1010 APPENDIX C: PLATFORM-SPECIFIC EVENT HANDLING

Table C–2: Java 1.0 Component Events in Java 1.1 (continued)

Component/Events vs. HJ/JDK HJ/JDK
Run-time/Platform WinNT/95 Sun

MOUSE_UP — —

MOUSE_MOVE — —

MOUSE_ENTER — —

MOUSE_EXIT — —

MOUSE_DRAG — —

ACTION_EVENT � �

GOT_FOCUS � �

LOST_FOCUS � �

Choice

KEY_PRESS � —

KEY_RELEASE � —

KEY_ACTION � —

KEY_ACTION_RELEASE � —

MOUSE_DOWN — —

MOUSE_UP — —

MOUSE_MOVE — —

MOUSE_ENTER — —

MOUSE_EXIT — —

MOUSE_DRAG — —

ACTION_EVENT � �

GOT_FOCUS � —

LOST_FOCUS � —

Label

KEY_PRESS — —

KEY_RELEASE — —

KEY_ACTION — —

KEY_ACTION_RELEASE — —

MOUSE_DOWN — —

MOUSE_UP — —

MOUSE_MOVE — —

MOUSE_ENTER — —

MOUSE_EXIT — —

MOUSE_DRAG — —

ACTION_EVENT — —

10 July 2002 22:28

Table C–2: Java 1.0 Component Events in Java 1.1 (continued)

Component/Events vs. HJ/JDK HJ/JDK
Run-time/Platform WinNT/95 Sun

GOT_FOCUS — —

LOST_FOCUS — —

List

KEY_PRESS � �

KEY_RELEASE � �

KEY_ACTION � �

KEY_ACTION_RELEASE � �

MOUSE_DOWN — —

MOUSE_UP — —

MOUSE_MOVE — —

MOUSE_ENTER — —

MOUSE_EXIT — —

MOUSE_DRAG — —

LIST_SELECT � �

LIST_DESELECT � �

ACTION_EVENT � �

GOT_FOCUS � �

LOST_FOCUS � �

ScrollBar

KEY_PRESS — —

KEY_RELEASE — —

KEY_ACTION — —

KEY_ACTION_RELEASE — —

MOUSE_DOWN — —

MOUSE_UP — —

MOUSE_MOVE — —

MOUSE_ENTER — —

MOUSE_EXIT — —

MOUSE_DRAG — —

SCROLL_LINE_UP � �

SCROLL_LINE_DOWN � �

SCROLL_PAGE_UP � �

SCROLL_PAGE_DOWN � �

SCROLL_ABSOLUTE � �

C.1 THE RESULTS 1011

10 July 2002 22:28

1012 APPENDIX C: PLATFORM-SPECIFIC EVENT HANDLING

Table C–2: Java 1.0 Component Events in Java 1.1 (continued)

Component/Events vs. HJ/JDK HJ/JDK
Run-time/Platform WinNT/95 Sun

ACTION_EVENT — —

GOT_FOCUS — �

LOST_FOCUS — �

TextArea

KEY_PRESS � �

KEY_RELEASE � �

KEY_ACTION � �

KEY_ACTION_RELEASE � �

MOUSE_DOWN — —

MOUSE_UP — —

MOUSE_MOVE — —

MOUSE_ENTER — —

MOUSE_EXIT — —

MOUSE_DRAG — —

ACTION_EVENT — —

GOT_FOCUS � �

LOST_FOCUS � �

TextField

KEY_PRESS � �

KEY_RELEASE � �

KEY_ACTION � �

KEY_ACTION_RELEASE � �

MOUSE_DOWN — —

MOUSE_UP — —

MOUSE_MOVE — —

MOUSE_ENTER — —

MOUSE_EXIT — —

MOUSE_DRAG — —

ACTION_EVENT � �

GOT_FOCUS � �

LOST_FOCUS � �

10 July 2002 22:28

Key:

HJ Sun’s Hot Java Prebeta 2

JDK
Java Developer’s Kit 1.1 (appletviewer/Java)

Sun
Solaris 2.x (UNIX/Motif)

C.2 Test Program
The test program, compList, listed in Section C.2.2 shows the events peers pass
along to the Java run-time system. You can then examine the output to see how the
run-time system reacts to the different events. When you run compList, the screen
looks something like the one in Figure C-1.

Figure C–1: Test program

C.2.1 How to Use the Program
Java does not have an automated record and playback feature, so the work is left
for you to do. The program displays 10 components: Label, Button, Scrollbar,
List, multiselection List, Choice, Checkbox, TextField, TextArea, and Canvas

(the black box in Figure C-1). Basically, you must manually trigger every event for
ever y component.

C.2 TEST PROGRAM 1013

10 July 2002 22:28

1014 APPENDIX C: PLATFORM-SPECIFIC EVENT HANDLING

For ever y component on the screen (except Done), do the following:

With the mouse
Move the cursor over the object, press the mouse button and release, and drag
the cursor over the object.

With the keyboard
Press and release an alphabetic key, press and release the Home and End keys,
arrow keys, and function keys. Do this for every component, even for compo-
nents like Button and Label that have no logical reason for using keyboard
events.

For items with choices
Select and deselect a few choices; double-click and single-click selections.

For the scrollbar
Click on each arrow, drag the slider, and click in the paging area (the space
between each arrow and the slider).

For the text field
Press Enter.

When finished
Press the Done button, and analyze the results. Run the program again (with-
out exiting), and check the results again. Try to trigger any specific events that
you expect but didn’t appear in the output from the first pass. Generating
some events requires a little work. For example, on a Macintosh, in order to
get the MOUSE_UP and MOUSE_DRAG events, you must do a MOUSE_DOWN off the
component; otherwise, the MOUSE_DOWN/MOUSE_UP combination turns into an
ACTION_EVENT, if that component can generate it.

NOTE The SunTest business unit of Sun Microsystems has an early version
of a record and playback Java GUI testing tool called JavaSTAR.
Information about it is available at http://www.suntest.com/JavaS-
TAR/JavaSTAR.html. In the future, it may be possible to use JavaS-
TAR to help automate this process.

C.2.2 Source Code
The following is the source code for the test program:

import java.awt.*;
import java.util.*;
import java.applet.*;
public class compList extends Applet {

Button done = new Button ("Done");
Hashtable values = new Hashtable();

10 July 2002 22:28

public void init () {
add (new Label ("Label"));
add (new Button ("Button"));
add (new Scrollbar (Scrollbar.HORIZONTAL, 50, 25, 0, 255));
List l1 = new List (3, false);
l1.addItem ("List 1");
l1.addItem ("List 2");
l1.addItem ("List 3");
l1.addItem ("List 4");
l1.addItem ("List 5");
add (l1);
List l2 = new List (3, true);
l2.addItem ("Multi 1");
l2.addItem ("Multi 2");
l2.addItem ("Multi 3");
l2.addItem ("Multi 4");
l2.addItem ("Multi 5");
add (l2);
Choice c = new Choice ();
c.addItem ("Choice 1");
c.addItem ("Choice 2");
c.addItem ("Choice 3");
c.addItem ("Choice 4");
c.addItem ("Choice 5");
add (c);
add (new Checkbox ("Checkbox"));
add (new TextField ("TextField", 10));
add (new TextArea ("TextArea", 3, 20));
Canvas c1 = new Canvas ();
c1.resize (50, 50);
c1.setBackground (Color.blue);
add (c1);
add (done);

}
public boolean handleEvent (Event e) {

if (e.target == done) {
if (e.id == Event.ACTION_EVENT) {

System.out.println (System.getProperty ("java.vendor"));
System.out.println (System.getProperty ("java.version"));
System.out.println (System.getProperty ("java.class.version"));
System.out.println (System.getProperty ("os.name"));
System.out.println (values);

}
}else {

Vector v;
Class c = e.target.getClass();
v = (Vector)values.get(c);
if (v == null)

v = new Vector();
Integer i = new Integer (e.id);
if (!v.contains (i)) {

v.addElement (i);
values.put (c, v);

}

C.2 TEST PROGRAM 1015

10 July 2002 22:28

1016 APPENDIX C: PLATFORM-SPECIFIC EVENT HANDLING

}

return super.handleEvent (e);
}

}

An HTML document to display the applet in a browser should look something like
the following:

<APPLET code="compList.class" height=300 width=300>
</APPLET>

C.2.3 Examining Results
The results of the program are sent to standard output when you click on the
Done button. What happens to the output depends on the platform. It may be
sent to a log file (Internet Explorer), the Java Console (Netscape Navigator), or
the command line (appletviewer). The following is sample output from Internet
Explorer 3.0 on a Windows 95 platform.

Microsoft Corp.
1.0.2
45.3
Windows 95
{class java.awt.Canvas=[504, 503, 1004, 501, 506, 502, 505, 1005,
401, 402, 403, 404], class java.awt.Choice=[1001, 401, 402, 403,
404], class java.awt.Checkbox=[1001, 402, 401, 403, 404], class
compList=[504, 503, 501, 506, 502, 505, 1004, 1005], class java.
awt.TextField=[401, 402, 403, 404], class java.awt.List=[701,
1001, 401, 402, 403, 404, 702], class java.awt.Scrollbar=[602,
605, 604, 603, 601], class java.awt.TextArea=[401, 402, 403, 404],
class java.awt.Button=[1001, 401, 402, 403, 404]}

In addition to some identifying information about the run-time environment, the
program displays a list of classes and the events they passed. The integers represent
the event constants of the Event class; for example, Canvas received events with
identifiers 504, 503, etc. The events are not sorted, so you can see the order in
which they were sent. Unfortunately, you have to look up these constants in the
source code yourself. The class listed as compList is the applet itself and shows you
the events that the Applet class receives.

10 July 2002 22:28

D

Image Loading

In this appendix:
• How Images are

Loaded
• A Brief Tour of

sun.awt.image

D.1 How Images are Loaded
You have seen how easy it is to display an image on screen and have probably
guessed that there’s more going on behind the scenes. The getImage() and draw-

Image() methods trigger a series of events that result in the image being available
for display on the ImageObserver. The image is fetched asynchronously in another
thread. The entire process* goes as follows:

1. The call to getImage() triggers Toolkit to call createImage() for the image’s
InputStreamImageSource (which is a URLImageSource in this case; it would be
a FileImageSource if we were loading the image from a local file).

2. The Toolkit registers the image as being “desired.” Desired just means that
something will eventually want the image loaded. The system then waits until
an ImageObserver registers its interest in the image.

3. The drawImage() method (use of MediaTracker or prepareImage()) registers
an ImageObserver as interested.

4. Registering an ImageObserver kicks the image’s ImageRepresentation into
action; this is the start of the loading process, although image data isn’t actu-
ally transferred until step 9. ImageRepresentation implements the ImageCon-

sumer inter face.

5. The start of production registers the image source (ImageProducer URLImage-
Source) with the ImageFetcher and also registers the ImageRepresentation as
an ImageConsumer for the image.

* This summary covers Sun’s implementation (JDK). Implementations that don’t derive from the JDK
may behave completely differently.

1017

10 July 2002 22:28

1018 APPENDIX D: IMAGE LOADING

6. The ImageFetcher creates a thread to get the image from its source.

7. The ImageFetcher reads data and passes it along to the InputStreamImage-

Source, which is a URLImageSource.

8. The URLImageSource determines that JPEGImageDecoder is the proper
ImageDecoder for converting the input stream into an Image. (Other ImageDe-
coders are used for other image types, like GIF.)

9. The ImageProducer starts reading the image data from the source; it calls the
ImageConsumer (i.e., the ImageRepresentation) as it processes the image. The
most important method in the ImageConsumer inter face is setPixels(), which
delivers pixel data to the consumer for rendering onscreen.

10. As the ImageConsumer (i.e., the ImageRepresentation) gets additional infor-
mation, it notifies the ImageObserver via imageUpdate() calls.

11. When the image is fully acquired across the network, the thread started by the
ImageFetcher stops.

As you see, there are a lot of unfamiliar moving pieces. Many of them are from the
java.awt.image package and are discussed in Chapter 12, Image Processing. Others
are from the sun.awt.image package; they are hidden in that you don’t need to
know anything about them to do image processing in Java. However, if you’re curi-
ous, we’ll briefly summarize these classes in the next section.

D.2 A Brief Tour of sun.awt.image
The classes in sun.awt.image do the behind-the-scenes work for rendering an
image from a file or across the network. This information is purely for the curious;
you should never have to work with these classes yourself.

Image

The Image class in this package represents a concrete Image instance. It con-
tains the basis for the Image class that is actually used on the run-time plat-
form, which exists in the package for the specific environment. For instance,
the sun.awt.win32 package includes the W32Image (Java 1.0), the
sun.awt.windows package includes WImage (Java 1.1), while the
sun.awt.motif package includes the X11Image, and the sun.awt.macos pack-
age includes the MacImage.

ImageRepresentation

The ImageRepresentation is the ImageConsumer that watches the creation of
the image and notifies the ImageObserver when it is time to update the dis-
play. It plays an important part in the overall control of the Image production
process.

10 July 2002 22:28

Image sources
A Java image can come from three different sources: memory (through cre-

ateImage()), local disk, or the network (through getImage()).

• OffScreenImageSource implements ImageProducer for a single framed
image in memory. When an Image created from an OffScreenImageSource

is drawn with drawImage(), the ImageObserver parameter can be null

since all the image information is already in memory and there is no need
for periodic updating as more is retrieved from disk. You can get the
graphics context of OffScreenImageSource images and use the context to
draw on the image area. This is how double buffering works.

• InputStreamImageSource implements ImageProducer for an image that
comes from disk or across the network. When an Image created from an
InputStreamImageSource is drawn with drawImage(), the ImageObserver

parameter should be the component being drawn on (usually this) since
the image information will be loaded periodically with the help of the
ImageObserver inter face). This class determines how to decode the image
type and initializes the ImageDecoder to one of GifImageDecoder, JPEGIm-
ageDecoder, or XbmImageDecoder, although that can be overridden by a
subclass. It can use a ContentHandler to work with unknown image types.

• FileImageSource is a subclass of InputStreamImageSource for images that
come from the filesystem. It uses the filename to determine the type of
image to decode and checks the security manager to ensure that access is
allowed.

• URLImageSource is a subclass of InputStreamImageSource for images that
are specified by a URL.

• ByteArrayImageSource (Java 1.1 only) is a subclass of InputStreamImage-
Source for images that are created by calling Toolkit.createIm-

age(byte[]).

Image decoders
An ImageDecoder is utilized to convert the image source to an image object. If
there is no decoder for an image type, it can be read in with the help of a Con-
tentHandler or your own class that implements ImageProducer, like the
PPMImageDecoder shown in Chapter 12.

• GifImageDecoder reads in an image file in the GIF format.

• JPEGImageDecoder reads in an image file in the JPEG format.

D.2 A BRIEF TOUR OF SUN.AWT.IMAGE 1019

10 July 2002 22:28

1020 APPENDIX D: IMAGE LOADING

• XbmImageDecoder reads in an image file in the XBM format. Although
XBM support is not required by the language specification, support is pro-
vided with Netscape Navigator, Internet Explorer, HotJava, and the Java
Developer’s Kit from Sun.

ImageFetcher

The ImageFetcher class fetches the actual image from its source. This class cre-
ates a separate daemon thread to fetch each image. The thread is run at a
higher priority than the default but not at the maximum priority.

10 July 2002 22:28

Index

A
ABORT constant, 411
ABORTED constant, 61
abortGrabbing(), 448
action(), 96

Button component, 194
Checkbox component, 353
Choice component, 335
Component class, 181
List component, 345
MenuItem class, 368
TextField class, 315

ACTION_ constants, 141
ACTION_EVENT event, 112
action keys, 137
ActionEvent class, 141, 831
ActionListener(), 154
ActionListener interface, 147, 834
actionPer formed(), 112, 147
activeCaption color, 89
activeCaptionBorder color, 89
activeCaptionText color, 89
adapter classes, 119
add(), 47

add listener interfaces, 121, 155
Choice component, 333
Component class, 178
Container class, 209-210
List component, 340
Menu class, 371
MenuBar class, 377

addActionListener(), 196

List component, 348
MenuItem class, 368
TextField class, 317

addAdjustmentListener()
Adjustable interface, 401
Scrollbar class, 393

addComponentListener(), 185
addConsumer()

FilteredImageSource class, 424
ImageProducer interface, 422
Memor yImageSource class, 427

addContainerListener(), 214
addFocusListener(), 186
addImage(), 62
addImpl()

Container class, 210
ScrollPane container, 403

addInternal(), 156
addItemListener()

Checkbox component, 355
Choice component, 336
List component, 347
Menu class, 375

addItem()
Choice component, 333
List component, 340

addKeyListener(), 186
addLayoutComponent()

BorderLayout layout, 259, 261
CardLayout layout, 267-268
FlowLayout layout, 256
GridBagLayout layout, 275

1021

10 July 2002 22:28

1022 INDEX

addLayoutComponent() (continued)
GridLayout layout, 264
HorizBagLayout layout, 295
LayoutManager interface, 251, 286
LayoutManager2 interface, 252
VerticalBagLayout layout, 296

addMouseListener(), 186
addMouseMotionListener(), 186
addNotify()

Button component, 193
Canvas class, 200
Checkbox component, 352
CheckboxMenuItem class, 374
Choice component, 334
Container class, 174, 217
Dialog class, 237
FileDialog class, 244
Frame class, 230
Label component, 191
List component, 344
Menu class, 372
MenuBar class, 378
MenuItem class, 367
Panel class, 219
PopupMenu class, 384
Scrollbar class, 390
ScrollPane container, 405
TextArea class, 324
TextField class, 315
Window class, 225

addPoint(), 51
addSeparator(), 371
addTextListener(), 310
addWindowListener(), 226
Adjustable interface, 399-401, 553
ADJUSTMENT_ constants, 143
AdjustmentEvent(), 144
AdjustmentEvent class, 143, 835
AdjustmentListener interface, 147, 838
adjustmentValueChanged(), 109, 148
alignment

ALIGN parameter (<APPLET> tag), 996
BorderLayout vs. GridBagLayout, 271
centering text (example), 77
Component class constants, 162
of components, 169
container components, 213
of containers, 253

GridBagLayout layout for, 13, 271-277,
694

GridLayout layout for, 11, 262-266, 701
labels, 190
layout managers and (see under specific

layout manager)
VariableGridLayout layout for, 297-300

ALLBITS constant, 411
allowsMultipleMode(), 342
alpha component, pixel, 415, 417, 420
Alt key (see modifiers)
ALT parameter (<APPLET> tag), 996
anchor variable (GridBagContraints class),

278
animation, 56-58

Memor yImageSource class for, 427-429,
431-433

append(), 322
appendText(), 322
Applet(), 476
appletResize(), 488
applets, 19, 475-483

Applet class, 476-483, 527
<APPLET> tag (HTML), 995-998
AppletContext interface, 485-487, 531
AppletStub interface, 487-488, 533
audio and, 481-483
(see also audio)

arcHeight, arcWidth parameters, 29
ARCHIVES parameter

<APPLET> tag, 996
<PARAM> tag, 998

arcs, 32
AreaAveragingScaleFilter class, 37, 468, 901
ascent, font, 74
audio, 488-493

applets and, 481-483
AudioClip interface, 483-485, 535
AudioData class, 488
AudioDataStream class, 490
AudioPlayer class, 491
AudioStream class, 489
AudioStreamSequence class, 491
beep(), 503
ContinuousAudioDataStream class, 490

AWT
versions of, 2

AWT, versions of, xiii
AWTError error, 473-474, 536

10 July 2002 22:28

AWTEvent(), 125
AWTEvent class, 118-159, 537

constants of, 124
AWTEventMulticaster(), 154
AWTEventMulticaster class, 153-159, 541
AWTException exception, 471, 553

B
background colors, 89, 164

highlighted text, 91
images, 37
windows, 91

beep(), 503
BITFTP, obtaining examples by, xix
BLOCK_ constants, 143
blue (color), 82-83, 415, 417-418, 421
blurring filter (example), 456-459
BOLD constant, 68
BorderLayout(), 259
BorderLayout layout, 12, 257-262, 557
borders

caption, color of, 89-90
inset, 220
windows, color of, 91

BOTTOM_ALIGNMENT constant, 163
bounds(), 167
brighter(), 83
browsers, xx

getting information about, 487-488
status line for, 479, 487

buffers (see memory)
buttons, 9

Button class, 9, 192-197, 562
button events, 194-197
button mask constants, 133
ButtonPeer interface, 951
ImageButton class, 9
keyboard events and, 195
mouse (see mouse events)
raised rectangles for, 30

ByteArrayImageSource class, 1015
bytesWidth(), 78

C
CAB files, 998
CABBASE parameter name (<PARAM>

tag), 998
calculator example, 197

Canvas(), 200
Canvas class, 9, 199, 565
CanvasPeer interface, 952
captions, colors for, 89-90
CardLayout(), 267
CardLayout layout, 12, 266-271, 566
carets, 307
cascading filters, 469
CENTER_ALIGNMENT constant, 163
centering (see alignment)
chains, listener (see AWTEventMulticaster

class)
CHAR_UNDEFINED constant, 135
characters, 23

drawing, 23
echoing, 314
width of, 76-78
(see also strings)

charsWidth(), 78
charWidth(), 76
checkAll(), 64
Checkbox(), 350
checkboxes

Checkbox component, 4, 349-355, 571
checkbox events, 352-355
checkbox menu events, 374-375
CheckboxGroup class, 4, 356-357, 576
CheckboxMenuItem class, 373-375, 578
CheckboxMenuItemPeer interface, 952
state of, 351

CheckboxGroup(), 356
CheckboxMenuItem(), 373
checkID(), 64
checkImage()

ImageObser ver inter face, 173
Toolkit class, 500

Choice(), 332
Choice component, 5, 331-338, 580
ChoicePeer interface, 954
circles (see ovals)
classes, 50

adapter, 119
AWTEvent class, 118-159
(see also under specific class name)

clear(), 340
clearRect(), 24
clickCount variable, 102

INDEX 1023

10 July 2002 22:28

1024 INDEX

clicking mouse buttons (see mouse events)
Clipboard(), 507
clipboards, xv, 19, 499, 510-512

Clipboard class, 507-508, 819
ClipboardOwner interface, 506, 821
StringSelection class, 508, 825

clipping area, 24-26
clipRect(), 24
clone()

GridBagConstraints class, 282
ImageFilter class, 455
Insets class, 220

CODE parameter (<APPLET> tag), 997
CODEBASE parameter (<APPLET> tag),

997
Color(), 82
ColorModel(), 414
colors, 80-94, 470

background, 89, 164
highlighted text, 91
images, 37
windows, 91

caption, 89-90
Color class, 81-87, 585
ColorModel class, 413-421, 903
DirectColorModel class, 416, 908
foreground, 24, 164
IndexColorModel class, 418-421, 926
menus and, 90
pop-up help and, 90
predefined, 81, 87-91, 94
SystemColor class, 87-92, 783
XOR mode and, 26
(see also images)

columns (see alignment)
columnWeights[] variable, 274
columnWidths[] variable, 274
comparing

colors, 87
dimensional sizes, 43
fonts, 72
insets, 220
menu shortcuts, 365
MIME types, 504
points, 42
rectangles, 50

COMPLETE constant, 61
COMPLETESCANLINES constant, 435
compList program, 1009-1012

Component(), 163
COMPONENT_ constants, 126-127
ComponentAdapter interface, 148, 838
componentAdded(), 149
ComponentEvent(), 126
ComponentEvent class, 126, 840
componentHidden(), 148
ComponentListener interface, 148, 842
componentMoved(), 108, 148
componentRemoved(), 149
componentResized(), 148
components, 3, 162-189, 207

CardLayout layout for, 12, 266-271, 566
Component class, 162-189, 592
ComponentPeer interface, 955
designing, 200-204
handling events in, 187-189
padding around, 281
peers for (see peers)
state of, 174-177
(see also containers)

componentShown(), 148
constants, 53

alignment, 162
AWTEvent class, 124
cursor shapes, 205
for each keyboard key, 134
Event class, 104-113
for cursor shapes, 227
predefined colors, 81, 87-91, 94
(see also under specific constant name)

consume()
AWTEvent class, 125
InputEvent class, 134

Container(), 208
CONTAINER_ constants, 127
ContainerEvent(), 127
containers, 13-17, 50, 207-218

Container class, 207-218, 620
ContainerAdapter interface, 148, 843
ContainerEvent class, 127, 844
ContainerListener interface, 148, 847
ContainerPeer interface, 962
(see also components; under specific

container)
contains()

Container class, 169
Polygon class, 51
Rectangle class, 48

10 July 2002 22:28

contains() (continued)
content types, 502-505, 822
ContinuousAudioDataStream class, 490
control color, 89
Control key (see modifiers)
controlDkShadow color, 89
controlDown(), 114
controlHighlight color, 89
controlLtHighlight color, 89
controlShadow color, 89
controlText color, 90
converting

colors formats (RGB/HSB), 86
images to pixels, 445-453

coordinates, 19
coordinate system (see graphics)
of events, 103
GridBagLayout components, 279
mouse event, 140
(see also points)

copyArea(), 26
CornerLayout layout (example), 287-294
corners, rounded, 29
countComponents(), 208
countItems()

Choice component, 332
List component, 339
Menu class, 371

countMenus(), 377
create(), 22
createImage()

Component class, 36, 172
createImage()

Toolkit class, 502
cropping images, 38

CropImageFilter class, 465, 906
CTRL key (see modifiers)
Cursor(), 205
cursors

components and, 165
Cursor class, 205, 630
Frame class constants for, 227

D
darker(), 83
data, 501-512

DataFlavor class, 502-505, 822
Transferable interface, 505, 828
(see also clipboards)

DataFlavor(), 503
date (see time and date)
debugging by overriding event handlers,

101
decode()

Color class, 85
Font class, 72

de-emphasizing with color, 83, 89, 92
delegation model for event handling,

117-159
deleteMenuShortcut(), 367
deleteShortcut(), 378
deleting, 179

applets, 480
Graphics objects, 22, 40
ImageConsumers (see

removeConsumer())
layout components (see

removeLayoutComponent())
listener interfaces, 156

(see also remove . . . Listener())
menu shortcuts, 367, 378
objects from MediaTracker, 62
peers (see removeNotify())
(see also remove(); removeAll())

delItem(), 341
delItems(), 341
deliverEvent(), 96

Component class, 180
Container class, 214

descent, font, 74
deselect(), 342
DESELECTED constant, 145
desktop colors (see SystemColor class)
destroy(), 480
Dialog(), 235
dialogs, 16, 234-241

Dialog class, 234-238, 633
DialogPeer interface, 963
for files (see FileDialog class)

Dimension(), 43
Dimension class, 42, 637
dimensions (see size)
DirectColorModel(), 416
DirectColorModel class, 416, 908
disable()

Container class, 177
MenuItem class, 367

INDEX 1025

10 July 2002 22:28

1026 INDEX

disableEvents()
Component class, 188
MenuItem class, 369

disabling LayoutManager, 284
dispatchEvent(), 362
dispose()

Frame class, 229
Graphics class, 40
Window class, 224

documentation (see help)
doLayout()

Component class, 169
Container class, 213
ScrollPane container, 403

double buffering, 58-60
draw3DRect(), 30
drawArc(), 32
drawBytes(), 23
drawChars(), 23
drawImage(), 36-39
drawing (see graphics)
drawLine(), 28
drawOval(), 31
drawPolygon(), 33
drawPolyline(), 34
drawRect(), 29
drawRoundRect(), 29
drawString(), 23
DynamicFilter class (example), 459

E
echoCharIsSet(), 314
echoing characters, 314
enable()

Container class, 177
MenuItem class, 367

enableEvents()
Component class, 187
MenuItem class, 369

end(), 517
equality (see comparing)
equals()

Color class, 87
of data flavors (MIME types), 505
Dimension class, 43
Font class, 72
Insets class, 220
MenuShortcut class, 365
Point class, 42

Rectangle class, 50
ERROR constant, 411
ERRORED constant, 61
errors, 63, 473-474

FileDialog class and Navigator, 242
multimedia, 61
when loading images, 65
(see also exceptions)

Event(), 113
EventQueue(), 158
events, xiv, 18, 95-159

checkbox, 352-355
components and, 180-189
containers and, 214
Event class, 101-116, 639
event methods, 113-115
event multicasters, 153-159, 541
event queue, 117, 158, 499, 652
event triggers, 7
event types, 121
EventQueue class, 117, 158, 652
FileDialog class and, 112
focus (see focus events)
frames and, 230
handlers, 97, 100
handling at component level, 187-189
Java 1.0 model of, 96-101
Java 1.1 model of, 117-159
keyboard (see keyboard events)
listeners (see listener interfaces)
lists and, 335-338, 344-349
menu, 362, 368-370, 374-375, 380-382
mouse (see mouse events)
platforms and, 999-1012
scrolling (see scrolling, scrolling events)
target of, 96, 103
TextArea class and, 325-328
TextComponent class and, 309-311
TextField class and, 315-319
types of, 97
windows and, 225, 230

example programs, obtaining, xvii
exceptions, 63, 471-473

MIME content type, 509
(see also errors; under specific excep-

tion)

10 July 2002 22:28

F
family, font, 69
fetching images, 1016
FileDialog(), 242
FileDialog class, 16, 241-248, 653

events for, 112
FileDialogPeer interface, 964
FileImageSource class, 1015
fill variable (GridBagContraints class), 278
fill3DRect(), 30
fillArc(), 33
fillOval(), 31
fillPolygon(), 35
fillRect(), 29
fillRoundRect(), 29
FilteredImageSource(), 424
FilteredImageSource class, 423, 911
filterIndexColorModel(), 464
filtering images, 453-470

cascading filters, 469
filterRGB(), 464
filterRGBPixels(), 464
finalize()

ColorModel class, 416
Graphics class, 40
PrintJob class, 517

first(), 269
flavors, data (see data)
flipping images, 38
FlowLayout(), 254
FlowLayout layout, 11, 253-257, 657
flush(), 55
focus

components and, 177
focus events, 111, 184, 189

FocusEvent class, 128, 849
listeners for (see listener interfaces)
TextArea class and, 328
TextField class and, 316
(see also events)

FocusAdapter, FocusListener interfaces,
149, 848, 851

FOCUS_ constants, 128
FocusEvent(), 129
focusGained(), 112, 149
focusLost(), 112, 149
Font(), 69
FontMetrics class, 665
fonts, 67-73, 164

Font class, 68-73, 661
font size, 68, 70

character width, 76-78
font height, 74-76

FontMetrics class, 73-80
graphics and, 24

FontPeer class, 70
FontX class, 69
graphics and, 23
menus and, 361
style of, 68, 70

foreground
colors, 24

foreground colors, 164
Frame(), 228
FRAMEBITS constant, 411
frames, 15, 227-234

centering text in (example), 77
Frame class, 227-232, 669
FramePeer interface, 965
menubars on, 375-378
menus in (see menus)
(see also windows)

FTP, obtaining examples by, xvii
Ftpmail, obtaining examples by, xviii

G
gap settings

BorderLayout layout, 259
CardLayout layout, 267
FlowLayout layout, 256
GridLayout layout, 264

garbage collection, 40
getActionCommand()

ActionEvent class, 142
Button component, 193
MenuItem class, 368

getAdjustable(), 144
getAdjustmentType(), 144
getAlignment()

FlowLayout layout, 255
Label component, 191

getAlignmentX()
Component class, 169
Container class, 213

getAlignmentY()
Component class, 169
Container class, 213

INDEX 1027

10 July 2002 22:28

1028 INDEX

getAlpha()
ColorModel class, 415
DirectColorModel class, 417
IndexColorModel class, 420

getAlphaMask(), 417
getAlphas(), 421
getApplet(), 485
getAppletContext()

Applet class, 476
AppletStub interface, 488

getAppletInfo(), 478
getApplets(), 486
getAscent(), 75
getAudioClip()

Applet class, 482
AppletContext interface, 485

getBackground(), 164
getBlockIncrement()

Adjustable interface, 401
Scrollbar class, 390

getBlue()
Color class, 83
ColorModel class, 415
DirectColorModel class, 417
IndexColorModel class, 421

getBlueMask(), 418
getBlues(), 421
getBoundingBox(), 51
getBounds()

Component class, 167
Polygon class, 51
Rectangle class, 46
Shape class, 44

getCaretPosition(), 307
getCheckboxGroup(), 351
getClickCount(), 141
getClip(), 26
getClipBounds(), 26
getClipRect(), 26
getCodeBase()

Applet class, 477
AppletStub interface, 488

getColFraction(), 299
getColor()

Color class, 85
Graphics class, 24

getColorModel(), 165
PixelGrabber class, 449
Toolkit class, 496

getColumns()
GridLayout layout, 263
TextArea class, 323
TextField class, 313

getComponent()
ComponentEvent class, 127
Container class, 208
ContainerEvent class, 128

getComponentAt()
Component class, 169
Container class, 214

getComponentCount(), 208
getComponents(), 209
getConstraints(), 276
getContainer(), 128
getContents(), 508
getCurrent(), 356
getCursorType(), 230
getCursor(), 165
getData(), 490
getDefaultCursor(), 206
getDefaultToolkit(), 496
getDescent(), 75
getDirector y(), 243
getDocumentBase()

Applet class, 477
AppletStub interface, 487

getEchoChar(), 314
getDecent(), 75
getDescent(), 75
getErrorsAny(), 65
getErrorsID(), 65
getFamily(), 69
getFilenameFilter(), 244
getFile(), 243
getFilterInstance(), 455
getFocusOwner(), 225
getFont()

Component class, 164
Font class, 71
FontMetrics class, 79
Graphics class, 23
MenuComponent class, 361
MenuContainer interface, 364

getFontList(), 497
getFontMetrics(), 24, 165, 497
getForeground(), 164
getGraphics(), 165

Component class, 21

10 July 2002 22:28

getGraphics() (continued)
Image class, 55
PrintJob class, 516

getGreen()
Color class, 83
ColorModel class, 415
DirectColorModel class, 417
IndexColorModel class, 420

getGreenMask(), 418
getGreens(), 421
getHAdjustable(), 404
getHeight(), 54

FontMetrics class, 75-76
PixelGrabber class, 449

getHelpMenu(), 378
getHgap()

BorderLayout layout, 259
CardLayout layout, 267
FlowLayout layout, 256
GridLayout layout, 264

getHSBColor(), 86
getHScrollbarHeight(), 403
getHumanPresentableName(), 504
getIconImage(), 228
getID(), 125
getImage()

Applet class, 36, 480
Toolkit class, 36

getImage()
AppletContext interface, 485
Toolkit class, 500

getInsets(), 217
getItem()

AWTEvent class, 145
Choice component, 332
List component, 340
Menu class, 371

getItemCount()
Choice component, 332
List component, 339
Menu class, 371

getItems(), 340
getItemSelectable(), 145
getKey(), 365
getKeyChar(), 136
getKeyModifiersText(), 138
getKeyText(), 137
getLabel(), 192

Checkbox component, 350

MenuItem class, 366
getLayout(), 211
getLayoutAlignmentX()

BorderLayout layout, 262
CardLayout layout, 268
GridBagLayout layout, 275
LayoutManager2 interface, 253

getLayoutAlignmentY()
BorderLayout layout, 262
CardLayout layout, 269
GridBagLayout layout, 276
LayoutManager2 interface, 253

getLayoutDimensions(), 276
getLayoutOrigin(), 276
getLayoutWeights(), 277
getLeading(), 75
getLength(), 490
getLineIncrement(), 389
getLocale(), 472

Applet class, 479
Component class, 165
Window class, 224

getLocation()
Component class, 166
Point class, 42
Rectangle class, 46

getLocationOnScreen(), 166, 472
getMapS ize(), 421
getMaxAdvance(), 78
getMaxAscent(), 75
getMaxDescent(), 75
getMaximum()

Adjustable interface, 401
Scrollbar class, 389

getMaximumS ize()
Component class, 168
Container class, 212

getMenu(), 377
getMenuBar(), 229
getMenuCount(), 377
getMenuShortcut(), 366
getMenuShortcutKeyMask(), 497
getMimeType(), 504
getMinimum()

Adjustable interface, 400
Scrollbar class, 389

getMinimumS ize()
Component class, 168
Container class, 212

INDEX 1029

10 July 2002 22:28

1030 INDEX

getMinimumS ize() (continued)
List component, 343
TextArea class, 324
TextField class, 314

getMode(), 244
getModifiers()

ActionEvent class, 142
InputEvent class, 133

getName()
Clipboard class, 507
Component class, 178
Font class, 69
MenuComponent class, 361

getNextEvent(), 159
getOrientation()

Adjustable interface, 400
Scrollbar class, 388

getPageDimension(), 517
getPageIncrement(), 390
getPageResolution(), 517
getParameter()

Applet class, 477
AppletStub interface, 488

getParameterInfo(), 478
getParent()

Component class, 178
MenuComponent class, 363

getPeer()
Container class, 173
Font class, 70
MenuComponent class, 362

getPixels(), 449
getPixelS ize(), 415
getPoint(), 140
getPredefinedCursor(), 206
getPreferredS ize()

Component class, 168
Container class, 212
List component, 343
TextArea class, 323
TextField class, 313

getPrintJob()
PrintGraphics interface, 515
Toolkit class, 497

getProperty()
Image class, 55
Toolkit class, 498

getRed()
Color class, 83
ColorModel class, 415
DirectColorModel class, 417
IndexColorModel class, 420

getRedMask(), 418
getReds(), 421
getRepresentationClass(), 504
getRGB()

Color class, 83
ColorModel class, 415
DirectColorModel class, 417
IndexColorModel class, 421
SystemColor class, 92

getRGBdefault(), 415
getRowFraction(), 299
getRows(), 264

List component, 343
TextArea class, 323

getScaledInstance(), 53-54
getScreenResolution(), 499
getScreenS ize(), 499
getScrollbarDisplayPolicy(), 403
getScrollbarVisibility(), 324
getScrollPosition(), 405
getSelectedCheckbox(), 356
getSelectedIndex(), 334

List component, 341
getSelectedIndexes(), 341
getSelectedItem()

Choice component, 333
List component, 341

getSelectedItems()
CheckboxMenuItem class, 374
List component, 341

getSelectedObjects()
Checkbox component, 351
Choice component, 334
ItemSelectable interface, 357
List component, 342

getSelectedText(), 307
getSelectionEnd(), 306
getSelectionStart(), 306
getShortcutMenuItem(), 377
getS ize()

Component class, 167
Dimension class, 43
Font class, 70
Rectangle class, 47

10 July 2002 22:28

getS ize() (continued)
getSource(), 54
getState()

Checkbox component, 351
CheckboxMenuItem class, 373

getStateChange(), 146
getStatus(), 448
getStyle(), 70
getSystemClipboard(), 499
getSystemEventQueue(), 499
getSystemEventQueueImpl(), 499
getText()

Label component, 190
TextComponent class, 306

getTitle()
Dialog class, 235
Frame class, 228

getToolkit()
Component class, 164
Window class, 224

getTransferDataFlavors()
DataFlavor class, 506
StringSelection class, 508

getTransferData()
StringSelection class, 509
Transferable interface, 506

getTransparentPixel(), 421
getTreeLock(), 178
getType(), 206
getUnitIncrement()

Adjustable interface, 401
Scrollbar class, 389

getUpdateRect(), 132
getVAdjustable(), 404
getValue()

Adjustable interface, 400
AdjustmentEvent class, 144
Scrollbar class, 389

getVgap()
BorderLayout layout, 259
CardLayout layout, 267
FlowLayout layout, 256
GridLayout layout, 264

getViewportS ize(), 403
getVisibleAmount()

Adjustable interface, 400
Scrollbar class, 388

getVisibleIndex(), 343
getVisible(), 388

getVScrollbarWidth(), 404
getWarningString(), 225
getWhen(), 133
getWidth()

Image class, 54
PixelGrabber class, 448

getWidths(), 78
getWindow(), 131
getX(), 140
getY(), 140
GOT_FOCUS event, 112, 316, 328
gotFocus()

Component class, 185
TextArea class, 328
TextField class and, 317

grabPixels(), 447
graphics, 41

animation (see animation)
Canvas class for, 9, 199, 565
components and, 170-171
Container class and, 216
coordinate space, 39, 41
double buffering, 58-60
Graphics class, 21-40, 675
images (see images)
multimedia and, 61-66
PaintEvent class, 131, 888
printing, 513-515, 760
shapes and (see shapes)
XOR mode, 26
(see also points)

green (color), 82-83, 415, 417-418, 421
GridBagConstraints(), 282
GridBagConstraints class, 689
GridBagLayout(), 274
GridBagLayout layout, 13, 271-277, 694

GridBagConstraints class, 277-282
gridheight, gridwidth variables (GridBag-

Constraints class), 280
GridLayout(), 263
GridLayout layout, 11, 262-266, 701
grow(), 47

H
handleEvent(), 96-100

Component class, 180
hashCode()

Color class, 87
Font class, 72

INDEX 1031

10 July 2002 22:28

1032 INDEX

hashCode() (continued)
Point class, 42
Rectangle class, 50

height (see size)
HEIGHT parameter (<APPLET> tag), 997
help

help menus, 378
pop-up help colors, 90
resources for further reading, xx

hide(), 176
highlighting with color, 83, 89, 91-92
horizontal

alignment (see alignment)
character width, 76-78
gaps (see gap settings)
HorizBagLayout, 294
scrollbars (see scrolling)
size (see size)

HSB colors, 81, 86
HSBtoRGB(), 86
HSPACE parameter (<APPLET> tag), 997

I
IllegalComponentStateException excep-

tion, 472, 705
IMAGEABORTED constant, 435
imageComplete(), 437

ImageFilter class, 455
PixelGrabber class, 447

IMAGEERROR constant, 435
images, 35-39, 409-413, 422-453, 470

animation with, 56-58
applets and, 480
AreaAveragingScaleFilter class, 468
components and, 171-173
converting to pixels, 445-453
cropping, 465
decoders for, 1015
double buffering, 58-60
DynamicFilter class (example), 459
FilteredImageSource class, 423
Image class, 52-60, 706, 1014
image filters, 453-470
ImageButton class, 9
ImageConsumer interface, 434-453, 913
ImageFetcher class, 1016
ImageFilter class, 454, 917

ImageObser ver inter face, 36, 410-413,
922

ImageProducer interface, 422-433, 924
ImageProducer object, 54
ImageRepresentation consumer, 1014
InputStreamImageSource class, 1015
loading (see loading images)
Memor yImageSource class, 425-433, 931
modifying, 449
multimedia and, 61-66
PixelGrabber class, 445-453
PPMImageDecoder class (example),

438-445
ReplicateScaleFilter class, 467, 943
RGBImageFilter class, 462-465, 946
scrolling (example), 393-399
size of, 54, 410, 436
sources, classes for, 1015
Toolkit class and, 499-502
(see also colors; graphics)

imageUpdate(), 171, 412-413
inactiveCaption color, 90
inactiveCaptionBorder color, 90
inactiveCaptionText color, 90
incrementaldraw parameter, 172
IndexColorModel class, 418-421, 926
info color, 90
infoText color, 90
inheritance, 521
init()

Applet class, 479
MediaTracker class, 65

input, 3-7
Checkbox component, 349-355, 571
CheckboxGroup class, 356-357, 576
Choice component, 331-338, 580
dialogs (see dialogs; FileDialog class)
InputEvent class, 132-134, 852
keyboard, 4
List component, 338-349
menus for (see menus)
multiline text (see text, TextArea class)
single-line text (see text, TextField class)
text (see text)

insert()
Choice component, 333
Menu class, 371
TextArea class, 322

inserting text, 307

10 July 2002 22:28

insertSeparator(), 371
insets(), 217
Insets class, 219-221, 709
inside()

Container class, 169
Polygon class, 51
Rectangle class, 48

inter faces, 50
listeners (see listener interfaces)
peer (see peers)
(see also under specific interface)

InterruptedException, waiting and, 63
intersection(), 48
intersections with rectangles, 48-49
intersects(), 48
invalidateLayout(), 253

BorderLayout layout, 262
CardLayout layout, 269
GridBagLayout layout, 276

invalidate()
Component class, 175
Container class, 214

isActionKey(), 137
isActive()

Applet class, 479
AppletStub interface, 487

isAltDown(), 133
isAncestorOf(), 211
isBold(), 70
isConsumed()

AWTEvent class, 125
InputEvent class, 134

isConsumer()
FilteredImageSource class, 424
ImageProducer interface, 423
Memor yImageSource class, 427

isControlDown(), 133
isDataFlavorSupported()

DataFlavor class, 506
StringSelection class, 509

isEditable(), 308
isEmpty(), 49
isEnabled()

Component class, 176
MenuItem class, 367

isErrorAny(), 65
isErrorID(), 65
isFocusTraversable(), 177
isIndexSelected(), 342

isItalic(), 70
isMetaDown(), 133
isMimeTypeEqual(), 504
isModal(), 236
isMultipleMode(), 342
isPlain(), 70
isPopupTrigger(), 141
isResizable()

Dialog class, 236
Frame classM, 229

isSelected(), 342
isShiftDown(), 133
isShowing(), 175
isTearOff(), 372
isTemporar y(), 129
isValid(), 175
isVisible(), 175
ITALIC constant, 68
ITEM_ constants, 145
ItemEvent class, 144, 855
ItemListener interface, 149, 858
ItemSelectable interface, 357, 711
itemStateChanged(), 111-112, 150

J
JAR files, 998
Java

resources for further reading, xx
versions of, xiii

Java 1.0
Event class constants, 104
event handling, 96-101, 117-159
mouse buttons in, 115

JavaBeans, xv

K
KEY_ constants, 135
KEY_ events, 104, 106, 134
key text properties, 137
keyboard events, 100, 106, 189

buttons and, 195
Checkbox component and, 354
Choice component and, 335
constants for each key, 134
Event class constants for, 104
key variable, 103
KeyAdapter class, 859
KeyEvent class, 134-139, 860

INDEX 1033

10 July 2002 22:28

1034 INDEX

keyboard events (continued)
KeyListener interface, 878
KeyListener, KeyAdapter interfaces, 150
List component and, 346
listeners for (see listener interfaces)
modifiers for, 103, 105, 113, 132-133,

137, 365
key modifier text properties, 138

TextArea class and, 326
TextField class and, 315-316
(see also events; events)

keyboard input, 4
keyboard shortcuts, 364-365, 377
keyDown()

Button component, 195
Checkbox component, 354
Choice component and, 335
Component class, 182
Event class, 106
List component, 346
TextArea class, 326
TextField class, 315

keyEvent(), 136
keyPressed(), 106, 150
keyReleased(), 106, 150
keyTyped(), 150
keyUp()

Button component, 195
Checkbox component, 354
Choice component and, 336
Component class, 182
Event class, 106
List component, 346
TextArea class, 327
TextField class, 316

L
Label(), 190
labels

Label component, 3, 189-192, 712
LabelPeer interface, 966
for menu items, 366

last(), 269
lastPageFirst(), 517
layout()

Component class, 169
ScrollPane container, 403

layoutContainer(), 252
BorderLayout layout, 260

CardLayout layout, 268
FlowLayout layout, 257
GridLayout layout, 266, 275
HorizBagLayout layout, 295
LayoutManager interface, 287
OrientableFlowLayout layout, 302
VariableGridLayout layout, 299
VerticalBagLayout layout, 297

layouts, 10-13, 249-253, 302
BorderLayout, 12, 257-262, 557
CardLayout, 12, 266-271, 566
combining, 282
containers and, 211-214
CornerLayout (example), 287-294
designing, 285-294
disabling LayoutManager, 284
FlowLayout, 11, 253-257, 657
GridBagConstraints class, 277-282, 689
GridBagLayout, 13, 271-277, 694
GridLayout, 11, 262-266, 701
HorizBagLayout, 294
LayoutManager interface, 10, 250-253,

715
LayoutManager2 interface, 252-253, 717
OrientableFlowLayout, 300-302
scrollbar, 403
from sun.awt package, 294-302
VariableGridLayout, 297-300
VerticalBagLayout, 296

leading, font, 74
LEFT_ALIGNMENT constant, 163
LightweightPeer interface, xv, 503, 967
line increment, scrollbars, 389
lines, 28

arcs, 32
connecting to form polygons, 34
width of, 28

list()
Component class, 179
Container class, 218

List class, 6, 339
LIST_ events, 347
listener interfaces, 118, 147-153

AWTEventMulticaster class, 153-159, 541
for checkbox events, 355
components and, 185
containers and, 214
for list events, 336-338, 347
for menu events, 374

10 July 2002 22:28

listener interfaces (continued)
for menu item events, 368
for scrolling events, 392
for text events, 310-311, 315, 317-319
TextField class and, 317
windows and, 226

lists
checkboxes (see checkboxes)
List component, 338-349, 719
list events, 111, 335-338, 344-349
ListPeer interface, 967
pop-up, 331-338

LiveConnect, 997
LOADING constant, 61
loading images, 61-66, 1013-1016

ImageObser ver constants for, 411
status of (see status, loading)

Locale class, 165
locate()

Component class, 169
Container class, 214

location()
Component class, 166
GridBagLayout layout, 277

loop(), 484
LOST_FOCUS event, 112, 316, 328
lostFocus()

Component class, 185
TextArea class, 328
TextField class and, 317

lostOwnership()
ClipboardOwner interface, 506
StringSelection class, 509

M
mail servers, obtaining examples by, xviii
makeVisible(), 343
Mandelbrot program (example), 431
maxAscent value, 74
maximumLayoutS ize(), 253

BorderLayout layout, 261
CardLayout layout, 268
GridBagLayout layout, 275

MAYSCRIPT parameter (<APPLET> tag),
997

MediaTracker class, 61-66
memor y, 22

color and, 413
garbage collection, 40

image data size, 448
Memor yImageSource class, 425-433, 931
(see also performance)

Menu(), 370
MenuBar(), 376
MenuComponent(), 361
MenuItem(), 366
menus, 7, 359-373, 378-382

checkboxes (see checkboxes)
colors of, 90
help menus, 378
Menu class, 370-373, 734
menu events, 362, 368-370, 374-375,

380-382
MenuBar class, 375-378, 738
MenuBarPeer interface, 970
MenuComponent class, 361-363, 741
MenuComponentPeer interface, 972
MenuContainer interface, 363, 744
MenuItem class, 365-370, 745
MenuItemPeer interface, 972
MenuPeer interface, 973
MenuShortcut class, 364-365, 750
pop-up (see pop-up menus)

MenuShortcut(), 364
menuText color, 90
Meta key (see modifiers)
metaDown(), 114
methods, 50

renaming for Java 1.1, xv, 2
(see also under specific class or method

name)
MIME content types, 502-505, 822
minimumLayoutS ize(), 251

BorderLayout layout, 260
CardLayout layout, 268
FlowLayout layout, 257
GridLayout layout, 265, 275
HorizBagLayout layout, 295
LayoutManager interface, 286
OrientableFlowLayout layout, 302
VerticalBagLayout layout, 297

minimumS ize()
Component class, 168
Container class, 212
List component, 343
TextArea class, 324
TextField class, 314

modes, FileDialog class, 242

INDEX 1035

10 July 2002 22:28

1036 INDEX

modifiers
action event, 142
getModifiers(), 133, 142
keyboard, 103, 105, 113, 132-133, 137

key modifier text properties, 138
mouse button, 105, 113, 133

modifiers, keyboard
for menu shortcuts, 365

monitor resolution, 499
monitor size, 499
MOUSE_ constants, 139
mouse events, 100, 108, 189

buttom modifiers, 113
button modifiers, 105, 133
clickCount variable, 102
Component class and, 182-184
in Java 1.0, 115
listeners for (see listener interfaces)
MouseAdapter class, 879
MouseAdapter interfaces, 150
MouseEvent class, 139-141, 881
MouseListener interface, 884
MouseListener interfaces, 150
MouseMotionAdapter class, 886
MouseMotionAdapter interface, 151
MouseMotionListener class, 887
MouseMotionListener interface, 151
scrollbars and, 392
(see also events; events)

mouse for text selection, 306-307
mouseClicked(), 151
mouseDown()

Component class, 183
Event class, 108

mouseDrag()
Component class, 183
Event class, 109

mouseDragged(), 109, 152
mouseEnter()

Component class, 183
Event class, 109

mouseEntered(), 109, 151
MouseEvent(), 140
mouseExit()

Component class, 183
Event class, 109

mouseExited(), 109, 151

mouseMove()
Component class, 184
Event class, 108

mouseMoved(), 108, 152
mousePressed(), 108, 151
mouseReleased(), 108, 151
mouseUp()

Component class, 184
Event class, 108

move()
Component class, 166
Point class, 42

multiline input (see text, TextArea class)
multimedia, 61-66

MediaTracker class, 61-66, 729
multithreading (see threads)

N
names

clipboards, 507
of components, 178
of data flavors (MIME types), 504
of fonts, 69
menu components, 361
NAME parameter

<APPLET> tag, 997
<PARAM> tag, 998

Netscape Navigator, 2
FileDialog class and, 242

newPixels(), 428
newsgroups, Java-related, xx
next(), 269
nextFocus(), 178
normalizeMimeType(), 504
normalizeMimeTypeParameter(), 505

O
OBJECT parameter (<APPLET> tag), 997
objects

image (see images)
positioning and sizing, 166-170

obtaining source code, xvii
OffScreenImageSource class, 1015
OrientableFlowLayout layout, 300-302
orientHorizontally(), 302
orientVertically(), 302

10 July 2002 22:28

origin
coordinate space, 39
GridBagLayout layout, 276

ovals, 31
overriding

action() (see action())
handleEvent(), 100
imageUpdate(), 412

owner, clipboard, 506, 821
owner, contents, 507

P
pack(), 223
padding around components, 281
paging increment, scrollbars, 390
paint()

Canvas class, 200
Component class, 21, 170
Container class, 216

paint mode, 26-28
PAINT, PAINT_ constants, 131
paintAll(), 170
paintComponents(), 216
PaintEvent class, 131, 888
painting (see graphics)
Panel(), 219
panels

CardLayout layout for, 12, 266-271, 566
FlowLayout layout for, 11, 253-257, 657
OrientableFlowLayout layout for,

300-302
Panel class, 218, 752
PanelPeer interface, 974

<PARAM> tag (HTML), 477, 997
paramString(), 131

ActionEvent class, 143
AdjustmentEvent class, 144
AWTEvent class, 126
Button component, 193
Checkbox component, 352
CheckboxMenuItem class, 374
Choice component, 334
Component class, 179
ComponentEvent class, 127
Container class, 217
ContainerEvent class, 128
Dialog class, 237
Event class, 114
FileDialog class, 245

FocusEvent class, 129
Frame class, 230
ItemEvent class, 146
KeyEvent class, 138
Label component, 191
List component, 344
Menu class, 372
MenuComponent class, 363
MenuItem class, 367
MenuShortcut class, 365
MouseEvent class, 141
PaintEvent class, 132
Scrollbar class, 391
ScrollPane container, 405
TextArea class, 324
TextComponent class, 309
TextEvent class, 146
TextField class, 315
WindowEvent class, 131
(see also toString())

peekEvent(), 159
peers, 10, 503-506, 951-985

Container class and, 173
Font class and, 70

per formance, 22
colors and, 414
deleting applets and, 480
Graphics objects and, 22
MediaTracker and, 62
(see also memory)

PixelGrabber class, 445-453, 937
pixels (see images)
PLAIN constant, 68
platforms

colors and, 81, 414
event handling and, 116
events and, 999-1012
font ascent and, 74
layouts and, 10-13
modifier keys and, 107
peer architecture, 10
scrolling events and, 392
Toolkit class, 495-503, 805

play()
Applet class, 481
AudioClip interface, 483

points, 19, 42
adding to polygons, 51
contained in rectangles, 48

INDEX 1037

10 July 2002 22:28

1038 INDEX

points (continued)
Point class, 41-42, 753
(see also Dimension class; graphics;

coordinates)
polygons, 33, 50-52

Polygon class, 50-52, 756
pop-up lists, 331-338
pop-up menus

PopupMenu class, xiv, 759
pop-up menus, 7, 382-384

PopupMenu class, 383-384
PopupMenuPeer interface, 975

portability, 1
events and, 116

positioning objects, 166-170
postEvent(), 98, 159

Component class, 180
MenuComponent class, 362
MenuContainer interface, 364
Window class, 226

PPMImageDecoder class (example),
438-445

predefined colors, 81, 87-91, 94
preferredLayoutS ize(), 251

BorderLayout layout, 260
CardLayout layout, 268
FlowLayout layout, 256
GridLayout layout, 264, 275
HorizBagLayout layout, 295
LayoutManager interface, 286
OrientableFlowLayout layout, 301
VerticalBagLayout layout, 297

preferredS ize()
Component class, 168
Container class, 212
List component, 343
TextArea class, 323
TextField class, 313

prepareImage()
Component class, 173
Toolkit class, 500

previous(), 269
print()

Component class, 171, 517
Container class, 217

printAll()
Component class, 171, 517

printComponents()
Component class, 517
Container class, 216
ScrollPane container, 405

printing, 19, 513-519
PrintGraphics interface, 513-515, 760
PrintJob class, 515-517, 761
Toolkit class and, 497

priority, loading multimedia objects, 62
processActionEvent(), 197

List component, 348
MenuItem class, 369
TextField class, 318

processAdjustmentEvent()
Scrollbar class, 393

processComponentEvent(), 188
processContainerEvent(), 216
processEvent()

button component, 197
Checkbox component, 355
Choice component, 336
Component class, 188
Container class, 215
List component, 348
Menu class, 375
MenuComponent class, 363
MenuItem class, 369
Scrollbar class, 393
TextComponent class, 311
TextField class, 318
Window class, 226

processFocusEvent(), 188
processItemEvent()

Checkbox component, 355
Choice component, 337
List component, 348
Menu class, 375

processKeyEvent(), 189
processMouseEvent(), 189
processMouseMotionEvent(), 189
processTextEvent(), 311
processWindowEvent(), 226
properties

color, 84-86
font, 70-72
image, 55
printing, 498

10 July 2002 22:28

pull-down lists (see pop-up lists; pop-up
menus)

Q
queue

event (see events, event queue)
listener (see AWTEventMulticaster class)

R
radio buttons, 5
raised rectangles, 30
RANDOMPIXELORDER constant, 435
read()

AudioStream class, 489
AudioStreamSequence class, 491
ContinuousAudioDataStream class, 490

read-only text, 308
rectangles

bounding an object, 167
copying, 26
determining size of, 44
as drawing area, 24
drawing, 29
filling, 29-30
intersections with, 48-49
raised (with shadow effect), 30
Rectangle class, 44-50, 763
for repainting, 132
with rounded corners, 29
size of, 46-49

red (color), 82-83, 415, 417-418, 421
redrawrate parameter, 172
RELATIVE constant, 280
REMAINDER constant, 280
remove()

AWTEventMulticaster class, 157
Choice component, 333
Component class, 179
Container class, 211
Frame class, 229
List component, 340
Menu class, 372
MenuBar class, 377
MenuContainer interface, 364
remove listener interfaces, 156

removeActionListener()
Button class, 196
List component, 348

MenuItem class, 368
TextField class, 318

removeAdjustmentListener()
Adjustable interface, 401
Scrollbar class, 393

removeAll()
Choice component, 333
Container class, 211
List component, 340
Menu class, 372

removeComponentListener(), 186
removeConsumer()

FilteredImageSource class, 425
ImageProducer interface, 423
Memor yImageSource class, 427

removeContainerListener(), 215
removeFocusListener(), 186
removeImage(), 62
removeInternal(), 157
removeItemListener()

Checkbox component, 355
Choice component, 336
List component, 347
Menu class, 375

removeKeyListener(), 186
removeLayoutComponent()

BorderLayout layout, 260
CardLayout layout, 267
FlowLayout layout, 256
GridLayout layout, 264, 275
HorizBagLayout layout, 295
LayoutManager interface, 251, 286
VerticalBagLayout layout, 296

removeMouseListener(), 186
removeMouseMotionListener(), 187
removeNotify()

Container class, 174, 217
List component, 344
Menu class, 372
MenuBar class, 378
MenuComponent class, 362
TextComponent class, 309

removeTextListener(), 311
removeWindowListener(), 226
repaint(), 170
replaceItem(), 340
replaceRange(), 322
replaceText(), 322
ReplicateScaleFilter(), 468

INDEX 1039

10 July 2002 22:28

1040 INDEX

ReplicateScaleFilter class, 37, 467, 943
requestFocus(), 177
requestTopDownLeftRightResend()

FilteredImageSource class, 425
ImageProducer interface, 423
Memor yImageSource class, 427

resendTopDownLeftRight(), 455
resetting images, 55
reshape(), 167
resize()

Applet class, 480
Component class, 167

resolution, monitor, 499
resources for further reading, xx
resources, system (see performance)
RGB colors, 81, 83, 92, 415, 417

RGBImageFilter class, 462-465, 946
RGBtoGSB(), 86
RIGHT_ALIGNMENT constant, 163
rounded corners, 29
rowHeights[] variable, 274
rows (see alignment)
rowWeights[] variable, 274

S
sample programs, obtaining, xvii
SCALE_ hints, 53
screen resolution, 499
screen size, 499
SCROLL_ events, 391-393
Scrollbar(), 387
SCROLLBARS_ constants, 402
scrolling, 385-407

Adjustable interface, 399-401, 553
images (example), 393-399
with multiline text input, 319
Scrollbar class, 8, 386-393, 775
scrollbar color, 90
ScrollbarPeer interface, 975
scrolling events, 109, 391-393, 405
ScrollPane class, 770
ScrollPane container, 401-407
ScrollPanePeer interface, 977

ScrollPane container, xiv, 8, 17
select()

Choice component, 334
List component, 342
TextComponent class, 307

selectAll(), 307

SELECTED constant, 145
separator menu items, 371
setActionCommand()

Button component, 193
MenuItem class, 368

setAlignment()
FlowLayout layout, 255
Label component, 191

setAnimated(), 427
setBackground(), 164
setBlockIncrement()

Adjustable interface, 401
Scrollbar class, 390

setBounds()
Component class, 167
Rectangle class, 46

setCaretPosition(), 307, 472
setCheckboxGroup(), 351
setClip(), 25
setColFraction(), 299
setColor(), 24
setColorModel()

ImageConsumer interface, 436
ImageFilter class, 454
PixelGrabber class, 447
RGBImageFilter class, 463

setColumns()
GridLayout layout, 264
TextArea class, 323
TextField class, 313

setConstraints(), 276
setContents(), 508
setCurrent(), 357
setCursor()

Component class, 166
Frame class, 229

setDimensions()
CropImageFilter class, 466
ImageConsumer interface, 436
ImageFilter class, 454
PixelGrabber class, 446
ReplicateScaleFilter class, 468

setDirector y(), 243
setEchoCharacter(), 314
setEchoChar(), 314
setEditable(), 308
setEnabled()

Container class, 177
MenuItem class, 367

10 July 2002 22:28

setEnabled() (continued)
setFilenameFilter(), 244
setFile(), 244
setFont()

Component class, 164
Graphics class, 23
MenuComponent class, 361

setForeground(), 164
setFullBufferUpdates(), 428
setHelpMenu(), 378
setHgap()

BorderLayout layout, 259
CardLayout layout, 267
FlowLayout layout, 256
GridLayout layout, 264

setHints()
AreaAveragingScaleFilter class, 469
ImageConsumer interface, 437
ImageFilter class, 454
PixelGrabber class, 447

setHumanPresentableName(), 504
setIconImage(), 229
setKeyCode(), 137
setLabel()

Button class, 192
Checkbox component, 351
MenuItem class, 366

setLayout()
Container class, 212
ScrollPane container, 403

setLineIncrement(), 390
setLocale(), 165
setLocation()

Point class, 42
Rectangle class, 46

setLocation()
Component class, 166

setMaximum()
Adjustable interface, 401
Scrollbar class, 389

setMenuBar(), 229
setMinimum()

Adjustable interface, 400
Scrollbar class, 389

setModal(), 237
setMode(), 244
setModifiers(), 137
setMultipleMode(), 342
setMultipleSelections(), 342

setName(), 178
setOrientation()

Adjustable interface, 400
Scrollbar class, 388

setPageIncrement(), 390
setPaintMode(), 28
setPixels()

AreaAveragingScaleFilter class, 469
CropImageFilter class, 466
ImageConsumer interface, 437
ImageFilter class, 455
PixelGrabber class, 447
ReplicateScaleFilter class, 468
RGBImageFilter class, 463

setProperties()
CropImageFilter class, 465
ImageConsumer interface, 436
ImageFilter class, 454
PixelGrabber class, 447
ReplicateScaleFilter class, 468

setResizable()
Dialog class, 236
Frame classM, 229

setRowFraction(), 299
setRows()

GridLayout layout, 264
TextArea class, 323

setScrollPosition(), 404
setSelectedCheckbox(), 357
setSelectionEnd(), 307
setSelectionStart(), 307
setShortcut(), 366
setS ize()

Dimension class, 43
Rectangle class, 47

setS ize()
Component class, 167

setState()
Checkbox component, 351
CheckboxMenuItem class, 374

setStub(), 476
setText(), 190

TextComponent class, 306
setTitle(), 228

Dialog class, 235
setUnitIncrement(), 390

Adjustable interface, 401

INDEX 1041

10 July 2002 22:28

1042 INDEX

setValue()
Adjustable interface, 400
Scrollbar class, 389

setValues(), 389
setVgap()

BorderLayout layout, 259
CardLayout layout, 267
FlowLayout layout, 256
GridLayout layout, 264

setVisible(), 176
setVisibleAmount()

Adjustable interface, 400
Scrollbar class, 389

setXORMode(), 27
shadow colors, 83, 89, 92
shapes, 28-35

checkboxes, 351
of cursors, 205, 227
polygons, 33, 50-52, 756
rectangles (see rectangles)
Shape interface, 44, 782

Shift key (see modifiers)
shiftDown(), 114
shortcuts, menu, 364-365, 377, 750
shortcuts(), 377
show()

CardLayout layout, 269
Component class, 176
Dialog class, 237
PopupMenu class, 383
Window class, 224

showDocument(), 486
showing, component, 175-176
showStatus()

Applet class, 479
AppletContext interface, 487

SINGLEFRAME constant, 436
SINGLEFRAMEDONE constant, 435
single-line input (see text, TextField class)
SINGLEPASS constant, 436
size, 211

applets, 480, 488
audio data length, 490
color map, 421
components, 211-214, 251
cropping images, 465
Dimension class for, 43
font, 68, 70

character width, 76-78

font height, 74-76
HEIGHT, WIDTH parameters

(<APPLET> tag), 997
image, 54, 410, 436
image data, 448
line width, 28
monitor (screen), 499
objects, components for, 166-170
pixel, 415
rectangle, 46-49
scrollbars, 403
string length in pixels, 77
text input objects, 313-314
(see also layouts)

SizedTextField class (example), 328-330
SOMEBITS constant, 411
sources, image, 1015
startGrabbing(), 448
startProduction()

FilteredImageSource class, 425
ImageProducer interface, 423
Memor yImageSource class, 427

start()
Applet class, 479
AudioPlayer class, 492

state
checkbox, 351
checkbox menu items, 373
component, 174-177

STATICIMAGEDONE constant, 435
status

applet, 479, 487
browser status line, 479, 487
image grabbing, 448
loading, 64-65, 411, 500

status(), 448
statusAll(), 65
statusID(), 65
stop()

Applet class, 480
AudioClip interface, 484
AudioPlayer class, 492

strings, 23
pixel length of, 77
StringSelection class, 508, 825
toString() (see toString())
(see also characters)

stringWidth(), 77
style, font (see fonts)

10 July 2002 22:28

substituteColorModel(), 464
sun.awt package, layouts from, 294-302
sync(), 503
synchronization

containers and, 210
image grabbing and, 452

SystemColor class, 87-92, 783

T
target, event, 96, 103

(see also events)
text, 23, 505

color of, 89-90
inserting with carets, 307
read-only, 308
selecting with mouse, 306-307
style of (see fonts)
text strings, 23
TextArea class, 4, 319-328, 790
TextAreaPeer interface, 978
TextComponent class, 305-311, 796
TextComponentPeer interface, 981
TextEvent class, 146, 891
TextField class, 4, 311-319, 328-330, 800
TextFieldPeer interface, 983
TextListener interface, 152, 892
(see also data; fonts)

TEXT_ constants, 146
textHighlight color, 91
textHighlightText color, 91
textInactiveText color, 91
textText color, 91
textValueChanged(), 152
themes, color, 87-92
threads, animation and, 57
throwing errors/exceptions (see errors;

exceptions)
time and date

of events, 103, 133
pause between image repaints, 172

toBack(), 224
toFront(), 224
Toolkit(), 496
Toolkit class, 495-503, 805
TOP_ALIGNMENT constant, 163
TOPDOWNLEFTRIGHT constant, 436
toString(), 131

AWTEvent class, 126
BorderLayout layout, 262

CardLayout layout, 269
CheckboxGroup class, 357
Color class, 87
Component class, 179
Dimension class, 44
Event method, 114
FlowLayout layout, 257
Font class, 73
FontMetrics class, 79
Graphics class, 40
GridBagLayout layout, 277
GridLayout layout, 266
HorizBagLayout layout, 295
Insets class, 220
MenuComponent class, 363
MenuShortcut class, 365
OrientableFlowLayout layout, 302
Point class, 42
Rectangle class, 50
SystemColor class, 92
VariableGridLayout layout, 300
VerticalBagLayout layout, 297
(see also paramString())

TRACK constant, 144
Transferable interface, 505, 828
transferFocus(), 178
translate()

Event method, 114
Graphics class, 39
Point class, 42
Rectangle class, 46, 52

translatePoint(), 140
transparency, 37

U
UndefinedProperty constant, 53
underlining, 69
union(), 48
UNIT_ constants, 143
UnsupportedFlavorException exception,

509, 829
update(), 57

Component class, 21, 170
UPDATE constant, 131
URLImageSource class, 1015
URLs, special, 486
user groups, Java, xxi
useShiftModifier(), 365
UUCP, obtaining examples by, xix

INDEX 1043

10 July 2002 22:28

1044 INDEX

V
validate()

Component class, 175
Container class, 213

validateTree(), 214
validity, component, 174
VALUE parameter (<PARAM> tag), 998
VariableGridLayout layout, 297-300
versions

AWT, xiii, 2
Java, xiii

vertical
alignment (see alignment)
font height, 74-76
gaps (see gap settings)
scrollbars (see scrolling)
size (see size)
VerticalBagLayout layout, 296

visibility
component, 174-176
list items, 343
scrollbar, 324, 388, 400

VK_ constants, 134
VSPACE parameter (<APPLET> tag), 997

W
waitForAll(), 63
waitForID(), 63
Web browsers (see browsers)
when variable, 103
width (see size)
WIDTH parameter (<APPLET> tag), 997
Window(), 222
WINDOW_ constants, 129
Window container, 14
windowActivated(), 153
windowBorder color, 91
windowClosed(), 153
windowClosing(), 107, 153
windowDeactivated(), 153
windowDeiconified(), 107, 153
WindowEvent(), 131
windowIconified(), 107, 153
windowOpened(), 153
windowOpening(), 107
windows, 14, 221-227, 232

BorderLayout layout for, 12, 257-262,
557

colors for, 91

Window class, 222-227, 815
window events, 107
WindowAdapter class, 893
WindowEvent class, 129-131, 895
WindowListener interface, 152, 898
WindowPeer interface, 984
(see also frames)

X
XOR mode, 26

10 July 2002 22:28

