

Java Fundamental Classes Reference

Java Fundamental Classes Reference
By Mark Grand and Jonathan Knudsen; 1-56592-241-7, 1152 pages
1st Edition May 1997

Table of Contents

Preface
Chapter 1: Introduction

Part I: Using the Fundamental Classes

This part of the book, Chapters 2 through 10, provides a brief guide to many of the features of the
fundamental classes in Java. These tutorial-style chapters are meant to help you learn about some of
the basic functionality of the Java API. They provide short examples where appropriate that illustrate
the use of various features.

Chapter 2: Strings and Related Classes
Chapter 3: Threads
Chapter 4: Exception Handling
Chapter 5: Collections
Chapter 6: I/O
Chapter 7: Object Serialization
Chapter 8: Networking
Chapter 9: Security
Chapter 10: Accessing the Environment

Part II: Reference

This part of the book is a complete reference to all of the fundamental classes in the core Java API.
The material is organized alphabetically by package, and within each package, alphabetically by class.
The reference page for a class tells you everything you need to know about using that class. It
provides a detailed description of the class as a whole, followed by a complete description of every
variable, constructor, and method defined by the class.

Chapter 11: The java.io Package
Chapter 12: The java.lang Package
Chapter 13: The java.lang.reflect Package

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index.htm (1 of 2) [9/10/2001 15:57:10]

http://www.ora.com/catalog/javafund/

Java Fundamental Classes Reference

Chapter 14: The java.math Package
Chapter 15: The java.net Package
Chapter 16: The java.text Package
Chapter 17: The java.util Package
Chapter 18: The java.util.zip Package

Part III: Appendixes

This part provides information about the Unicode 2.0 standard and the UTF-8 encoding used by Java.

Appendix A: The Unicode 2.0 Character Set
Appendix B: The UTF-8 Encoding

Index

Search the text of Java Fundamental Classes Reference.

Copyright © 1996, 1997 O'Reilly & Associates. All Rights Reserved.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index.htm (2 of 2) [9/10/2001 15:57:10]

http://rtfm.vn.ua/prog/tech/orb/books/java/fsrch.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/copyrght.htm

Preface

 Preface

Preface
Contents:
What This Book Covers
Organization
Related Books
Online Resources
Conventions Used in This Book
Request for Comments
Acknowledgments

This book is a reference manual for the fundamental classes in the Java programming environment; it
covers version 1.1 of the Java API. We've defined fundamental classes to mean those classes in the
Java Development Kit (JDK) that every Java programmer is likely to need, minus the classes that
comprise the Abstract Window Toolkit (AWT). (The classes in the AWT are covered by a companion
volume, the Java AWT Reference, from O'Reilly & Associates.) Thus, this book covers the classes in
the java.lang and java.io packages, among others, and is essential for the practicing Java
programmer.

This is an exciting time in the development of Java. Version 1.1 introduces a massive amount of
infrastructure that more than doubles the size of the core Java APIs. This new infrastructure provides
many new facilities, such as:

● Java is now more dynamic. An expanded Class class, in conjunction with the new
java.lang.reflect package, allows objects to access methods and variables of objects
that they were not compiled with.

● There are classes in java.io that build on the new dynamic capabilities to provide the ability
to read and write objects as streams of bytes.

● There is increased support for internationalization. The support includes a Locale class and
classes to format and parse data in locale-specific ways. There is also support for loading
external locale-specific resources, such as textual strings.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch00_01.htm (1 of 4) [9/10/2001 15:57:43]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch00_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch00_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch00_03.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch00_04.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch00_05.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch00_06.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch00_07.htm

Preface

● The java.util.zip package provides the ability to read and write compressed files.

● The java.math package provides the ability to perform arithmetic operations to any degree
of precision that is necessary.

There are also more ways to package and distribute Java programs. In addition to being able to build
command-line based applications and applets that are hosted by browsers, we now have the Java
Servelet API that allows Java programs to function as part of a web server. Furthermore, the nature of
applets may be changing. Instead of waiting for large applet to be downloaded by a browser, we now
have push technologies such as Marimba's Castanet that ensure that the most current version of an
applet is already on our machine when we want to run it.

Many new uses for Java have appeared or are on the horizon. For example, NASA is using Java
applets to monitor telemetry data, instead of building more large, dedicated hardware consoles.
Cellular phone manufacturers have committed to making cellular phone models that support Java, so
in the future we may see Java programs that run on cellular phones and allow us to check e-mail or
view location maps. Many additional APIs are also on the way, from Sun and other companies. These
APIs not only supply infrastructure, but also provide frameworks for building domain-specific
applications, in such areas as electronic commerce and manufacturing.

This book is about the classes that provide the most fundamental infrastructure for Java. As you use
this book, we hope that you will share our enthusiasm for the richness of what is provided and the
anticipation of what is yet to come.

What This Book Covers

The Java Fundamental Classes Reference is the definitive resource for programmers working with the
core, non-AWT classes in Java. It covers all aspects of these fundamental classes as of version 1.1.1
of Java. If there are any changes to these classes after 1.1.1 (at least one more patch release is
expected), we will integrate them as soon as possible. Watch the book's web site,
http://www.ora.com/catalog/javafund/, for details on changes.

Specifically, this book completely covers the following packages:

● java.io (1.0 and 1.1)

● java.lang (1.0 and 1.1)

● java.lang.reflect (new in 1.1)

● java.math (new in 1.1)

● java.net (1.0 and 1.1)

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch00_01.htm (2 of 4) [9/10/2001 15:57:43]

http://www.ora.com/catalog/javafund/

Preface

● java.text (new in 1.1)

● java.util (1.0 and 1.1)

● java.util.zip (new in 1.1)

As you can see from the list above, this book covers four packages that are completely new in Java
1.1. In addition, it includes material on all of the new features in the four original 1.0 packages. Here
are the highlights of what is new in Java 1.1:

java.lang

This package contains the new Byte, Short, and Void classes that are needed for the new
Reflection API. The Class class also defines a number of new methods for the Reflection
API. Chapter 12, The java.lang Package, contains reference material on all of the classes in the
java.lang package.

java.io

This package contains a number of new classes, mostly for object serialization and character
streams. Chapter 11, The java.io Package, contains reference material on all of the classes in
the java.io package.

java.net

This package contains a new MulticastSocket class that supports multicast sockets and
several new exception types for more detailed networking exceptions. Chapter 15, The java.net
Package, contains reference material on all of the classes in the java.net package.

java.util

This package includes a handful of new classes for internationalization, such as Locale and
ResourceBundle. The package also defines the base classes that support the new AWT
event model. The new Calendar and TimeZone classes provide increased support for
working with dates and times. Chapter 17, The java.util Package, contains reference material
on all of the classes in the java.util package.

java.lang.reflect

This new package defines classes that implement the bulk of the new Reflection API. The
classes in the package represent the fields, methods, and constructors of a class. Chapter 13,
The java.lang.reflect Package, contains reference material on all of the classes in the
java.lang.reflect package.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch00_01.htm (3 of 4) [9/10/2001 15:57:43]

Preface

java.math

This new package includes two classes that support arithmetic: one with arbitrarily large
integers and another with arbitrary-precision floating-point numbers. Chapter 14, The
java.math Package, contains reference material on all of the classes in the java.math
package.

java.text

This new package contains the majority of the classes that implement the internationalization
capabilities of Java 1.1. It includes classes for formatting dates, times, numbers, and textual
messages for any specified locale. Chapter 16, The java.text Package, contains reference
material on all of the classes in the java.text package.

java.util.zip

This new package defines classes that support general-purpose data compression and
decompression using the ZLIB compression algorithms, as well as classes that work with the
popular GZIP and ZIP formats. Chapter 18, The java.util.zip Package, contains reference
material on all of the classes in the java.util.zip package.

 Organization

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch00_01.htm (4 of 4) [9/10/2001 15:57:43]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch00_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

[Chapter 1] Introduction

Chapter 1

1. Introduction
Contents:
The java.lang Package
The java.lang.reflect Package
The java.io Package
The java.net Package
The java.util Package
The java.text Package
The java.math Package
The java.util.zip Package

The phenomenon that is Java continues to capture new supporters every day. What began as a
programming environment for writing fancy animation applets that could be embedded in web
browsers is growing up to be a sophisticated platform for delivering all kinds of portable, distributed
applications. If you are already an experienced Java programmer, you know just how powerful the
portability of Java is. If you are just now discovering Java, you'll be happy to know that the days of
porting applications are over. Once you write a Java application, it can run on UNIX workstations,
PCs, and Macintosh computers, as well as on many other supported platforms.

This book is a complete programmer's reference to the "fundamental classes" in the Java
programming environment. The fundamental classes in the Java Development Kit (JDK) provide a
powerful set of tools for creating portable applications; they are an important component of the
toolbox used by every Java programmer. This reference covers the classes in the java.lang,
java.io, java.net, java.util, java.lang.reflect, java.math, java.text, and
java.util.zip packages. This chapter offers an overview of the fundamental classes in each of
these packages.

This reference assumes you are already familiar with the Java language and class libraries. If you
aren't, Exploring Java, by Pat Niemeyer and Josh Peck, provides a general introduction, and other
books in the O'Reilly Java series provide detailed references and tutorials on specific topics. Note that
the material herein does not cover the classes that comprise the Abstract Window Toolkit (AWT): the
AWT is covered by a companion volume, the Java AWT Reference, by John Zukowski. In addition,
this book does not cover any of the new "enterprise" APIs in the core 1.1 JDK, such as the classes in

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch01_01.htm (1 of 3) [9/10/2001 15:58:02]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch00_07.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch01_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch01_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch01_03.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch01_04.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch01_05.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch01_06.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch01_07.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch01_08.htm

[Chapter 1] Introduction

the java.rmi, java.sql, and java.security packages. These packages will be covered by
forthcoming books on distributed computing and database programming. See the Preface for a
complete list of titles in the O'Reilly Java series.

You should be aware that this book covers two versions of Java: 1.0.2 and 1.1. Version 1.1 of the Java
Development Kit (JDK) was released in February 1997. This release includes many improvements
and additions to the fundamental Java classes; it represents a major step forward in the evolution of
Java. Although Java 1.1 has a number of great new features, you may not want to switch to the new
version right away, especially if you are writing mostly Java applets. You'll need to keep an eye on the
state of Java support in browsers to help you decide when to switch to Java 1.1. Of course, if you are
writing Java applications, you can take the plunge today.

This chapter points out new features of Java 1.1 as they come up. However, there is one "feature" that
deserves mention that doesn't fit naturally into an overview. As of Java 1.1, classes, methods, and
constructors available in Java 1.0.2 can be deprecated in favor of new classes, methods, and
constructors in Java 1.1. The Java 1.1 compiler issues a warning whenever you use a deprecated
entity.

1.1 The java.lang Package

The java.lang package contains classes and interfaces essential to the Java language. For example,
the Object class is the ultimate superclass of all other classes in Java. Object defines some basic
methods for thread synchronization that are inherited by all Java classes. In addition, Object defines
basic methods for equality testing, hashcode generation, and string conversion that can be overridden
by subclasses when appropriate.

The java.lang package also contains the Thread class, which controls the operation of each
thread in a multithreaded application. A Thread object can be used to start, stop, and suspend a
thread. A Thread must be associated with an object that implements the Runnable interface; the
run() method of this interface specifies what the thread actually does. See Chapter 3, Threads, for a
more detailed explanation of how threads work in Java.

The Throwable class is the superclass of all error and exception classes in Java, so it defines the
basic functionality of all such classes. The java.lang package also defines the standard error and
exception classes in Java. The error and exception hierarchies are rooted at the Error and
Exception subclasses of Throwable. See Chapter 4, Exception Handling, for more information
about the exception-handling mechanism.

The Boolean, Character, Byte, Double, Float, Integer, Long, and Short classes
encapsulate the Java primitive data types. Byte and Short are new in Java 1.1, as is the Void class.
All of these classes are necessary to support the new Reflection API and class literals in Java 1.1 The
Class class also has a number of new methods in Java 1.1 to support reflection.

All strings in Java are represented by String objects. These objects are immutable. The

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch01_01.htm (2 of 3) [9/10/2001 15:58:02]

[Chapter 1] Introduction

StringBuffer class in java.lang can be used to work with mutable text strings. Chapter 2,
Strings and Related Classes, offers a more detailed description of working with strings in Java.

See Chapter 12, The java.lang Package, for complete reference material on all of the classes in the
java.lang package.

Acknowledgments The java.lang.reflect Package

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch01_01.htm (3 of 3) [9/10/2001 15:58:02]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch00_07.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch01_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

[Chapter 2] Strings and Related Classes

Chapter 2

2. Strings and Related Classes
Contents:
String
StringBuffer
String Concatenation
StringTokenizer

As with most programming languages, strings are used extensively throughout Java, so the Java API
has quite a bit of functionality to help you manipulate strings. This chapter describes the following
classes:

● The java.lang.String class represents all textual strings in Java. A String object is
immutable; once you create a String object, there is no way to change the sequence of
characters it represents or the length of the string.

● The java.lang.StringBuffer class represents a variable-length, mutable sequence of
characters. With a StringBuffer object, you can insert characters anywhere in the
sequence and add characters to the end of the sequence.

● The java.util.StringTokenizer class provides support for parsing a string into a
sequence of words, or tokens.

2.1 String

You can create a String object in Java simply by assigning a string literal to a String variable:

String quote = "To be or not to be";

All string literals are compiled into String objects. Although the Java compiler does not generally
treat expressions involving object references as compile-time constants, references to String objects
created from string literals are treated as compile-time constants.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch02_01.htm (1 of 3) [9/10/2001 15:59:03]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch01_08.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch02_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch02_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch02_03.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch02_04.htm

[Chapter 2] Strings and Related Classes

Of course, there are many other ways to create a String object. The String class has a number of
constructors that let you create a String from an array of bytes, an array of characters, another
String object, or a StringBuffer object.

If you are a C or C++ programmer, you may be wondering if String objects are null-terminated.
The answer is no, and, in fact, the question is irrelevant. The String class actually uses a character
array internally. Since arrays in Java are actual objects that know their own length, a String object
also knows its length and does not require a special terminator. Use the length() method to get the
length of a String object.

Although String objects are immutable, the String class does provide a number of useful
methods for working with strings. Any operation that would otherwise change the characters or the
length of the string returns a new String object that copies the necessary portions of the original
String.

The following methods access the contents of a String object:

● substring() creates a new String object that contains a sub-sequence of the sequence of
characters represented by a String object.

● charAt() returns the character at a given position in a String object.

● getChars() and getBytes() return a range of characters in a char array or a byte
array.

● toCharArray() returns the entire contents of a String object as a char array.

You can compare the contents of String objects with the following methods:

● equals() returns true if two String objects have the exact same contents, while
equalsIgnoreCase() returns true if two objects have the same contents ignoring
differences between upper- and lowercase versions of the same character.

● regionMatches() determines if two sub-strings contain the same sequence of characters.

● startsWith() and endsWith() determine if a String object begins or ends with a
particular sequence of characters.

● compareTo() determines if the contents of one String object are less than, equal to, or
greater than the contents of another String object.

Use the following methods to search for characters in a string:

● indexOf() searches forward through a string for a given character or string.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch02_01.htm (2 of 3) [9/10/2001 15:59:03]

[Chapter 2] Strings and Related Classes

● lastIndexOf() searches backwards through a string for a given character or string.

The following methods manipulate the contents of a string and return a new, related string:

● concat() returns a new String object that is the concatenation of two String objects.

● replace() returns a new String object that contains the same sequence of characters as
the original string, but with a given character replaced by another given character.

● toLowerCase() and toUpperCase() return new String objects that contain the same
sequence of characters as the original string, but converted to lower- or uppercase.

● trim() returns a new String object that contains the same character sequence as the
original string, but with leading and trailing white space and control characters removed.

The String class also defines a number of static methods named valueOf() that return string
representations of primitive Java data types and objects. The Object class defines a toString()
method, and, since Object is the ultimate superclass of every other class, every class inherits a basic
toString() method. Any class that has a string representation should override the toString()
method to produce the appropriate string.

The java.util.zip Package StringBuffer

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch02_01.htm (3 of 3) [9/10/2001 15:59:03]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch01_08.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch02_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

[Chapter 3] Threads

Chapter 3

3. Threads
Contents:
Using Thread Objects
Synchronizing Multiple Threads

Threads provide a way for a Java program to do multiple tasks concurrently. A thread is essentially a
flow of control in a program and is similar to the more familiar concept of a process. An operating
system that can run more than one program at the same time uses processes to keep track of the
various programs that it is running. However, processes generally do not share any state, while
multiple threads within the same application share much of the same state. In particular, all of the
threads in an application run in the same address space, sharing all resources except the stack. In
concrete terms, this means that threads share field variables, but not local variables.

When multiple processes share a single processor, there are times when the operating system must
stop the processor from running one process and start it running another process. The operating
system must execute a sequence of events called a context switch to transfer control from one process
to another. When a context switch occurs, the operating system has to save a lot of information for the
process that is being paused and load the comparable information for the process being resumed. A
context switch between two processes can require the execution of thousands of machine instructions.
The Java virtual machine is responsible for handling context switches between threads in a Java
program. Because threads share much of the same state, a context switch between two threads
typically requires the execution of less than 100 machine instructions.

There are a number of situations where it makes sense to use threads in a Java program. Some
programs must be able to engage in multiple activities and still be able to respond to additional input
from the user. For example, a web browser should be able to respond to user input while fetching an
image or playing a sound. Because threads can be suspended and resumed, they can make it easier to
control multiple activities, even if the activities do not need to be concurrent. If a program models real
world objects that display independent, autonomous behavior, it makes sense to use a separate thread
for each object. Threads can also implement asynchronous methods, so that a calling method does not
have to wait for the method it calls to complete before continuing with its own activity.

Java applets make considerable use of threads. For example, an animation is generally implemented
with a separate thread. If an applet has to download extensive information, such as an image or a

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch03_01.htm (1 of 7) [9/10/2001 15:59:31]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch02_04.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch03_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch03_02.htm

[Chapter 3] Threads

sound, to initialize itself, the initialization can take a long time. This initialization can be done in a
separate thread to prevent the initialization from interfering with the display of the applet. If an applet
needs to process messages from the network, that work generally is done in a separate thread so that
the applet can continue painting itself on the screen and responding to mouse and keyboard events. In
addition, if each message is processed separately, the applet uses a separate thread for each message.

For all of the reasons there are to use threads, there are also some compelling reasons not to use them.
If a program uses inherently sequential logic, where one operation starts another operation and then
must wait for the other operation to complete before continuing, one thread can implement the entire
sequence. Using multiple threads in such a case results in a more complex program with no
accompanying benefits. There is considerable overhead in creating and starting a thread, so if an
operation involves only a few primitive statements, it is faster to handle it with a single thread. This
can even be true when the operation is conceptually asynchronous. When multiple threads share
objects, the objects must use synchronization mechanisms to coordinate thread access and maintain
consistent state. Synchronization mechanisms add complexity to a program, can be difficult to tune
for optimal performance, and can be a source of bugs.

3.1 Using Thread Objects

The Thread class in the java.lang package creates and controls threads in Java programs. The
execution of Java code is always under the control of a Thread object. The Thread class provides a
static method called currentThread() that provides a reference to the Thread object that
controls the current thread of execution.

Associating a Method with a Thread

The first thing you need to do to make a Thread object useful is to associate it with a method you
want it to run. Java provides two ways of associating a method with a Thread:

● Declare a subclass of Thread that defines a run() method.

● Pass a reference to an object that implements the Runnable interface to a Thread
constructor.

For example, if you need to load the contents of a URL as part of an applet's initialization, but the
applet can provide other functionality before the content is loaded, you might want to load the content
in a separate thread. Here is a class that does just that:

import java.net.URL;
class UrlData extends Thread {
 private Object data;
 private URL url
 public UrlData(String urlName) throws MalformedURLException {
 url = new URL(urlName);

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch03_01.htm (2 of 7) [9/10/2001 15:59:31]

[Chapter 3] Threads

 start();
 }
 public void run(){
 try {
 data = url.getContent();
 } catch (java.io.IOException e) {
 }
 }
 public Object getUrlData(){
 return data;
 }
}

The UrlData class is declared as a subclass of Thread so that it can get the contents of the URL in
a separate thread. The constructor creates a java.net.URL object to fetch the contents of the URL,
and then calls the start() method to start the thread. Once the thread is started, the constructor
returns; it does not wait for the contents of the URL to be fetched. The run() method is executed
after the thread is started; it does the real work of fetching the data. The getUrlData() method is
an access method that returns the value of the data variable. The value of this variable is null until
the contents of the URL have been fetched, at which time it contains a reference to the actual data.

Subclassing the Thread class is convenient when the method you want to run in a separate thread
does not need to belong to a particular class. Sometimes, however, you need the method to be part of a
particular class that is a subclass of a class other than Thread. Say, for example, you want a
graphical object that is displayed in a window to alternate its background color between red and blue
once a second. The object that implements this behavior needs to be a subclass of the
java.awt.Canvas class. However, at the same time, you need a separate thread to alternate the
color of the object once a second.

In this situation, you want to tell a Thread object to run code in another object that is not a subclass
of the Thread class. You can accomplish this by passing a reference to an object that implements the
Runnable interface to the constructor of the Thread class. The Runnable interface requires that
an object has a public method called run() that takes no arguments. When a Runnable object is
passed to the constructor of the Thread class, it creates a Thread object that calls the Runnable
object's run() method when the thread is started. The following example shows part of the code that
implements an object that alternates its background color between red and blue once a second:

class AutoColorChange extends java.awt.Canvas implements Runnable {
 private Thread myThread;
 AutoColorChange () {
 myThread = new Thread(this);
 myThread.start();
 ...
 }
 public void run() {
 while (true) {

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch03_01.htm (3 of 7) [9/10/2001 15:59:31]

[Chapter 3] Threads

 setBackground(java.awt.Color.red);
 repaint();
 try {
 myThread.sleep(1000);
 } catch (InterruptedException e) {}
 setBackground(java.awt.Color.blue);
 repaint();
 try {
 myThread.sleep(1000);
 } catch (InterruptedException e) {}
 }
 }
}

The AutoChangeColor class extends java.awt.Canvas, alternating the background color
between red and blue once a second. The constructor creates a new Thread by passing the current
object to the Thread constructor, which tells the Thread to call the run() method in the
AutoChangeColor class. The constructor then starts the new thread by calling its start()
method, so that the color change happens asynchronously of whatever else is going on. The class has
an instance variable called myThread that contains a reference to the Thread object, so that can
control the thread. The run() method takes care of changing the background color, using the
sleep() method of the Thread class to temporarily suspend the thread and calling repaint() to
redisplay the object after each color change.

Controlling a Thread

As shown in the previous section, you start a Thread by calling its start() method. Before the
start() method is called, the isAlive() method of the Thread object always returns false.
When the start() method is called, the Thread object becomes associated with a scheduled
thread in the underlying environment. After the start() method has returned, the isAlive()
method always returns true. The Thread is now scheduled to run until it dies, unless it is
suspended or in another unrunnable state.

It is actually possible for isAlive() to return true before start() returns, but not before
start() is called. This can happen because the start() method can return either before the
started Thread begins to run or after it begins to run. In other words, the method that called
start() and the new thread are now running concurrently. On a multiprocessor system, the
start() method can even return at the same time the started Thread begins to run.

Thread objects have a parent-child relationship. The first thread created in a Java environment does
not have a parent Thread. However, after the first Thread object is created, the Thread object
that controls the thread used to create another Thread object is considered to be the parent of the
newly created Thread. This parent-child relationship is used to supply some default values when a
Thread object is created, but it has no further significance after a Thread has been created.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch03_01.htm (4 of 7) [9/10/2001 15:59:31]

[Chapter 3] Threads

Stopping a thread

A thread dies when one of the following things happens:

● The run() method called by the Thread returns.

● An exception is thrown that causes the run() method to be exited.

● The stop() method of the Thread is called.

The stop() method of the Thread class works by throwing a ThreadDeath object in the run()
method of the thread. Normally, you should not catch ThreadDeath objects in a try statement. If
you need to catch ThreadDeath objects to detect that a Thread is about to die, the try statement
that catches ThreadDeath objects should rethrow them.

When an object (ThreadDeath or otherwise) is thrown out of the run() method for the Thread,
the uncaughtException() method of the ThreadGroup for that Thread is called. If the
thrown object is an instance of the ThreadDeath class, the thread dies, and the thrown object is
ignored. Otherwise, if the thrown object is of any other class, uncaughtException() calls the
thrown object's printStackTrace() method, the thread dies, and the thrown object is ignored. In
either case, if there are other nondaemon threads running in the system, the current program continues
to run.

Interrupting a thread

There are a number of methods in the Java API, such as wait() and join(), that are declared as
throwing an InterruptedException. What these methods have in common is that they
temporarily suspend the execution of a thread. In Java 1.1, if a thread is waiting for one of these
methods to return and another thread calls interrupt() on the waiting thread, the method that is
waiting throws an InterruptedException.

The interrupt() method sets an internal flag in a Thread object. Before the interrupt()
method is called, the isInterrupted() method of the Thread object always returns false.
After the interrupt() method is called, isInterrupted() returns true.

Prior to version 1.1, the methods in the Java API that are declared as throwing an
InterruptedException do not actually do so. However, the isInterrupted() method does
function as described above. Thus, if the code in the run() method for a thread periodically calls
isInterrupted(), the thread can respond to a call to interrupt() by shutting down in an
orderly fashion.

Thread priority

One of the attributes that controls the behavior of a thread is its priority. Although Java does not

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch03_01.htm (5 of 7) [9/10/2001 15:59:31]

[Chapter 3] Threads

guarantee much about how threads are scheduled, it does guarantee that a thread with a priority that is
higher than that of another thread will be scheduled to run at least as often, and possibly more often,
than the thread with the lower priority. The priority of a thread is set when the Thread object is
created, by passing an argument to the constructor that creates the Thread object. If an explicit
priority is not specified, the Thread inherits the priority of its parent Thread object.

You can query the priority of a Thread object by calling its getPriority() method. Similarly,
you can set the priority of a Thread using its setPriority() method. The priority you specify
must be greater than or equal to Thread.MIN_PRIORITY and less than or equal to
Thread.MAX_PRIORITY.

Before actually setting the priority of a Thread object, the setPriority() method checks the
maximum allowable priority for the ThreadGroup that contains the Thread by calling
getMaxPriority() on the ThreadGroup. If the call to setPriority() tries to set the
priority to a value that is higher than the maximum allowable priority for the ThreadGroup, the
priority is instead set to the maximum priority. It is possible for the current priority of a Thread to be
greater than the maximum allowable priority for the ThreadGroup. In this case, an attempt to raise
the priority of the Thread results in its priority being lowered to the maximum priority.

Daemon threads

A daemon thread is a thread that runs continuously to perform a service, without having any
connection with the overall state of the program. For example, the thread that runs the garbage
collector in Java is a daemon thread. The thread that processes mouse events for a Java program is
also a daemon thread. In general, threads that run application code are not daemon threads, and
threads that run system code are daemon threads. If a thread dies and there are no other threads except
daemon threads alive, the Java virtual machine stops.

A Thread object has a boolean attribute that specifies whether or not a thread is a daemon thread.
The daemon attribute of a thread is set when the Thread object is created, by passing an argument to
the constructor that creates the Thread object. If the daemon attribute is not explicitly specified, the
Thread inherits the daemon attribute of its parent Thread object.

The daemon attribute is queried using the isDaemon() method; it is set using the setDaemon()
method.

Yielding

When a thread has nothing to do, it can call the yield() method of its Thread object. This method
tells the scheduler to run a different thread. The value of calling yield() depends largely on
whether the scheduling mechanism for the platform on which the program is running is preemptive or
nonpreemptive.

By choosing a maximum length of time a thread can continuously, a preemptive scheduling
mechanism guarantees that no single thread uses more than its fair share of the processor. If a thread

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch03_01.htm (6 of 7) [9/10/2001 15:59:31]

[Chapter 3] Threads

runs for that amount of time without yielding control to another thread, the scheduler preempts the
thread and causes it to stop running so that another thread can run.

A nonpreemptive scheduling mechanism cannot preempt threads. A nonpreemptive scheduler relies
on the individual threads to yield control of the processor frequently, so that it can provide reasonable
performance. A thread explicitly yields control by calling the Thread object's yield() method.
More often, however, a thread implicitly yields control when it is forced to wait for something to
happen elsewhere.

Calling a Thread object's yield() method during a lengthy computation can be quite valuable on
a platform that uses a nonpreemptive scheduling mechanism, as it allows other threads to run.
Otherwise, the lengthy computation can prevent other threads from running. On a platform that uses a
preemptive scheduling mechanism, calling yield() does not usually make any noticeable
difference in the responsiveness of threads.

Regardless of the scheduling algorithm that is being used, you should not make any assumptions
about when a thread will be scheduled to run again after it has called yield(). If you want to
prevent a thread from being scheduled to run until a specified amount of time has elapsed, you should
call the sleep() method of the Thread object. The sleep() method takes an argument that
specifies a minimum number of milliseconds that must elapse before the thread can be scheduled to
run again.

Controlling groups of threads

Sometimes is it necessary to control multiple threads at the same time. Java provides the
ThreadGroup class for this purpose. Every Thread object belongs to a ThreadGroup object. By
passing an argument to the constructor that creates the Thread object, the ThreadGroup of a
thread can be set when the Thread object is created. If an explicit ThreadGroup is not specified,
the Thread belongs to the same ThreadGroup as its parent Thread object.

StringTokenizer Synchronizing Multiple
Threads

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch03_01.htm (7 of 7) [9/10/2001 15:59:31]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch02_04.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch03_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

[Chapter 4] Exception Handling

Chapter 4

4. Exception Handling
Contents:
Handling Exceptions
Declaring Exceptions
Generating Exceptions

Exception handling is a mechanism that allows Java programs to handle various exceptional
conditions, such as semantic violations of the language and program-defined errors, in a robust way.
When an exceptional condition occurs, an exception is thrown. If the Java virtual machine or run-time
environment detects a semantic violation, the virtual machine or run-time environment implicitly
throws an exception. Alternately, a program can throw an exception explicitly using the throw
statement. After an exception is thrown, control is transferred from the current point of execution to
an appropriate catch clause of an enclosing try statement. The catch clause is called an
exception handler because it handles the exception by taking whatever actions are necessary to
recover from it.

4.1 Handling Exceptions

The try statement provides Java's exception-handling mechanism. A try statement contains a block
of code to be executed. Putting a block in a try statement indicates that any exceptions or other
abnormal exits in the block are going to be handled appropriately. A try statement can have any
number of optional catch clauses that act as exception handlers for the try block. A try statement
can also have a finally clause. The finally block is always executed before control leaves the
try statement; it cleans up after the try block. Note that a try statement must have either a catch
clause or a finally clause.

Here is an example of a try statement that includes a catch clause and a finally clause:

try {
 out.write(b);
} catch (IOException e) {
 System.out.println("Output Error");
} finally {

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch04_01.htm (1 of 2) [9/10/2001 15:59:41]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch03_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch04_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch04_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch04_03.htm

[Chapter 4] Exception Handling

 out.close();
}

If out.write() throws an IOException, the exception is caught by the catch clause.
Regardless of whether out.write() returns normally or throws an exception, the finally block
is executed, which ensures that out.close() is always called.

A try statement executes the block that follows the keyword try. If an exception is thrown from
within the try block and the try statement has any catch clauses, those clauses are searched, in
order, for one that can handle the exception. If a catch clause handles an exception, that catch
block is executed.

However, if the try statement does not have any catch clauses that can handle the exception (or
does not have any catch clauses at all), the exception propagates up through enclosing statements in
the current method. If the current method does not contain a try statement that can handle the
exception, the exception propagates up to the invoking method. If this method does not contain an
appropriate try statement, the exception propagates up again, and so on. Finally, if no try statement
is found to handle the exception, the currently running thread terminates.

A catch clause is declared with a parameter that specifies the type of exception it can handle. The
parameter in a catch clause must be of type Throwable or one of its subclasses. When an
exception occurs, the catch clauses are searched for the first one with a parameter that matches the
type of the exception thrown or is a superclass of the thrown exception. When the appropriate catch
block is executed, the actual exception object is passed as an argument to the catch block. The code
within a catch block should do whatever is necessary to handle the exceptional condition.

The finally clause of a try statement is always executed, no matter how control leaves the try
statement. Thus it is a good place to handle clean-up operations, such as closing files, freeing
resources, and closing network connections.

Synchronizing Multiple
Threads

Declaring Exceptions

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch04_01.htm (2 of 2) [9/10/2001 15:59:41]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch03_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch04_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

[Chapter 5] Collections

Chapter 5

5. Collections
Contents:
Enumerations
Vectors
Stacks
Hashtables

Java provides a number of utility classes that help you to manage a collection of objects. These
collection classes allow you to work with objects without regard to their types, so they can be
extremely useful for managing objects at a high level of abstraction. This chapter describes the
following collection classes:

● The java.util.Vector class, which represents a dynamic array of objects.

● The java.util.Stack class, which represents a dynamic stack of objects.

● The java.util.Dictionary class, which is an abstract class that manages a
collection of objects by associating a key with each object.

● The java.util.Hashtable class, which is a subclass of java.util.Dictionary
that implements a specific algorithm to associate keys with objects. Given a key, a
Hashtable can retrieve the associated object with little or no searching.

● The java.util.Enumeration interface, which supports sequential access to a set of
elements.

5.1 Enumerations

The Enumeration interface is implemented by classes that provide serial access to a set of
elements, or objects, in a collection. An object that implements the Enumeration interface provides
two methods for dealing with the set: nextElement() and hasMoreElements(). The
nextElement() method returns a value of type Object, so it can be used with any kind of

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch05_01.htm (1 of 2) [9/10/2001 15:59:56]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch04_03.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch05_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch05_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch05_03.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch05_04.htm

[Chapter 5] Collections

collection. When you remove an object from an Enumeration, you may need to cast the object to
the appropriate type before using it. You can iterate through the elements in an Enumeration only
once; there is no way to reset it to the beginning or move backwards through the elements.

Here is an example that prints the contents of an object the implements the Enumeration interface:

static void printEnumeration(Enumeration e) {
 while (e.hasMoreElements()) {
 System.out.println(e.nextElement());
 }

Note that the above method is able to print all of the objects in the Enumeration without knowing
their class types because the println() method handles objects of any type.

A number of classes in the Java API provide a method that returns a reference to an Enumeration
object, rather than implementing the Enumeration interface directly. For example, as you'll see
shortly, the Vector class provides an elements() method that returns an Enumeration of the
objects in a Vector object.

Generating Exceptions Vectors

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch05_01.htm (2 of 2) [9/10/2001 15:59:56]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch04_03.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch05_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

[Chapter 6] I/O

Chapter 6

6. I/O
Contents:
Input Streams and Readers
Output Streams and Writers
File Manipulation

The java.io package contains the fundamental classes for performing input and output operations in Java. These
I/O classes can be divided into four basic groups:

● Classes for reading input from a stream.

● Classes for writing output to a stream.

● Classes for manipulating files.

● Classes for serializing objects.

All fundamental I/O in Java is based on streams. A stream represents a flow of data, or a channel of communication.
Conceptually, there is a reading process at one end of the stream and a writing process at the other end. Java 1.0
supported only byte streams, which meant that Unicode characters were not always handled correctly. As of Java
1.1, there are classes in java.io for both byte streams and character streams. The character stream classes, which
are called readers and writers, handle Unicode characters appropriately.

The rest of this chapter describes the classes in java.io that read from and write to streams, as well as the classes
that manipulate files. The classes for serializing objects are described in Chapter 7, Object Serialization.

6.1 Input Streams and Readers

The InputStream class is an abstract class that defines methods to read sequentially from a stream of bytes.
Java provides subclasses of the InputStream class for reading from files, StringBuffer objects, and byte
arrays, among other things. Other subclasses of InputStream can be chained together to provide additional logic,
such as keeping track of the current line number or combining multiple input sources into one logical input stream.
It is also easy to define a subclass of InputStream that reads from any other kind of data source.

In Java 1.1, the Reader class is an abstract class that defines methods to read sequentially from a stream of
characters. Many of the byte-oriented InputStream subclasses have character-based Reader counterparts. Thus,
there are subclasses of Reader for reading from files, character arrays, and String objects.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch06_01.htm (1 of 9) [9/10/2001 16:00:15]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch05_04.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch06_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch06_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch06_03.htm

[Chapter 6] I/O

InputStream

The InputStream class is the abstract superclass of all other byte input stream classes. It defines three
read() methods for reading from a raw stream of bytes:

read()
read(byte[] b)
read(byte[] b, int off, int len)

If there is no data available to read, these methods block until input is available. The class also defines an
available() method that returns the number of bytes that can be read without blocking and a skip() method
that skips ahead a specified number of bytes. The InputStream class defines a mechanism for marking a position
in the stream and returning to it later, via the mark() and reset() methods. The markSupported() method
returns true in subclasses that support these methods.

Because the InputStream class is abstract, you cannot create a "pure" InputStream. However, the
various subclasses of InputStream can be used interchangeably. For example, methods often take an
InputStream as a parameter. Such a method accepts any subclass of InputStream as an argument.

InputStream is designed so that read(byte[]) and read(byte[], int, int) both call read(). Thus,
when you subclass InputStream, you only need to define the read() method. However, for efficiency's sake,
you should also override read(byte[], int, int) with a method that can read a block of data more efficiently
than reading each byte separately.

Reader

The Reader class is the abstract superclass of all other character input stream classes. It defines nearly the
same methods as InputStream, except that the read() methods deal with characters instead of bytes:

read()
read(char[] cbuf)
read(char[] cbuf, int off, int len)

The available() method of InputStream has been replaced by the ready() method of Reader, which
simply returns a flag that indicates whether or not the stream must block to read the next character.

Reader is designed so that read() and read(char[]) both call read(char[], int, int). Thus, when
you subclass Reader, you only need to define the read(char[], int, int) method. Note that this design is
different from, and more efficient than, that of InputStream.

InputStreamReader

The InputStreamReader class serves as a bridge between InputStream objects and Reader objects.
Although an InputStreamReader acts like a character stream, it gets its input from an underlying byte stream
and uses a character encoding scheme to translate bytes into characters. When you create an
InputStreamReader, specify the underlying InputStream and, optionally, the name of an encoding scheme.
For example, the following code fragment creates an InputStreamReader that reads characters from a file that
is encoded using the ISO 8859-5 encoding:

String fileName = "encodedfile.txt"; String encodingName = "8859_5";

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch06_01.htm (2 of 9) [9/10/2001 16:00:15]

[Chapter 6] I/O

InputStreamReader in;
try {
 x FileInputStream fileIn = new FileInputStream(fileName);
 in = new InputStreamReader(fileIn, encodingName);
} catch (UnsupportedEncodingException e1) {
 System.out.println(encodingName + " is not a supported encoding scheme.");
} catch (IOException e2) {
 System.out.println("The file " + fileName + " could not be opened.");
}

FileInputStream and FileReader

The FileInputStream class is a subclass of InputStream that allows a stream of bytes to be read from a file.
The FileInputStream class has no explicit open method. Instead, the file is implicitly opened, if appropriate,
when the FileInputStream is created. There are three ways to create a FileInputStream:

● You can create a FileInputStream by passing the name of a file to be read:

FileInputStream f1 = new FileInputStream("foo.txt");

● You can create a FileInputStream with a File object:

File f = new File("foo.txt");
FileInputStream f2 = new FileInputStream(f);

● You can create a FileInputStream with a FileDescriptor object. A FileDescriptor object
encapsulates the native operating system's representation of an open file. You can get a FileDescriptor
from a RandomAccessFile by calling its getFD() method. You create a FileInputStream that
reads from the open file associated with a RandomAccessFile as follows:

RandomAccessFile raf;
raf = new RandomAccessFile("z.txt","r");
FileInputStream f3 = new FileInputStream(raf.getFD());

The FileReader class is a subclass of Reader that reads a stream of characters from a file. The bytes in
the file are converted to characters using the default character encoding scheme. If you do not want to use the
default encoding scheme, you need to wrap an InputStreamReader around a FileInputStream, as
shown above. You can create a FileReader from a filename, a File object, or a FileDescriptor
object, as described above for FileInputStream.

StringReader and StringBufferInputStream

The StringReader class is a subclass of Reader that gets its input from a String object. The
StringReader class supports mark-and-reset functionality via the mark() and reset() methods. The
following example shows the use of StringReader:

StringReader sr = new StringReader("abcdefg");
try {
 char[] buffer = new char[3];
 sr.read(buffer);

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch06_01.htm (3 of 9) [9/10/2001 16:00:15]

[Chapter 6] I/O

 System.out.println(buffer);
} catch (IOException e) {
 System.out.println("There was an error while reading.");
}

This code fragment produces the following output:

abc

The StringBufferInputStream class is the byte-based relative of StringReader. The entire class is
deprecated as of Java 1.1 because it does not properly convert the characters of the string to a byte stream; it simply
chops off the high eight bits of each character. Although the markSupported() method of
StringBufferInputStream returns false, the reset() method causes the next read operation to read
from the beginning of the String.

CharArrayReader and ByteArrayInputStream

The CharArrayReader class is a subclass of Reader that reads a stream of characters from an array of
characters. The CharArrayReader class supports mark-and-reset functionality via the mark() and reset()
methods. You can create a CharArrayReader by passing a reference to a char array to a constructor like this:

char[] c;
...
CharArrayReader r;
r = new CharArrayReader(c);

You can also create a CharArrayReader that only reads from part of an array of characters by passing an offset
and a length to the constructor. For example, to create a CharArrayReader that reads elements 5 through 24 of a
char array you would write:

r = new CharArrayReader(c, 5, 20);

The ByteArrayInputStream class is just like CharArrayReader, except that it deals with bytes instead of
characters. In Java 1.0, ByteArrayInputStream did not fully support mark() and reset(); in Java 1.1
these methods are completely supported.

PipedInputStream and PipedReader

The PipedInputStream class is a subclass of InputStream that facilitates communication between threads.
Because it reads bytes written by a connected PipedOutputStream, a PipedInputStream must be
connected to a PipedOutputStream to be useful. There are a few ways to connect a PipedInputStream to
a PipedOutputStream. You can first create the PipedOutputStream and pass it to the
PipedInputStream constructor like this:

PipedOutputStream po = new PipedOutputStream();
PipedInputStream pi = new PipedInputStream(po);

You can also create the PipedInputStream first and pass it to the PipedOutputStream constructor like
this:

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch06_01.htm (4 of 9) [9/10/2001 16:00:15]

[Chapter 6] I/O

PipedInputStream pi = new PipedInputStream();
PipedOutputStream po = new PipedOutputStream(pi);

The PipedInputStream and PipedOutputStream classes each have a connect() method you can use to
explicitly connect a PipedInputStream and a PipedOutputStream as follows:

PipedInputStream pi = new PipedInputStream();
PipedOutputStream po = new PipedOutputStream();
pi.connect(po);

Or you can use connect() as follows:

PipedInputStream pi = new PipedInputStream();
PipedOutputStream po = new PipedOutputStream();
po.connect(pi);

Multiple PipedOutputStream objects can be connected to a single PipedInputStream at one time, but the
results are unpredictable. If you connect a PipedOutputStream to an already connected
PipedInputStream, any unread bytes from the previously connected PipedOutputStream are lost. Once
the two PipedOutputStream objects are connected, the PipedInputStream reads bytes written by either
PipedOutputStream in the order that it receives them. The scheduling of different threads may vary from one
execution of the program to the next, so the order in which the PipedInputStream receives bytes from multiple
PipedOutputStream objects can be inconsistent.

The PipedReader class is the character-based equivalent of PipedInputStream. It works in the same way,
except that a PipedReader is connected to a PipedWriter to complete the pipe, using either the appropriate
constructor or the connect() method.

FilterInputStream and FilterReader

The FilterInputStream class is a wrapper class for InputStream objects. Conceptually, an object that
belongs to a subclass of FilterInputStream is wrapped around another InputStream object. The
constructor for this class requires an InputStream. The constructor sets the object's in instance variable to
reference the specified InputStream, so from that point on, the FilterInputStream is associated with the
given InputStream. All of the methods in FilterInputStream work by calling the corresponding methods
in the underlying InputStream. Because the close() method of a FilterInputStream calls the
close() method of the InputStream that it wraps, you do not need to explicitly close the underlying
InputStream.

A FilterInputStream does not add any functionality to the object that it wraps, so by itself it is not very
useful. However, subclasses of the FilterInputStream class do add functionality to the objects that they wrap
in two ways:

● Some subclasses add logic to the InputStream methods. For example, the InflaterInputStream
class in the java.util.zip package decompresses data automatically in the read() methods.

● Some subclasses add new methods. An example is DataInputStream, which provides methods for
reading primitive Java data types from the stream.

The FilterReader class is the character-based equivalent of FilterInputStream. A FilterReader is
wrapped around an underlying Reader object; the methods of FilterReader call the corresponding methods of

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch06_01.htm (5 of 9) [9/10/2001 16:00:15]

[Chapter 6] I/O

the underlying Reader. However, unlike FilterInputStream, FilterReader is an abstract class, so
you cannot instantiate it directly.

DataInputStream

The DataInputStream class is a subclass of FilterInputStream that provides methods for reading a
variety of data types. The DataInputStream class implements the DataInput interface, so it defines methods
for reading all of the primitive Java data types.

You create a DataInputStream by passing a reference to an underlying InputStream to the constructor.
Here is an example that creates a DataInputStream and uses it to read an int that represents the length of an
array and then to read the array of long values:

long[] readLongArray(InputStream in) throws IOException {
 DataInputStream din = new DataInputStream(in);
 int count = din.readInt();
 long[] a = new long[count];
 for (int i = 0; i < count; i++) {
 a[i] = din.readLong();
 }
 return a;
}

BufferedReader and BufferedInputStream

The BufferedReader class is a subclass of Reader that buffers input from an underlying Reader. A
BufferedReader object reads enough characters from its underlying Reader to fill a relatively large buffer,
and then it satisfies read operations by supplying characters that are already in the buffer. If most read operations
read just a few characters, using a BufferedReader can improve performance because it reduces the number of
read operations that the program asks the operating system to perform. There is generally a measurable overhead
associated with each call to the operating system, so reducing the number of calls into the operating system
improves performance. The BufferedReader class supports mark-and-reset functionality via the mark() and
reset() methods.

Here is an example that shows how to create a BufferedReader to improve the efficiency of reading from a file:

try {
 FileReader fileIn = new FileReader("data.dat");
 BufferedReader in = new BufferedReader(fileIn);
 // read from the file
} catch (IOException e) {
 System.out.println(e);
}

The BufferedInputStream class is the byte-based counterpart of BufferedReader. It works in the same
way as BufferedReader, except that it buffers input from an underlying InputStream.

LineNumberReader and LineNumberInputStream

The LineNumberReader class is a subclass of BufferedReader. Its read() methods contain additional

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch06_01.htm (6 of 9) [9/10/2001 16:00:15]

[Chapter 6] I/O

logic to count end-of-line characters and thereby maintain a line number. Since different platforms use different
characters to represent the end of a line, LineNumberReader takes a flexible approach and recognizes "\n",
"\r", or "\r\n" as the end of a line. Regardless of the end-of-line character it reads, LineNumberReader
returns only "\n" from its read() methods.

You can create a LineNumberReader by passing its constructor a Reader. The following example prints out
the first five lines of a file, with each line prefixed by its number. If you try this example, you'll see that the line
numbers begin at 0 by default:

try {
 FileReader fileIn = new FileReader("text.txt");
 LineNumberReader in = new LineNumberReader(fileIn);
 for (int i = 0; i < 5; i++)
 System.out.println(in.getLineNumber() + " " + in.readLine());
}catch (IOException e) {
 System.out.println(e);
}

The LineNumberReader class has two methods pertaining to line numbers. The getLineNumber() method
returns the current line number. If you want to change the current line number of a LineNumberReader, use
setLineNumber(). This method does not affect the stream position; it merely sets the value of the line number.

The LineNumberInputStream is the byte-based equivalent of LineNumberReader. The entire class is
deprecated in Java 1.1 because it does not convert bytes to characters properly. Apart from the conversion problem,
LineNumberInputStream works the same as LineNumberReader, except that it takes its input from an
InputStream instead of a Reader.

SequenceInputStream

The SequenceInputStream class is used to sequence together multiple InputStream objects. Consider this
example:

FileInputStream f1 = new FileInputStream("data1.dat");
FileInputStream f2 = new FileInputStream("data2.dat");
SequenceInputStream s = new SequenceInputStream(f1, f2);

This example creates a SequenceInputStream that reads all of the bytes from f1 and then reads all of the
bytes from f2 before reporting that it has encountered the end of the stream. You can also cascade
SequenceInputStream object themselves, to allow more than two input streams to be read as if they were one.
You would write it like this:

FileInputStream f3 = new FileInputStream("data3.dat");
SequenceInputStream s2 = new SequenceInputStream(s, f3);

The SequenceInputStream class has one other constructor that may be more appropriate for wrapping more
than two InputStream objects together. It takes an Enumeration of InputStream objects as its argument.
The following example shows how to create a SequenceInputStream in this manner:

Vector v = new Vector();
v.add(new FileInputStream("data1.dat"));
v.add(new FileInputStream("data2.dat"));

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch06_01.htm (7 of 9) [9/10/2001 16:00:15]

[Chapter 6] I/O

v.add(new FileInputStream("data3.dat"));
Enumeration e = v.elements();
SequenceInputStream s = new SequenceInputStream(e);

PushbackInputStream and PushbackReader

The PushbackInputStream class is a FilterInputStream that allows data to be pushed back into the
input stream and reread by the next read operation. This functionality is useful for implementing things like parsers
that need to read data and then return it to the input stream. The Java 1.0 version of PushbackInputStream
supported only a one-byte pushback buffer; in Java 1.1 this class has been enhanced to support a larger pushback
buffer.

To create a PushbackInputStream, pass an InputStream to its constructor like this:

FileInputStream ef = new FileInputStream("expr.txt");
PushbackInputStream pb = new PushbackInputStream(ef);

This constructor creates a PushbackInputStream that uses a default one-byte pushback buffer. When you have
data that you want to push back into the input stream to be read by the next read operation, you pass the data to one
of the unread() methods.

The PushbackReader class is the character-based equivalent of PushbackInputStream. In the following
example, we create a PushbackReader with a pushback buffer of 48 characters:

FileReader fileIn = new FileReader("expr.txt");
PushbackReader in = new PushbackReader(fileIn, 48);

Here is an example that shows the use of a PushbackReader:

public String readDigits(PushbackReader pb) {
 char c;
 StringBuffer buffer = new StringBuffer();
 try {
 while (true) {
 c = (char)pb.read();
 if (!Character.isDigit(c))
 break;
 buffer.append(c);
 }
 if (c != -1)
 pb.unread(c);
 }catch (IOException e) {}
 return buffer.toString();
}

The above example shows a method that reads characters corresponding to digits from a PushbackReader.
When it reads a character that is not a digit, it calls the unread() method so that the nondigit can be read by the
next read operation. It then returns a string that contains the digits that were read.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch06_01.htm (8 of 9) [9/10/2001 16:00:15]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch05_04.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch06_02.htm

[Chapter 6] I/O

Hashtables Output Streams and Writers

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch06_01.htm (9 of 9) [9/10/2001 16:00:15]

http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch07_01.htm

Chapter 7

7. Object Serialization
Contents:
Object Serialization Basics
Writing Classes to Work with Serialization
Versioning of Classes

The object serialization mechanism in Java 1.1 provides a way for objects to be written as a stream of
bytes and then later recreated from that stream of bytes. This facility supports a variety of interesting
applications. For example, object serialization provides persistent storage for objects, whereby objects
are stored in a file for later use. Also, a copy of an object can be sent through a socket to another Java
program. Object serialization forms the basis for the remote method invocation mechanism in Java
that facilitates distributed programs. Object serialization is supported by a number of new classes in
the java.io package in Java 1.1.

7.1 Object Serialization Basics

If a class is designed to work with object serialization, reading and writing instances of that class is
quite simple. The process of writing an object to a byte stream is called serialization. For example,
here is how you can write a Color object to a file:

FileOutputStream out = new FileOutputStream("tmp");
ObjectOutput objOut = new ObjectOutputStream(out);
objOut.writeObject(Color.red);

All you need to do is create an ObjectOutputStream around another output stream and then pass
the object to be written to the writeObject() method. If you are writing objects to a socket or any
other destination that is time-sensitive, you should call the flush() method after you are finished
passing objects to the ObjectOutputStream.

The process of reading an object from byte stream is called deserialization. Here is how you can read
that Color object from its file:

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch07_01.htm (1 of 2) [9/10/2001 16:00:43]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch06_03.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch07_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch07_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch07_03.htm

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch07_01.htm

FileInputStream in = new FileInputStream("tmp");
ObjectInputStream objIn = new ObjectInputStream(in);
Color c = (Color)objIn.readObject();

Here all you need to do is create an ObjectInputStream object around another input stream and
call its readObject() method.

File Manipulation Writing Classes to Work with
Serialization

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch07_01.htm (2 of 2) [9/10/2001 16:00:43]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch06_03.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch07_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

[Chapter 8] Networking

Chapter 8

8. Networking
Contents:
Sockets
URL Objects

The java.net package provides two basic mechanisms for accessing data and other resources over a
network. The fundamental mechanism is called a socket. A socket allows programs to exchange groups of bytes
called packets. There are a number of classes in java.net that support sockets, including Socket,
ServerSocket, DatagramSocket, DatagramPacket, and MulticastSocket. The java.net
package also includes a URL class that provides a higher-level mechanism for accessing and processing data
over a network.

8.1 Sockets

A socket is a mechanism that allows programs to send packets of bytes to each other. The programs do not need
to be running on the same machine, but if they are running on different machines, they do need to be connected
to a network that allows the machines to exchange data. Java's socket implementation is based on the socket
library that was originally part of BSD UNIX. Programmers who are familiar with UNIX sockets or the
Microsoft WinSock library should be able to see the similarities in the Java implementation.

When a program creates a socket, an identifying number called a port number is associated with the socket.
Depending on how the socket is used, the port number is either specified by the program or assigned by the
operating system. When a socket sends a packet, the packet is accompanied by two pieces of information that
specify the destination of the packet:

● A network address that specifies the system that should receive the packet.

● A port number that tells the receiving system to which socket to deliver the data.

Sockets typically work in pairs, where one socket acts as a client and the other functions as a server. A server
socket specifies the port number for the network communication and then listens for data that is sent to it by
client sockets. The port numbers for server sockets are well-known numbers that are known to client programs.
For example, an FTP server uses a socket that listens at port 21. If a client program wants to communicate with
an FTP server, it knows to contact a socket that listens at port 21.

The operating system normally specifies port numbers for client sockets because the choice of a port number is
not usually important. When a client socket sends a packet to a server socket, the packet is accompanied by the

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch08_01.htm (1 of 9) [9/10/2001 16:01:08]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch07_03.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch08_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch08_02.htm

[Chapter 8] Networking

port number of the client socket and the client's network address. The server is then able to use that information
to respond to the client.

When using sockets, you have to decide which type of protocol that you want it to use to transport packets over
the network: a connection-oriented protocol or a connectionless protocol. With a connection-oriented protocol,
a client socket establishes a connection to a server socket when it is created. Once the connection has been
established, a connection-oriented protocol ensures that data is delivered reliably, which means:

● For every packet that is sent, the packet is delivered. Every time a socket sends a packet, it expects to
receive an acknowledgement that the packet has been received successfully. If the socket does not
receive that acknowledgement within the time it expects to receive it, the socket sends the packet again.
The socket keeps trying until transmission is successful, or it decides that delivery has become
impossible.

● Packets are read from the receiving socket in the same order that they were sent. Because of the way that
networks work, packets may arrive at the receiving socket in a different order than they were sent. A
reliable, connection-oriented protocol allows the receiving socket to reorder the packets it receives, so
that they can be read by the receiving program in the same order that they were sent.

A connectionless protocol allows a best-effort delivery of packets. It does not guarantee that packets are
delivered or that packets are read by the receiving program in the same order they were sent. A connectionless
protocol trades these deficiencies for performance advantages over connection-oriented protocols. Here are two
types of situations in which connectionless protocols are frequently preferred over connection-oriented
protocols:

● When only a single packet needs to be sent and guaranteed delivery is not crucial, a connectionless
protocol eliminates the overhead involved in creating and destroying a connection. For comparison
purposes, the connection-oriented TCP/IP protocol uses seven packets to send a single packet, while the
connectionless UDP/IP protocol uses only one. A protocol for getting the current time typically uses a
connectionless protocol to request the current time from the server and to return the time to the requester.

● For extremely time-sensitive applications, such as sending audio in real time, the guarantee of reliable
transmission is not an advantage and may be a disadvantage. Pausing until a missing piece of data is
received can cause noticeable clicks or pauses in the audio. Techniques for sending audio over a network
that use a connectionless protocol have been developed and they work noticeably better. For example,
RealAudio uses a protocol that runs on top of a connectionless protocol to transmit sound over a
network.

Table 8.1 shows the roles of the various socket classes in the java.net package.

Table 8.1: Socket Classes in java.net

Client Server

Connection-oriented Protocol Socket ServerSocket

Connectionless Protocol DatagramSocket DatagramSocket

As of Java 1.1, the java.net package also contains a MulticastSocket class that supports

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch08_01.htm (2 of 9) [9/10/2001 16:01:08]

[Chapter 8] Networking

connectionless, multicast data communication.

Sockets for Connection-Oriented Protocols

When you are writing code that implements the server side of a connection-oriented protocol, your code
typically follows this pattern:

● Create a ServerSocket object to accept connections.

● When the ServerSocket accepts a connection, it creates a Socket object that encapsulates the
connection.

● The Socket is asked to create InputStream and OutputStream objects that read and write bytes
to and from the connection.

● The ServerSocket can optionally create a new thread for each connection, so that the server can
listen for new connections while it is communicating with clients.

The code that implements the client side of a connection-oriented protocol is quite simple. It creates a Socket
object that opens a connection with a server, and then it uses that Socket object to communicate with the
server.

Now let's look at an example. The example consists of a pair of programs that allows a client to get the contents
of a file from a server. The client requests the contents of a file by opening a connection to the server and
sending it the name of a file followed by a newline character. If the server is able to read the named file, it
responds by sending the string "Good:\n" followed by the contents of the file. If the server is not able to read
the named file, it responds by sending the string "Bad:" followed by the name of the file and a newline
character. After the server has sent its response, it closes the connection.

Here's the program that implements the server side of this file transfer:

public class FileServer extends Thread {
 public static void main(String[] argv) {
 ServerSocket s;
 try {
 s = new ServerSocket(1234, 10);
 }catch (IOException e) {
 System.err.println("Unable to create socket");
 e.printStackTrace();
 return;
 }
 try {
 while (true) {
 new FileServer(s.accept());
 }
 }catch (IOException e) {
 }
 }
 private Socket socket;

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch08_01.htm (3 of 9) [9/10/2001 16:01:08]

[Chapter 8] Networking

 FileServer(Socket s) {
 socket = s;
 start();
 }
 public void run() {
 InputStream in;
 String fileName = "";
 PrintStream out = null;
 FileInputStream f;
 try {
 in = socket.getInputStream();
 out = new PrintStream(socket.getOutputStream());
 fileName = new DataInputStream(in).readLine();
 f = new FileInputStream(fileName);
 }catch (IOException e) {
 if (out != null)
 out.print("Bad:"+fileName+"\n");
 out.close();
 try {
 socket.close();
 }catch (IOException ie) {
 }
 return;
 }
 out.print("Good:\n");
 // send contents of file to client.
 byte[] buffer = new byte[4096];
 try {
 int len;
 while ((len = f.read(buffer)) > 0) {
 out.write(buffer, 0, len);
 }// while
 }catch (IOException e) {
 }finally {
 try {
 in.close();
 out.close();
 socket.close();
 }catch (IOException e) {
 }
 }
 }
}

The FileServer class implements the server side of the file transfer; it is a subclass of Thread to make it
easier to write code that can handle multiple connections at the same time. The main() method provides the
top-level logic for the program. The first thing that main() does is to create a ServerSocket object to
listen for connections. The constructor for ServerSocket takes two parameters: the port number for the
socket and a value that specifies the maximum length of the pending connections queue. The operating system
can accept connections on behalf of the socket when the server program is busy doing something other than

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch08_01.htm (4 of 9) [9/10/2001 16:01:08]

[Chapter 8] Networking

accepting connections. If the second parameter is greater than zero, the operating system can accept up to that
many connections on behalf of the socket and store them in a queue. If the second parameter is zero, however,
the operating system does not accept any connections on behalf of the server program. The remainder of the
main() method accepts a connection, creates a new instance of the FileServer class to process the
connection, and then waits for the next connection.

Each FileServer object is responsible for handling a connection accepted by its main() method. A
FileServer object uses a private variable, socket, to refer to the Socket object that allows it to
communicate with the client program on the other end of the connection. The constructor for FileServer
sets its socket variable to refer to the Socket object that is passed to it by the main() method and then
calls its start() method. The FileServer class inherits the start() method from the Thread class;
the start() method starts a new thread that calls the run() method. Because the rest of the connection
processing is done asynchronously in a separate thread, the constructor can return immediately. This allows the
main() method to accept another connection right away, instead of having to wait for this connection to be
fully processed before accepting another.

The run() method uses the in and out variables to refer to InputStream and PrintStream objects that
read from and write to the connection associated with the Socket object, respectively. These streams are
created by calling the getInputStream() and getOutputStream() methods of the Socket object.
The run() method then reads the name of the file that the client program wants to receive and creates a
FileInputStream to read that file. If any of the methods called up to this point have detected a problem,
they throw some kind of IOException. In this case, the server sends a response to the client that consists of
the string "Bad:" followed by the filename and then closes the socket and returns, which kills the thread.

If everything up to this point has been fine, the server sends the string "Good:" and then copies the contents of
the file to the socket. The copying is done by repeatedly filling a buffer with bytes from the file and writing the
buffer to the socket. When the contents of the file are exhausted, the streams and the socket are closed, the
run() method returns, and the thread dies.

Now let's take a look at the client part of this program:

public class FileClient {
 private static boolean usageOk(String[] argv) {
 if (argv.length != 2) {
 String msg = "usage is: " + "FileClient server-name file-name";
 System.out.println(msg);
 return false;
 }
 return true;
 }
 public static void main(String[] argv) {
 int exitCode = 0;
 if (!usageOk(argv))
 return;
 Socket s = null;
 try {
 s = new Socket(argv[0], 1234);
 }catch (IOException e) {
 String msg = "Unable to connect to server";
 System.err.println(msg);

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch08_01.htm (5 of 9) [9/10/2001 16:01:08]

[Chapter 8] Networking

 e.printStackTrace();
 System.exit(1);
 }
 InputStream in = null;
 try {
 OutputStream out = s.getOutputStream();
 new PrintStream(out).print(argv[1]+"\n");
 in = s.getInputStream();
 DataInputStream din = new DataInputStream(in);
 String serverStatus = din.readLine();
 if (serverStatus.startsWith("Bad")) {
 exitCode = 1;
 int ch;
 while((ch = in.read()) >= 0) {
 System.out.write((char)ch);
 }// while
 }catch (IOException e) {
 }finally {
 try {
 s.close();
 }catch (IOException e) {
 }
 }
 }
}

The usageOk() method is simply a utility method that verifies that the correct number of arguments have
been passed to the client application. It outputs a help message if the number of arguments is not what is
expected. It is generally a good idea to include a method like this in a Java application that uses command-line
parameters.

The main() method does the real work of FileClient. After it verifies that it has the correct number of
parameters, it attempts to create a socket connected to the server program running on the specified host and
listening for connections on port number 1234. The socket that it creates is encapsulated by a Socket object.
The constructor for the Socket object takes two arguments: the name of the machine the server program is
running on and the port number. After the socket is successfully opened, the client sends the specified filename,
followed by a new line character, to the server. The client then gets an InputStream from the socket to read
what the server is sending and reads the success/failure code that the server sends back. If the request is a
success, the client reads the contents of the requested file.

Note that the finally clause at the end closes the socket. If the program did not explicitly close the socket, it
would be closed automatically when the program terminates. However, it is a good programming practice to
explicitly close a socket when you are done with it.

Sockets for Connectionless Protocols

Communicating with a connectionless protocol is simpler than using a connection-oriented protocol, as both the
client and the server use DatagramSocket objects. The code for the server-side program has the following
pattern:

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch08_01.htm (6 of 9) [9/10/2001 16:01:08]

[Chapter 8] Networking

● Create a DatagramSocket object associated with a specified port number.

● Create a DatagramPacket object and ask the DatagramSocket to put the next piece of data it
receives in the DatagramPacket.

On the client-side, the order is simply reversed:

● Create a DatagramPacket object associated with a piece of data, a destination network address, and a
port number.

● Ask a DatagramSocket object to send the data associated with the DatagramPacket to the
destination associated with the DatagramSocket.

Let's look at an example that shows how this pattern can be coded into a server that provides the current time
and a client that requests the current time. Here's the code for the server class:

public class TimeServer {
 static DatagramSocket socket;
 public static void main(String[] argv) {
 try {
 socket = new DatagramSocket(7654);
 }catch (SocketException e) {
 System.err.println("Unable to create socket");
 e.printStackTrace();
 System.exit(1);
 }
 DatagramPacket datagram;
 datagram = new DatagramPacket(new byte[1], 1);
 while (true) {
 try {
 socket.receive(datagram);
 respond(datagram);
 }catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 static void respond(DatagramPacket request) {
 ByteArrayOutputStream bs;
 bs = new ByteArrayOutputStream();
 DataOutputStream ds = new DataOutputStream(bs);
 try {
 ds.writeLong(System.currentTimeMillis());
 }catch (IOException e) {
 }
 DatagramPacket response;
 byte[] data = bs.toByteArray();
 response = new DatagramPacket(data, data.length,
 request.getAddress(), request.getPort());

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch08_01.htm (7 of 9) [9/10/2001 16:01:08]

[Chapter 8] Networking

 try {
 socket.send(response);
 }catch (IOException e) {
 // Give up, we've done our best.
 }
 }
}

The main() method of the TimeServer class begins by creating a DatagramSocket object that uses port
number 7654. The socket variable refers to this DatagramSocket, which is used to communicate with
clients. Then the main() method creates a DatagramPacket object to contain data received by the
DatagramSocket. The two-argument constructor for DatagramPacket creates objects that receive data.
The first argument is an array of bytes to contain the data, while the second argument specifies the number of
bytes to read. When a DatagramSocket is asked to receive a packet into a DatagramPacket, only the
specified number of bytes are read. Even though the client is not really sending any information to the server,
we still create a DatagramPacket with a 1-byte buffer. In theory, all that the server needs is an empty packet
that specifies the client's network address and port number, but attempting to receive a zero-byte packet does
not work. When the receive() method of a DatagramSocket is called to receive a zero-byte packet, it
returns immediately, rather than waiting for a packet to arrive. Finally, the server enters an infinite loop that
receives requests from clients using the receive() method of the DatagramSocket, and sends responses.

The respond() method handles sending responses. It starts by writing the current time as a long value to an
array of bytes. Next, the respond() method prepares to send the array of bytes by creating a
DatagramPacket object that encapsulates the array and the address and port number of the client that
requested the time. Notice that the constructor used to create a DatagramPacket object for sending a packet
takes four arguments: an array of bytes, the number of bytes to send, the client's network address, and the
client's port number. The address and port are retrieved from the request DatagramPacket with the
getAddress() and getPort() methods. The respond() method finishes its work by actually sending
the DatagramPacket using the send() method of the DatagramSocket.

Now here's the code for the corresponding client program:

public class TimeClient {
 private static boolean usageOk(String[] argv) {
 if (argv.length != 1) {
 String msg = "usage is: " + "TimeClient server-name";
 System.out.println(msg);
 return false;
 }
 return true;
 }
 public static void main(String[] argv) {
 if (!usageOk(argv))
 System.exit(1);
 DatagramSocket socket;
 try {
 socket = new DatagramSocket();
 }catch (SocketException e) {
 System.err.println("Unable to create socket");
 e.printStackTrace();

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch08_01.htm (8 of 9) [9/10/2001 16:01:08]

[Chapter 8] Networking

 System.exit(1);
 return;
 }
 long time;
 try {
 byte[] buf = new byte[1];
 socket.send(new DatagramPacket(buf, 1,
 InetAddress.getByName(argv[0]), 7654));
 DatagramPacket response = new DatagramPacket(new byte[8],8);
 socket.receive(response);
 ByteArrayInputStream bs;
 bs = new ByteArrayInputStream(response.getData());
 DataInputStream ds = new DataInputStream(bs);
 time = ds.readLong();
 }catch (IOException e) {
 e.printStackTrace();
 System.exit(1);
 return;
 }
 System.out.println(new Date(time));
 socket.close();
 }
}

The main() method does the real work of TimeClient. After it verifies that it has the correct number of
parameters with usageOk(), it creates a DatagramSocket object for communicating with the server. Note
that the constructor for this DatagramSocket does not specify any parameters; a client DatagramSocket
is not explicitly connected to a specific port. Then the main() method creates a DatagramPacket object to
contain the request to be sent to the server. Since this DatagramPacket is being used to send a packet, the
code uses the four-argument constructor that specifies an array of bytes, the number of bytes to send, the
specified network address for a time server, and the server's port number. The DatagramPacket is then sent
to the server with the send() method of the DatagramSocket.

Now the main() method creates another DatagramPacket to receive the response from the server. The two-
argument constructor is used this time because the object is being created to receive data. After calling the
receive() method of the DatagramSocket to get the response from the server, the main() method gets
the data from the response DatagramPacket by calling getData(). The data is wrapped in a
DataInputStream so that the data can be read as a long value. If everything has gone smoothly, the client
finishes by printing the current time and closing the socket.

Versioning of Classes URL Objects

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch08_01.htm (9 of 9) [9/10/2001 16:01:08]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch07_03.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch08_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

[Chapter 9] Security

Chapter 9

9. Security
Contents:
SecurityManager
ClassLoader

Java uses a "sandbox" security model to ensure that applets cannot cause security problems. The idea
is that an applet can do whatever it wants within the constraints of its sandbox, but that nothing done
inside the sandbox has any consequences outside of the sandbox.

9.1 SecurityManager

Java implements the sandbox model using the java.lang.SecurityManager class. An
instance of SecurityManager is passed to the method System.setSecurityManager() to
establish the security policy for an application. Before setSecurityManager() is called, a Java
program can access any resources available on the system. After setSecurityManager() is
called, however, the SecurityManager object is responsible for providing a security policy. Once
a security policy has been set by calling setSecurityManager, the method cannot be called
again. Subsequent calls simply throw a SecurityException.

All methods in the Java API that can access resources outside of the Java environment call a
SecurityManager method to ask permission before doing anything. If the SecurityManager
method throws a SecurityException, the exception is thrown out of the calling method, and
access to the resource is denied. The SecurityManager class defines a number of methods for
asking for permission to access specific resources. Each of these methods has a name that begins with
the word "check." Table 9.1 shows the names of the check methods provided by the
SecurityManager class.

Table 9.1: The Check Methods of SecurityManager

Method Name Permission

checkAccept() To accept a network connection

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch09_01.htm (1 of 3) [9/10/2001 16:01:31]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch08_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch09_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch09_02.htm

[Chapter 9] Security

checkAccess() To modify a Thread or ThreadGroup

checkAwtEventQueueAccess() To access the AWT event queue

checkConnect() To establish a network connection or send a datagram

checkCreateClassLoader() To create a ClassLoader object

checkDelete() To delete a file

checkExec() To call an external program

checkExit()
To stop the Java virtual machine and exit the Java
environment

checkLink()
To dynamically link an external library into the Java
environment

checkListen() To listen for a network connection

checkMemberAccess() To access the members of a class

checkMulticast() To use a multicast connection

checkPackageAccess() To access the classes in a package

checkPackageDefinition() To define classes in a package

checkPrintJobAccess() To initiate a print job request

checkPropertiesAccess()
To get or set the Properties object that defines all of
the system properties

checkPropertyAccess() To get or set a system property

checkRead() To read from a file or input stream

checkSecurityAccess() To perform a security action

checkSetFactory()
To set a factory class that determines classes to be used
for managing network connections and their content

checkSystemClipboardAccess() To access the system clipboard

checkTopLevelWindow() To create a top-level window on the screen

checkWrite() To write to a file or output stream

The SecurityManager class provides implementations of these methods that always refuse the
requested permission. To implement a more permissive security policy, you need to create a subclass
of SecurityManager that implements that policy.

In Java 1.0, most browsers consider an applet to be trusted or untrusted. An untrusted applet is one
that does not come from the local filesystem. An untrusted applet is treated as follows by most
popular browsers:

● It can establish network connections to the network address from which it came.

● It can create new windows on the screen. However, a notice is displayed on the bottom of the

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch09_01.htm (2 of 3) [9/10/2001 16:01:31]

[Chapter 9] Security

window that the window was created by an untrusted applet.

● It cannot access any other external resources. In particular, untrusted applets cannot access
local files.

As of Java 1.1, an applet can have a digital signature attached to it. When an applet has been signed
by a trusted entity, a browser may consider the applet to be trusted and relax its security policy.

URL Objects ClassLoader

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch09_01.htm (3 of 3) [9/10/2001 16:01:31]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch08_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch09_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

[Chapter 10] Accessing the Environment

Chapter 10

10. Accessing the Environment
Contents:
I/O
System Properties
Environment Variables
External Program Execution
Garbage Collection
Self Termination

The java.lang.System and java.lang.Runtime classes provide a variety of methods that
allow a Java program to access information and resources for the environment in which it is running.
This environment includes the Java virtual machine and the native operating system.

10.1 I/O

The System class defines three static variables for the three default I/O stream objects that are
used by Java programs:

in

This variable refers to an InputStream that is associated with the process's standard input.

out

This variable refers to a PrintStream object that is associated with the process's standard
output. In an applet environment, the PrintStream is likely to be associated with a separate
window or a file, although this is not guaranteed.

This stream is the most commonly used of the three I/O streams provided by the System
class. Even in GUI-based applications, sending output to this stream can be useful for
debugging purposes. The usual idiom for sending output to this stream is:

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch10_01.htm (1 of 2) [9/10/2001 16:01:47]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch09_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch10_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch10_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch10_03.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch10_04.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch10_05.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch10_06.htm

[Chapter 10] Accessing the Environment

System.out.println("some string");

err

This variable refers to a PrintStream object that is associated with the process's standard
error output. In an applet environment, the PrintStream is likely to be associated with a
separate window or a file, although this is not guaranteed.

ClassLoader System Properties

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch10_01.htm (2 of 2) [9/10/2001 16:01:47]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch09_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch10_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

[Chapter 11] The java.io Package

Chapter 11

11. The java.io Package
Contents:
BufferedOutputStream
BufferedReader
BufferedWriter
ByteArrayInputStream
ByteArrayOutputStream
CharArrayReader
CharArrayWriter
CharConversionException
DataInput
DataInputStream
DataOutput
DataOutputStream
EOFException
Externalizable
File
FileDescriptor
FileInputStream
FilenameFilter
FileNotFoundException
FileOutputStream
FileReader
FileWriter
FilterInputStream
FilterOutputStream
FilterReader
FilterWriter
InputStream
InputStreamReader
InterruptedIOException
InvalidClassException
InvalidObjectException
IOException
LineNumberInputStream

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_01.htm (1 of 12) [9/10/2001 16:02:47]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch10_06.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_03.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_04.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_05.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_06.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_07.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_08.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_09.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_10.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_11.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_12.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_13.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_14.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_15.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_16.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_17.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_18.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_19.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_20.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_21.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_22.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_23.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_24.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_25.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_26.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_27.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_28.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_29.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_30.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_31.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_32.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_33.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_34.htm

[Chapter 11] The java.io Package

LineNumberReader
NotActiveException
NotSerializableException
ObjectInput
ObjectInputStream
ObjectInputValidation
ObjectOutput
ObjectOutputStream
ObjectStreamClass
ObjectStreamException
OptionalDataException
OutputStream
OutputStreamWriter
PipedInputStream
PipedOutputStream
PipedReader
PipedWriter
PrintStream
PrintWriter
PushbackInputStream
PushbackReader
RandomAccessFile
Reader
SequenceInputStream
Serializable
StreamCorruptedException
StreamTokenizer
StringBufferInputStream
StringReader
StringWriter
SyncFailedException
UnsupportedEncodingException
UTFDataFormatException
WriteAbortedException
Writer

The package java.io contains the classes that handle fundamental input and output operations in Java. The I/O
classes can be grouped as follows:

● Classes for reading input from a stream of data.

● Classes for writing output to a stream of data.

● Classes that manipulate files on the local filesystem.

● Classes that handle object serialization.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_01.htm (2 of 12) [9/10/2001 16:02:47]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_35.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_36.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_37.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_38.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_39.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_40.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_41.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_42.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_43.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_44.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_45.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_46.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_47.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_48.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_49.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_50.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_51.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_52.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_53.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_54.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_55.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_56.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_57.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_58.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_59.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_60.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_61.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_62.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_63.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_64.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_65.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_66.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_67.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_68.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_69.htm

[Chapter 11] The java.io Package

I/O in Java is based on streams. A stream represents a flow of data or a channel of communication. Java 1.0
supports only byte streams. The InputStream class is the superclass of all of the Java 1.0 byte input streams,
while OutputStream is the superclass of all the byte output streams. The drawback to these byte streams is
that they do not always handle Unicode characters correctly.

As of Java 1.1, java.io contains classes that represent character streams. These character stream classes handle
Unicode characters appropriately by using a character encoding to convert bytes to characters and vice versa. The
Reader class is the superclass of all the Java 1.1 character input streams, while Writer is the superclass of all
character output streams.

The InputStreamReader and OutputStreamWriter classes provide a bridge between byte streams and
character streams. If you wrap an InputStreamReader around an InputStream object, the bytes in the
byte stream are read and converted to characters using the character encoding scheme specified by the
InputStreamReader. Likewise, you can wrap an OutputStreamWriter around any OutputStream
object so that you can write characters and have them converted to bytes.

As of Java 1.1, java.io also contains classes to support object serialization. Object serialization is the ability to
write the complete state of an object to an output stream, and then later recreate that object by reading in the
serialized state from an input stream. The ObjectOutputStream and ObjectInputStream classes
handle serializing and deserializing objects, respectively.

The RandomAccessFile class is the only class that does not use a stream for reading or writing data. As its
name implies, RandomAccessFile provides nonsequential access to a file for both reading and writing
purposes.

The File class represents a file on the local file system. The class provides methods to identify and retrieve
information about a file.

Figure 11.1 shows the class hierarchy for the java.io package. The java.io package defines a number of
standard I/O exception classes. These exception classes are all subclasses of IOException, as shown in Figure
11.2.

Figure 11.1: The java.io package

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_01.htm (3 of 12) [9/10/2001 16:02:47]

[Chapter 11] The java.io Package

Figure 11.2: The exception classes in the java.io package

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_01.htm (4 of 12) [9/10/2001 16:02:47]

[Chapter 11] The java.io Package

BufferedInputStream

Name

BufferedInputStream

Synopsis

Class Name:

java.io.BufferedInputStream

Superclass:

java.io.FilterInputStream

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

JDK 1.0 or later

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_01.htm (5 of 12) [9/10/2001 16:02:47]

[Chapter 11] The java.io Package

Description

A BufferedInputStream object provides a more efficient way to read just a few bytes at a time from an
InputStream. BufferedInputStream object use a buffer to store input from an associated
InputStream. In other words, a large number of bytes are read from the underlying stream and stored in an
internal buffer. A BufferedInputStream is more efficient than a regular InputStream because reading
data from memory is faster than reading it from a disk or a network. All reading is done directly from the internal
buffer; the disk or network needs to be accessed only occasionally to fill up the buffer.

You should wrap a BufferedInputStream around any InputStream whose read() operations may be
time consuming or costly, such as a FileInputStream.

BufferedInputStream provides a way to mark a position in the stream and subsequently reset the stream to
that position, using mark() and reset().

Class Summary

public class java.io.BufferedInputStream extends java.io.FilterInputStream {
 // Variables
 protected byte[] buf;
 protected int count;
 protected int marklimit;
 protected int markpos;
 protected int pos;
 // Constructors
 public BufferedInputStream(InputStream in);
 public BufferedInputStream(InputStream in, int size);
 // Instance Methods
 public synchronized int available();
 public synchronized void mark(int readlimit);
 public boolean markSupported();
 public synchronized int read();
 public synchronized int read(byte[] b, int off, int len);
 public synchronized void reset();
 public synchronized long skip(long n);
}

Variables

buf

protected byte[] buf

Description

The buffer that stores the data from the input stream.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_01.htm (6 of 12) [9/10/2001 16:02:47]

[Chapter 11] The java.io Package

count

protected int count

Description

A placeholder that marks the end of valid data in the buffer.

marklimit

protected int marklimit

Description

The maximum number of bytes that can be read after a call to mark() before a call to reset() fails.

markpos

protected int markpos

Description

The position of the stream when mark() was called. If mark() has not been called, this variable is -1.

pos

protected int pos

Description

The current position in the buffer, or in other words, the index of the next character to be read.

Constructors

BufferedInputStream

public BufferedInputStream(InputStream in)

Parameters

in

The input stream to buffer.

Description

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_01.htm (7 of 12) [9/10/2001 16:02:47]

[Chapter 11] The java.io Package

This constructor creates a BufferedInputStream that buffers input from the given InputStream,
using a buffer with the default size of 2048 bytes.

public BufferedInputStream(InputStream in, int size)

Parameters

in

The input stream to buffer.

size

The size of buffer to use.

Description

This constructor creates a BufferedInputStream that buffers input from the given InputStream,
using a buffer of the given size.

Instance Methods

available

public synchronized int available() throws IOException

Returns

The number of bytes that can be read without blocking.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.available()

Description

This method returns the number of bytes that can be read without having to wait for more data to become
available. The returned value is the sum of the number of bytes remaining in the object's buffer and the
number returned as the result of calling the available() method of the underlying InputStream
object.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_01.htm (8 of 12) [9/10/2001 16:02:47]

[Chapter 11] The java.io Package

mark

public synchronized void mark(int readlimit)

Parameters

readlimit

The maximum number of bytes that can be read before the saved position becomes invalid.

Overrides

FilterInputStream.mark()

Description

This method causes the BufferedInputStream to remember its current position. A subsequent call to
reset() causes the object to return to that saved position, and thus reread a portion of the buffer.

markSupported

public synchronized boolean markSupported()

Returns

The boolean value true.

Overrides

FilterInputStream.markSupported()

Description

This method returns true to indicate that this class supports mark() and reset().

read

public synchronized int read() throws IOException

Returns

The next byte of data or -1 if the end of the stream is encountered.

Throws

IOException

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_01.htm (9 of 12) [9/10/2001 16:02:47]

[Chapter 11] The java.io Package

If any kind of I/O error occurs.

Overrides

FilterInputStream.read()

Description

This method returns the next byte from the buffer. If all the bytes in the buffer have been read, the buffer
is filled from the underlying InputStream and the next byte is returned. If the buffer does not need to
be filled, this method returns immediately. If the buffer needs to be filled, this method blocks until data is
available from the underlying InputStream, the end of the stream is reached, or an exception is
thrown.

 public synchronized int read(byte b[], int off, int len) throws IOException

Parameters

b

An array of bytes to be filled from the stream.

off

An offset into the byte array.

len

The number of bytes to read.

Returns

The actual number of bytes read or -1 if the end of the stream is encountered immediately.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.read(byte[], int, int)

Description

This method copies bytes from the internal buffer into the given array b, starting at index off and
continuing for up to len bytes. If there are any bytes in the buffer, this method returns immediately.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_01.htm (10 of 12) [9/10/2001 16:02:47]

[Chapter 11] The java.io Package

Otherwise the buffer needs to be filled; this method blocks until the data is available from the underlying
InputStream, the end of the stream is reached, or an exception is thrown.

reset

public synchronized void reset() throws IOException

Throws

IOException

If there was no previous call to this BufferedInputStream's mark method, or the saved
position has been invalidated.

Overrides

FilterInputStream.reset()

Description

This method sets the position of the BufferedInputStream to a position that was saved by a
previous call to mark(). Subsequent bytes read from this BufferedInputStream will begin from
the saved position and continue normally.

skip

public synchronized long skip(long n) throws IOException

Parameters

n

The number of bytes to skip.

Returns

The actual number of bytes skipped.

Throws

IOException

If any kind of I/O error occurs.

Overrides

FilterInputStream.skip()

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_01.htm (11 of 12) [9/10/2001 16:02:47]

[Chapter 11] The java.io Package

Description

This method skips n bytes of input. If the new position of the stream is still within the data contained in
the buffer, the method returns immediately. Otherwise the skip() method of the underlying stream is
called. A subsequent call to read() forces the buffer to be filled.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object close() FilterInputStream

equals(Object) Object finalize() Object

getClass() Object hashCode() Object

notify() Object notifyAll() Object

read(byte[]) FilterInputStream toString() Object

void wait() Object void wait(long) Object

void wait(long, int) Object

See Also

FilterInputStream, InputStream, IOException

Writer BufferedOutputStream

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_01.htm (12 of 12) [9/10/2001 16:02:47]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_69.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

[Chapter 12] The java.lang Package

Chapter 12

12. The java.lang Package
Contents:
ArithmeticException
ArrayIndexOutOfBoundsException
ArrayStoreException
Boolean
Byte
Character
Class
ClassCastException
ClassCircularityError
ClassFormatError
ClassLoader
ClassNotFoundException
Cloneable
CloneNotSupportedException
Compiler
Double
Error
Exception
ExceptionInInitializerError
Float
IllegalAccessError
IllegalAccessException
IllegalArgumentException
IllegalMonitorStateException
IllegalStateException
IllegalThreadStateException
IncompatibleClassChangeError
IndexOutOfBoundsException
Integer
InstantiationError
InstantiationException
InternalError
InterruptedException

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_01.htm (1 of 7) [9/10/2001 16:03:38]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_69.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_03.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_04.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_05.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_06.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_07.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_08.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_09.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_10.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_11.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_12.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_13.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_14.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_15.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_16.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_17.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_18.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_19.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_20.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_21.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_22.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_23.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_24.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_25.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_26.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_27.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_28.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_29.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_30.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_31.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_32.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_33.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_34.htm

[Chapter 12] The java.lang Package

LinkageError
Long
Math
NegativeArraySizeException
NoClassDefFoundError
NoSuchFieldError
NoSuchFieldException
NoSuchMethodError
NoSuchMethodException
NullPointerException
Number
NumberFormatException
Object
OutOfMemoryError
Process
Runnable
Runtime
RuntimeException
SecurityException
SecurityManager
Short
StackOverflowError
String
StringBuffer
StringIndexOutOfBoundsException
System
Thread
ThreadDeath
ThreadGroup
Throwable
UnknownError
UnsatisfiedLinkError
VerifyError
VirtualMachineError
Void

The package java.lang contains classes and interfaces that are essential to the Java language. These include:

● Object, the ultimate superclass of all classes in Java.

● Thread, the class that controls each thread in a multithreaded program.

● Throwable, the superclass of all error and exception classes in Java.

● Classes that encapsulate the primitive data types in Java.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_01.htm (2 of 7) [9/10/2001 16:03:38]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_35.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_36.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_37.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_38.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_39.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_40.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_41.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_42.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_43.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_44.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_45.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_46.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_47.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_48.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_49.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_50.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_51.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_52.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_53.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_54.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_55.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_56.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_57.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_58.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_59.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_60.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_61.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_62.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_63.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_64.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_65.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_66.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_67.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_68.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_69.htm

[Chapter 12] The java.lang Package

● Classes for accessing system resources and other low-level entities.

● Math, a class that provides standard mathematical methods.

● String, the class that represents strings.

Because the classes in the java.lang package are so essential, the java.lang package is implicitly imported
by every Java source file. In other words, you can refer to all of the classes and interfaces in java.lang using
their simple names.

Figure 12.1 shows the class hierarchy for the java.lang package.

The possible exceptions in a Java program are organized in a hierarchy of exception classes. The Throwable
class is at the root of the exception hierarchy. Throwable has two immediate subclasses: Exception and
Error. Figure 12.2 shows the standard exception classes defined in the java.lang package, while Figure 12.3
shows the standard error classes defined in java.lang.

Figure 12.1: The java.lang package

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_01.htm (3 of 7) [9/10/2001 16:03:38]

[Chapter 12] The java.lang Package

Figure 12.2: The exception classes in the java.lang package

Figure 12.3: The error classes in the java.lang package

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_01.htm (4 of 7) [9/10/2001 16:03:38]

[Chapter 12] The java.lang Package

AbstractMethodError

Name

AbstractMethodError

Synopsis

Class Name:

java.lang.AbstractMethodError

Superclass:

java.lang.IncompatibleClassChangeError

Immediate Subclasses:

None

Interfaces Implemented:

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_01.htm (5 of 7) [9/10/2001 16:03:38]

[Chapter 12] The java.lang Package

None

Availability:

JDK 1.0 or later

Description

An AbstractMethodError is thrown when there is an attempt to invoke an abstract method.

Class Summary

public class java.lang.AbstractMethodError
 extends java.lang.IncompatibleClassChangeError {
 // Constructors
 public AbstractMethodError();
 public AbstractMethodError(String s);
}

Constructors

AbstractMethodError

public AbstractMethodError()

Description

This constructor creates an AbstractMethodError with no associated detail message.

public AbstractMethodError(String s)

Parameters

s

The detail message.

Description

This constructor creates an AbstractMethodError with the specified detail message.

Inherited Methods

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_01.htm (6 of 7) [9/10/2001 16:03:38]

[Chapter 12] The java.lang Package

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Error, IncompatibleClassChangeError, Throwable

Writer ArithmeticException

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_01.htm (7 of 7) [9/10/2001 16:03:38]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch11_69.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

[Chapter 13] The java.lang.reflect Package

Chapter 13

13. The java.lang.reflect Package
Contents:
Array
Constructor
Field
InvocationTargetException
Member
Method
Modifier

The package java.lang.reflect is new as of Java 1.1. It contains classes and interfaces that support the Reflection
API. Reflection refers to the ability of a class to reflect upon itself, or look inside of itself, to see what it can do. The
Reflection API makes it possible to:

● Discover the variables, methods, and constructors of any class.

● Create an instance of any class using any available constructor of that class, even if the class initiating the
creation was not compiled with any information about the class to be instantiated.

● Access the variables of any object, even if the accessing class was not compiled with any information about the
class to be accessed.

● Call the methods of any object, even if the calling class was not compiled with any information about the class
that contains the methods.

● Create an array of objects that are instances of any class, even if the creating class was not compiled with any
information about the class.

These capabilities are implemented by the java.lang.Class class and the classes in the java.lang.reflect
package. Figure 13.1 shows the class hierarchy for the java.lang.reflect package.

Figure 13.1: The java.lang.reflect package

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_01.htm (1 of 19) [9/10/2001 16:06:31]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_69.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_03.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_04.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_05.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_06.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_07.htm

[Chapter 13] The java.lang.reflect Package

Java 1.1 currently uses the Reflection API for two purposes:

● The JavaBeans API supports a mechanism for customizing objects that is based on being able to discover their
public variables, methods, and constructors. See the forthcoming Developing Java Beans from O'Reilly &
Associates for more information about the JavaBeans API.

● The object serialization functionality in java.io is built on top of the Reflection API. Object serialization
allows arbitrary objects to be written to a stream of bytes and then read back later as objects.

Array

Name

Array

Synopsis

Class Name:

java.lang.reflect.Array

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.lang.Cloneable, java.io.Serializable

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_01.htm (2 of 19) [9/10/2001 16:06:31]

[Chapter 13] The java.lang.reflect Package

Availability:

New as of JDK 1.1

Description

The Array class provides static methods to manipulate arbitrary arrays in Java. There are methods to set and retrieve
elements in an array, determine the size of an array, and create a new instance of an array.

The Array class is used to create array objects and manipulate their elements. The Array class is not used to represent
array types. Because arrays in Java are objects, array types are represented by Class objects.

Class Summary

public final class java.lang.reflect.Array extends java.lang.Object {
 // Class Methods
 public static native Object get(Object array, int index);
 public static native boolean getBoolean(Object array, int index);
 public static native byte getByte(Object array, int index);
 public static native char getChar(Object array, int index);
 public static native double getDouble(Object array, int index);
 public static native float getFloat(Object array, int index);
 public static native int getInt(Object array, int index);
 public static native int getLength(Object array);
 public static native long getLong(Object array, int index);
 public static native short getShort(Object array, int index);
 public static Object newInstance(Class componentType, int length);
 public static Object newInstance(Class componentType, int[] dimensions);
 public static native void set(Object array, int index, Object value);
 public static native void setBoolean(Object array, int index, boolean z);
 public static native void setByte(Object array, int index, byte b);
 public static native void setChar(Object array, int index, char c);
 public static native void setDouble(Object array, int index, double d);
 public static native void setFloat(Object array, int index, float f);
 public static native void setInt(Object array, int index, int i);
 public static native void setLong(Object array, int index, long l);
 public static native void setShort(Object array, int index, short s);
}

Class Methods

get

 public static native Object get(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_01.htm (3 of 19) [9/10/2001 16:06:31]

[Chapter 13] The java.lang.reflect Package

index

An index into the array.

Returns

The object at the given index in the specified array.

Throws

IllegalArgumentException

If the given object is not an array.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method returns the object at the given index in the array. If the array contains values of a primitive type, the
value at the given index is wrapped in an appropriate object, and the object is returned.

getBoolean

 public static native boolean getBoolean(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

Returns

The boolean value at the given index in the specified array.

Throws

IllegalArgumentException

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_01.htm (4 of 19) [9/10/2001 16:06:31]

[Chapter 13] The java.lang.reflect Package

If the given object is not an array, or the object at the given index cannot be converted to a boolean.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method returns the object at the given index in the array as a boolean value.

getByte

 public static native byte getByte(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

Returns

The byte value at the given index in the specified array.

Throws

IllegalArgumentException

If the given object is not an array, or the object at the given index cannot be converted to a byte.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method returns the object at the given index in the array as a byte value.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_01.htm (5 of 19) [9/10/2001 16:06:31]

[Chapter 13] The java.lang.reflect Package

getChar

 public static native char getChar(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

Returns

The char value at the given index in the specified array.

Throws

IllegalArgumentException

If the given object is not an array, or the object at the given index cannot be converted to a char.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method returns the object at the given index in the array as a char value.

getDouble

 public static native double getDouble(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_01.htm (6 of 19) [9/10/2001 16:06:31]

[Chapter 13] The java.lang.reflect Package

Returns

The double value at the given index in the specified array.

Throws

IllegalArgumentException

If the given object is not an array, or the object at the given index cannot be converted to a double.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method returns the object at the given index in the array as a double value.

getFloat

 public static native float getFloat(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

Returns

The float value at the given index in the specified array.

Throws

IllegalArgumentException

If the given object is not an array, or the object at the given index cannot be converted to a float.

ArrayIndexOutOfBoundsException

If the given index is invalid.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_01.htm (7 of 19) [9/10/2001 16:06:31]

[Chapter 13] The java.lang.reflect Package

NullPointerException

If array is null.

Description

This method returns the object at the given index in the array as a float value.

getInt

 public static native int getInt(Object array, int index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

Returns

The int value at the given index in the specified array.

Throws

IllegalArgumentException

If the given object is not an array, or the object at the given index cannot be converted to a int.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method returns the object at the given index in the array as a int value.

getLength

 public static native int getLength(Object array) throws IllegalArgumentException

Parameters

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_01.htm (8 of 19) [9/10/2001 16:06:31]

[Chapter 13] The java.lang.reflect Package

array

An array object.

Returns

The length of the specified array.

Throws

IllegalArgumentException

If the given object is not an array.

Description

This method returns the length of the array.

getLong

 public static native long getLong(Object array, long index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

Returns

The long value at the given index in the specified array.

Throws

IllegalArgumentException

If the given object is not an array, or the object at the given index cannot be converted to a long.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_01.htm (9 of 19) [9/10/2001 16:06:31]

[Chapter 13] The java.lang.reflect Package

Description

This method returns the object at the given index in the array as a long value.

getShort

 public static native short getShort(Object array, short index) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

Returns

The short value at the given index in the specified array.

Throws

IllegalArgumentException

If the given object is not an array, or the object at the given index cannot be converted to a short.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method returns the object at the given index in the array as a short value.

newInstance

 public static Object newInstance(Class componentType, int length) throws
NegativeArraySizeException

Parameters

componentType

The type of each element in the array.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_01.htm (10 of 19) [9/10/2001 16:06:31]

[Chapter 13] The java.lang.reflect Package

length

The length of the array.

Returns

An array object that contains elements of the given component type and has the specified length.

Throws

NegativeArraySizeException

If length is negative.

NullPointerException

If componentType is null.

Description

This method creates a single-dimension array with the given length and component type.

 public static Object newInstance(Class componentType, int[] dimensions) throws
IllegalArgumentException, NegativeArraySizeException

Parameters

componentType

The type of each element in the array.

dimensions

An array that specifies the dimensions of the array to be created.

Returns

An array object that contains elements of the given component type and has the specified number of dimensions.

Throws

IllegalArgumentException

If dimensions has zero dimensions itself, or if it has too many dimensions (typically 255 array
dimensions are supported).

NegativeArraySizeException

If length is negative.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_01.htm (11 of 19) [9/10/2001 16:06:31]

[Chapter 13] The java.lang.reflect Package

NullPointerException

If componentType is null.

Description

This method creates a multidimensional array with the given dimensions and component type.

set

 public static native void set(Object array, int index, Object value) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

value

The new value.

Throws

IllegalArgumentException

If the given object is not an array, or if it represents an array of primitive values, and the given value
cannot be unwrapped and converted to that primitive type.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method sets the object at the given index in the array to the specified value. If the array contains values of a
primitive type, the given value is automatically unwrapped before it is put in the array.

setBoolean

 public static native void setBoolean(Object array, int index, boolean z) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_01.htm (12 of 19) [9/10/2001 16:06:31]

[Chapter 13] The java.lang.reflect Package

Parameters

array

An array object.

index

An index into the array.

z

The new value.

Throws

IllegalArgumentException

If the given object is not an array, or if the given value cannot be converted to the component type of the
array.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method sets the element at the given index in the array to the given boolean value.

setByte

 public static native void setByte(Object array, int index, byte b) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

b

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_01.htm (13 of 19) [9/10/2001 16:06:31]

[Chapter 13] The java.lang.reflect Package

The new value.

Throws

IllegalArgumentException

If the given object is not an array, or if the given value cannot be converted to the component type of the
array.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method sets the element at the given index in the array to the given byte value.

setChar

 public static native void setChar(Object array, int index, char c) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

c

The new value.

Throws

IllegalArgumentException

If the given object is not an array, or if the given value cannot be converted to the component type of the
array.

ArrayIndexOutOfBoundsException

If the given index is invalid.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_01.htm (14 of 19) [9/10/2001 16:06:31]

[Chapter 13] The java.lang.reflect Package

NullPointerException

If array is null.

Description

This method sets the element at the given index in the array to the given char value.

setDouble

 public static native void setDouble(Object array, int index, double d) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

d

The new value.

Throws

IllegalArgumentException

If the given object is not an array, or if the given value cannot be converted to the component type of the
array.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method sets the element at the given index in the array to the given double value.

setFloat

 public static native void setFloat(Object array, int index, float f) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_01.htm (15 of 19) [9/10/2001 16:06:31]

[Chapter 13] The java.lang.reflect Package

Parameters

array

An array object.

index

An index into the array.

f

The new value.

Throws

IllegalArgumentException

If the given object is not an array, or if the given value cannot be converted to the component type of the
array.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method sets the element at the given index in the array to the given float value.

setInt

 public static native void setInt(Object array, int index, int i) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

i

The new value.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_01.htm (16 of 19) [9/10/2001 16:06:31]

[Chapter 13] The java.lang.reflect Package

Throws

IllegalArgumentException

If the given object is not an array, or if the given value cannot be converted to the component type of the
array.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method sets the element at the given index in the array to the given int value.

setLong

 public static native void setLong(Object array, int index, long l) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

l

The new value.

Throws

IllegalArgumentException

If the given object is not an array, or if the given value cannot be converted to the component type of the
array.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_01.htm (17 of 19) [9/10/2001 16:06:31]

[Chapter 13] The java.lang.reflect Package

If array is null.

Description

This method sets the element at the given index in the array to the given long value.

setShort

 public static native void setShort(Object array, int index, short s) throws
IllegalArgumentException, ArrayIndexOutOfBoundsException

Parameters

array

An array object.

index

An index into the array.

s

The new value.

Throws

IllegalArgumentException

If the given object is not an array, or if the given value cannot be converted to the component type of the
array.

ArrayIndexOutOfBoundsException

If the given index is invalid.

NullPointerException

If array is null.

Description

This method sets the element at the given index in the array to the given short value.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_01.htm (18 of 19) [9/10/2001 16:06:31]

[Chapter 13] The java.lang.reflect Package

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

ArrayIndexOutOfBoundsException, Class, IllegalArgumentException,
NegativeArraySizeException, NullPointerException, Object

Void Constructor

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_01.htm (19 of 19) [9/10/2001 16:06:31]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch12_69.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

[Chapter 14] The java.math Package

Chapter 14

14. The java.math Package
Contents:
BigDecimal
BigInteger

The package java.math is new as of Java 1.1. It contains two classes that support arithmetic on arbitrarily large integers
and floating-point numbers. Figure 14.1 shows the class hierarchy for the java.math package.

Figure 14.1: The java.math package

BigDecimal

Name

BigDecimal

Synopsis

Class Name:

java.math.BigDecimal

Superclass:

java.lang.Number

Immediate Subclasses:

None

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_01.htm (1 of 16) [9/10/2001 16:07:20]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_07.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_02.htm

[Chapter 14] The java.math Package

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

The BigDecimal class represents arbitrary-precision rational numbers. A BigDecimal object provides a good way to
represent a real number that exceeds the range or precision that can be represented by a double value or the rounding that is
done on a double value is unacceptable.

The representation for a BigDecimal consists of an unlimited precision integer value and an integer scale factor. The scale
factor indicates a power of 10 that the integer value is implicitly divided by. For example, a BigDecimal would represent
the value 123.456 with an integer value of 123456 and the scale factor of 3. Note that the scale factor cannot be negative and
a BigDecimal cannot overflow.

Most of the methods in BigDecimal perform mathematical operations or make comparisons with other BigDecimal
objects. Operations that result in some loss of precision, such as division, require a rounding method to be specified. The
BigDecimal class defines constants to represent the different rounding methods. The rounding method determines if the
digit before a discarded fraction is rounded up or left unchanged.

Class Summary

public class java.math.BigDecimal extends java.lang.Number {
 // Constants
 public static final int ROUND_CEILING;
 public static final int ROUND_DOWN;
 public static final int ROUND_FLOOR;
 public static final int ROUND_HALF_DOWN;
 public static final int ROUND_HALF_EVEN;
 public static final int ROUND_HALF_UP;
 public static final int ROUND_UNNECESSARY;
 public static final int ROUND_UP;
 // Constructors
 public BigDecimal(double val);
 public BigDecimal(String val);
 public BigDecimal(BigInteger val);
 public BigDecimal(BigInteger val, int scale);
 // Class Methods
 public static BigDecimal valueOf(long val);
 public static BigDecimal valueOf(long val, int scale);
 // Instance Methods
 public BigDecimal abs();
 public BigDecimal add(BigDecimal val);
 public int compareTo(BigDecimal val);
 public BigDecimal divide(BigDecimal val, int roundingMode);
 public BigDecimal divide(BigDecimal val, int scale, int roundingMode);
 public double doubleValue();
 public boolean equals(Object x);
 public float floatValue();
 public int hashCode();

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_01.htm (2 of 16) [9/10/2001 16:07:20]

[Chapter 14] The java.math Package

 public int intValue();
 public long longValue();
 public BigDecimal max(BigDecimal val);
 public BigDecimal min(BigDecimal val);
 public BigDecimal movePointLeft(int n);
 public BigDecimal movePointRight(int n);
 public BigDecimal multiply(BigDecimal val);
 public BigDecimal negate();
 public int scale();
 public BigDecimal setScale(int scale);
 public BigDecimal setScale(int scale, int roundingMode);
 public int signum();
 public BigDecimal subtract(BigDecimal val);
 public BigInteger toBigInteger();
 public String toString();
}

Constants

ROUND_CEILING

public static final int ROUND_CEILING

Description

A rounding method that rounds towards positive infinity. Under this method, the value is rounded to the least integer
greater than or equal to its value. For example, 2.5 rounds to 3 and -2.5 rounds to -2.

ROUND_DOWN

public static final int ROUND_DOWN

Description

A rounding method that rounds towards zero by truncating. For example, 2.5 rounds to 2 and -2.5 rounds to -2.

ROUND_FLOOR

public static final int ROUND_FLOOR

Description

A rounding method that rounds towards negative infinity. Under this method, the value is rounded to the greatest
integer less than or equal to its value. For example, 2.5 rounds to 2 and -2.5 rounds to -3.

ROUND_HALF_DOWN

public static final int ROUND_HALF_DOWN

Description

A rounding method that increments the digit prior to a discarded fraction if the fraction is greater than 0.5; otherwise,
the digit is left unchanged. For example, 2.5 rounds to 2, 2.51 rounds to 3, -2.5 rounds to -2, and -2.51 rounds to -3.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_01.htm (3 of 16) [9/10/2001 16:07:20]

[Chapter 14] The java.math Package

ROUND_HALF_EVEN

public static final int ROUND_HALF_EVEN

Description

A rounding method that behaves like ROUND_HALF_UP if the digit prior to the discarded fraction is odd; otherwise it
behaves like ROUND_HALF_DOWN. For example, 2.5 rounds to 2, 3.5 rounds to 4, -2.5 rounds to -2, and -3.5 rounds
to -4.

ROUND_HALF_UP

public static final int ROUND_HALF_UP

Description

A rounding method that increments the digit prior to a discarded fraction if the fraction is greater than or equal to 0.5;
otherwise, the digit is left unchanged. For example, 2.5 rounds to 3, 2.49 rounds to 2, -2.5 rounds to -3, and -2.49
rounds to -2.

ROUND_UNNECESSARY

public static final int ROUND_UNNECESSARY

Description

A constant that specifies that rounding is not necessary. If the result really does require rounding, an
ArithmeticException is thrown.

ROUND_UP

public static final int ROUND_UP

Description

A rounding method that rounds away from zero by truncating. For example, 2.5 rounds to 3 and -2.5 rounds to -3.

Constructors

BigDecimal

public BigDecimal(double val) throws NumberFormatException

Parameters

val

The initial value.

Throws

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_01.htm (4 of 16) [9/10/2001 16:07:20]

[Chapter 14] The java.math Package

NumberFormatException

If the double has any of the special values: Double.NEGATIVE_INFINITY,
Double.POSITIVE_INFINITY, or Double.NaN.

Description

This constructor creates a BigDecimal with the given initial value. The scale of the BigDecimal that is created is
the smallest value such that (10^scale x val) is an integer.

public BigDecimal(String val) throws NumberFormatException

Parameters

val

The initial value.

Throws

NumberFormatException

If the string cannot be parsed into a valid BigDecimal.

Description

This constructor creates a BigDecimal with the initial value specified by the String. The string can contain an
optional minus sign, followed by zero or more decimal digits, followed by an optional fraction. The fraction must
contain a decimal point and zero or more decimal digits. The string must contain as least one digit in the integer or
fractional part. The scale of the BigDecimal that is created is equal to the number of digits to the right of the
decimal point or 0 if there is no decimal point. The mapping from characters to digits is provided by the
Character.digit() method.

public BigDecimal(BigInteger val)

Parameters

val

The initial value.

Description

This constructor creates a BigDecimal whose initial value comes from the given BigInteger. The scale of the
BigDecimal that is created is 0.

 public BigDecimal(BigInteger val, int scale) throws NumberFormatException

Parameters

val

The initial value.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_01.htm (5 of 16) [9/10/2001 16:07:20]

[Chapter 14] The java.math Package

scale

The initial scale.

Throws

NumberFormatException

If scale is negative.

Description

This constructor creates a BigDecimal from the given parameters. The scale parameter specifies how many digits
of the supplied BigInteger fall to the right of the decimal point.

Class Methods

valueOf

public static BigDecimal valueOf(long val)

Parameters

val

The initial value.

Returns

A BigDecimal that represents the given value.

Description

This method creates a BigDecimal from the given long value. The scale of the BigDecimal that is created is 0.

 public static BigDecimal valueOf(long val, int scale) throws NumberFormatException

Parameters

val

The initial value.

scale

The initial scale.

Returns

A BigDecimal that represents the given value and scale.

Throws

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_01.htm (6 of 16) [9/10/2001 16:07:20]

[Chapter 14] The java.math Package

NumberFormatException

If scale is negative.

Description

This method creates a BigDecimal from the given parameters. The scale parameter specifies how many digits of
the supplied long fall to the right of the decimal point.

Instance Methods

abs

public BigDecimal abs()

Returns

A BigDecimal that contains the absolute value of this number.

Description

This method returns the absolute value of this BigDecimal. If this BigDecimal is nonnegative, it is returned.
Otherwise, a new BigDecimal that contains the absolute value of this BigDecimal is returned. The scale of the
new BigDecimal is the same as that of this BigDecimal.

add

public BigDecimal add(BigDecimal val)

Parameters

val

The number to be added.

Returns

A new BigDecimal that contains the sum of this number and the given value.

Description

This method returns the sum of this BigDecimal and the given BigDecimal as a new BigDecimal. The value
of the new BigDecimal is the sum of the values of the two BigDecimal objects being added; the scale is the
maximum of their two scales.

compareTo

public int compareTo(BigDecimal val)

Parameters

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_01.htm (7 of 16) [9/10/2001 16:07:20]

[Chapter 14] The java.math Package

val

The number to be compared.

Returns

-1 if this number is less than val, 0 if this number is equal to val, or 1 if this number is greater than val.

Description

This method compares this BigDecimal to the given BigDecimal and returns a value that indicates the result of
the comparison. The method considers two BigDecimal objects that have the same values but different scales to be
equal. This method can be used to implement all six of the standard boolean comparison operators: ==, !=, <=, <, >=,
and >.

divide

 public BigDecimal divide(BigDecimal val, int roundingMode) throws
ArithmeticException, IllegalArgumentException

Parameters

val

The divisor.

roundingMode

The rounding mode.

Returns

A new BigDecimal that contains the result (quotient) of dividing this number by the supplied value.

Throws

ArithmeticException

If val is 0, or if ROUND_UNNECESSARY is specified for the rounding mode but rounding is necessary.

IllegalArgumentException

If roundingMode is not a valid value.

Description

This method returns the quotient that results from dividing this BigDecimal by the given BigDecimal and
applying the specified rounding mode. The quotient is returned as a new BigDecimal that has the same scale as the
scale of this BigDecimal scale. One of the rounding constants must be specified for the rounding mode.

 public BigDecimal divide(BigDecimal val, int scale, int roundingMode) throws
ArithmeticException, IllegalArgumentException

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_01.htm (8 of 16) [9/10/2001 16:07:20]

[Chapter 14] The java.math Package

Parameters

val

The divisor.

scale

The scale for the result.

roundingMode

The rounding mode.

Returns

A new BigDecimal that contains the result (quotient) of dividing this number by the supplied value.

Throws

ArithmeticException

If val is 0, if scale is less than zero, or if ROUND_UNNECESSARY is specified for the rounding mode but
rounding is necessary.

IllegalArgumentException

If roundingMode is not a valid value.

Description

This method returns the quotient that results from dividing dividing this BigDecimal by the given BigDecimal
and applying the specified rounding mode. The quotient is returned as a new BigDecimal that has the given scale.
One of the rounding constants must be specified for the rounding mode.

doubleValue

public double doubleValue()

Returns

The value of this BigDecimal as a double.

Overrides

Number.doubleValue()

Description

This method returns the value of this BigDecimal as a double. If the value exceeds the limits of a double,
Double.POSITIVE_INFINITY or Double.NEGATIVE_INFINITY is returned.

equals

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_01.htm (9 of 16) [9/10/2001 16:07:20]

[Chapter 14] The java.math Package

public boolean equals(Object x)

Parameters

x

The object to be compared with this object.

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if x is an instance of BigDecimal, and it represents the same value as this
BigDecimal. In order to be considered equal using this method, two BigDecimal objects must have the same
values and scales.

floatValue

public float floatValue()

Returns

The value of this BigDecimal as a float.

Overrides

Number.floatValue()

Description

This method returns the value of this BigDecimal as a float. If the value exceeds the limits of a float,
Float.POSITIVE_INFINITY or Float.NEGATIVE_INFINITY is returned.

hashCode

public int hashCode()

Returns

A hashcode for this object.

Overrides

Object.hashCode()

Description

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_01.htm (10 of 16) [9/10/2001 16:07:20]

[Chapter 14] The java.math Package

This method returns a hashcode for this BigDecimal.

intValue

public int intValue()

Returns

The value of this BigDecimal as an int.

Overrides

Number.intValue()

Description

This method returns the value of this BigDecimal as an int. If the value exceeds the limits of an int, the
excessive high-order bits are discarded. Any fractional part of this BigDecimal is truncated.

longValue

public long longValue()

Returns

The value of this BigDecimal as a long.

Overrides

Number.longValue()

Description

This method returns the value of this BigDecimal as a long. If the value exceeds the limits of a long, the
excessive high-order bits are discarded. Any fractional part of this BigDecimal is also truncated.

max

public BigDecimal max(BigDecimal val)

Parameters

val

The number to be compared.

Returns

The BigDecimal that represents the greater of this number and the given value.

Description

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_01.htm (11 of 16) [9/10/2001 16:07:20]

[Chapter 14] The java.math Package

This method returns the greater of this BigDecimal and the given BigDecimal.

min

public BigDecimal min(BigDecimal val)

Parameters

val

The number to be compared.

Returns

The BigDecimal that represents the lesser of this number and the given value.

Description

This method returns the lesser of this BigDecimal and the given BigDecimal.

movePointLeft

public BigDecimal movePointLeft(int n)

Parameters

n

The number of digits to move the decimal point to the left.

Returns

A new BigDecimal that contains the adjusted number.

Description

This method returns a BigDecimal that is computed by shifting the decimal point of this BigDecimal left by the
given number of digits. If n is nonnegative, the value of the new BigDecimal is the same as the current value, and
the scale is increased by n. If n is negative, the method call is equivalent to movePointRight(-n).

movePointRight

public BigDecimal movePointRight(int n)

Parameters

n

The number of digits to move the decimal point to the right.

Returns

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_01.htm (12 of 16) [9/10/2001 16:07:20]

[Chapter 14] The java.math Package

A new BigDecimal that contains the adjusted number.

Description

This method returns a BigDecimal that is computed by shifting the decimal point of this BigDecimal right by the
given number of digits. If n is nonnegative, the value of the new BigDecimal is the same as the current value, and
the scale is decreased by n. If n is negative, the method call is equivalent to movePointLeft(-n).

multiply

public BigDecimal multiply(BigDecimal val)

Parameters

val

The number to be multiplied.

Returns

A new BigDecimal that contains the product of this number and the given value.

Description

This method multiplies this BigDecimal and the given BigDecimal, and returns the result as a new
BigDecimal. The value of the new BigDecimal is the product of the values of the two BigDecimal objects
being added; the scale is the sum of their two scales.

negate

public BigDecimal negate()

Returns

A new BigDecimal that contains the negative of this number.

Description

This method returns a new BigDecimal that is identical to this BigDecimal except that its sign is reversed. The
scale of the new BigDecimal is the same as the scale of this BigDecimal.

scale

public int scale()

Returns

The scale of this number.

Description

This method returns the scale of this BigDecimal.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_01.htm (13 of 16) [9/10/2001 16:07:20]

[Chapter 14] The java.math Package

setScale

 public BigDecimal setScale(int scale) throws ArithmeticException,
IllegalArgumentException

Parameters

scale

a The new scale.

Returns

A new BigDecimal that is identical to this number, except that is has the given scale.

Throws

ArithmeticException

If the new number cannot be calculated without rounding.

IllegalArgumentException

This exception is never thrown.

Description

This method creates a new BigDecimal that has the given scale and a value that is calculated by multiplying or
dividing the value of this BigDecimal by the appropriate power of 10 to maintain the overall value. The method is
typically used to increase the scale of a number, not decrease it. It can decrease the scale, however, if there are enough
zeros in the fractional part of the value to allow for rescaling without loss of precision.

Calling this method is equivalent to calling setScale(scale, BigDecimal.ROUND_UNNECESSARY).

 public BigDecimal setScale(int scale, int roundingMode) throws ArithmeticException,
IllegalArgumentException

Parameters

scale

The new scale.

roundingMode

The rounding mode.

Returns

A new BigDecimal that contains this number adjusted to the given scale.

Throws

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_01.htm (14 of 16) [9/10/2001 16:07:20]

[Chapter 14] The java.math Package

ArithmeticException

If scale is less than zero, or if ROUND_UNNECESSARY is specified for the rounding mode but rounding is
necessary.

IllegalArgumentException

If roundingMode is not a valid value.

Description

This method creates a new BigDecimal that has the given scale and a value that is calculated by multiplying or
dividing the value of this BigDecimal by the appropriate power of 10 to maintain the overall value. When the scale
is reduced, the value must be divided, so precision may be lost. In this case, the specified rounding mode is used.

signum

public int signum()

Returns

-1 if this number is negative, 0 if this number is zero, or 1 if this number is positive.

Description

This method returns a value that indicates the sign of this BigDecimal.

subtract

public BigDecimal subtract(BigDecimal val)

Parameters

val

The number to be subtracted.

Returns

A new BigDecimal that contains the result of subtracting the given number from this number.

Description

This method subtracts the given BigDecimal from this BigDecimal and returns the result as a new
BigDecimal. The value of the new BigDecimal is the result of subtracting the value of the given BigDecimal
from this BigDecimal; the scale is the maximum of their two scales.

toBigInteger

public BigInteger toBigInteger()

Returns

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_01.htm (15 of 16) [9/10/2001 16:07:20]

[Chapter 14] The java.math Package

The value of this BigDecimal as a BigInteger.

Description

This method returns the value of this BigDecimal as a BigInteger. The fractional part of this number is
truncated.

toString

public String toString()

Returns

A string representation of this object.

Overrides

Object.toString()

Description

This method returns a string representation of this BigDecimal. A minus sign represents the sign, and a decimal
point is used to represent the scale. The mapping from digits to characters is provided by the
Character.forDigit() method.

Inherited Methods

Method Inherited From Method Inherited From

byteValue() Number clone() Object

getClass() Object finalize() Object

notify() Object notifyAll() Object

shortValue() Number wait() Object

wait(long) Object wait(long, int) Object

See Also

ArithmeticException, BigInteger, Character, Double, Float, IllegalArgumentException,
Integer, Long, Number, NumberFormatException

Modifier BigInteger

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_01.htm (16 of 16) [9/10/2001 16:07:20]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch13_07.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

[Chapter 15] The java.net Package

Chapter 15

15. The java.net Package
Contents:
ConnectException
ContentHandler
ContentHandlerFactory
DatagramPacket
DatagramSocket
DatagramSocketImpl
FileNameMap
HttpURLConnection
InetAddress
MalformedURLException
MulticastSocket
NoRouteToHostException
ProtocolException
ServerSocket
Socket
SocketException
SocketImpl
SocketImplFactory
URL
URLConnection
URLEncoder
URLStreamHandler
URLStreamHandlerFactory
UnknownHostException
UnknownServiceException

The package java.net contains classes and interfaces that provide a powerful infrastructure for networking in
Java. These include:

● The URL class for basic access to Uniform Resource Locators (URLs).

● The URLConnection class, which supports more complex operations on URLs.

● The Socket class for connecting to particular ports on specific Internet hosts and reading and writing

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_01.htm (1 of 4) [9/10/2001 16:07:52]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch14_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_03.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_04.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_05.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_06.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_07.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_08.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_09.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_10.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_11.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_12.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_13.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_14.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_15.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_16.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_17.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_18.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_19.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_20.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_21.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_22.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_23.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_24.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_25.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_26.htm

[Chapter 15] The java.net Package

data using streams.

● The ServerSocket class for implementing servers that accept connections from clients.

● The DatagramSocket, MulticastSocket, and DatagramPacket classes for implementing low-
level networking.

● The InetAddress class, which represents Internet addresses.

Figure 15.1 shows the class hierarchy for the java.net package.

Figure 15.1: The java.net package

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_01.htm (2 of 4) [9/10/2001 16:07:52]

[Chapter 15] The java.net Package

BindException

Name

BindException

Synopsis

Class Name:

java.net.BindException

Superclass:

java.net.SocketException

Immediate Subclasses:

None

Interfaces Implemented:

None

Availability:

New as of JDK 1.1

Description

A BindException is thrown when a socket cannot be bound to a local address and port, which can occur if the
port is already in use or the address is unavailable.

Class Summary

public class java.net.BindException extends java.net.SocketException {
 // Constructors
 public BindException();
 public BindException(String msg);
}

Constructors

BindException

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_01.htm (3 of 4) [9/10/2001 16:07:52]

[Chapter 15] The java.net Package

public BindException()

Description

This constructor creates a BindException with no associated detail message.

public BindException(String msg)

Parameters

msg

The detail message.

Description

This constructor creates a BindException with the specified detail message.

Inherited Methods

Method
Inherited
From

Method
Inherited
From

clone() Object equals(Object) Object

fillInStackTrace() Throwable finalize() Object

getClass() Object getLocalizedMessage() Throwable

getMessage() Throwable hashCode() Object

notify() Object notifyAll() Object

printStackTrace() Throwable printStackTrace(PrintStream) Throwable

printStackTrace(PrintWriter) Throwable toString() Throwable

wait() Object wait(long) Object

wait(long, int) Object

See Also

Exception, IOException, RuntimeException, SocketException

UnknownServiceException ConnectException

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_01.htm (4 of 4) [9/10/2001 16:07:52]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_26.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

[Chapter 16] The java.text Package

Chapter 16

16. The java.text Package
Contents:
CharacterIterator
ChoiceFormat
CollationElementIterator
CollationKey
Collator
DateFormat
DateFormatSymbols
DecimalFormat
DecimalFormatSymbols
FieldPosition
Format
MessageFormat
NumberFormat
ParseException
ParsePosition
RuleBasedCollator
SimpleDateFormat
StringCharacterIterator

The package java.text is new as of Java 1.1. It contains classes that support the internationalization
of Java programs. The internationalization classes can be grouped as follows:

● Classes for formatting string representations of dates, times, numbers, and messages based on the
conventions of a locale.

● Classes that collate strings according to the rules of a locale.

● Classes for finding boundaries in text according to the rules of a locale.

Many of the classes in java.text rely upon a java.util.Locale object to provide information

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_01.htm (1 of 13) [9/10/2001 16:08:50]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_26.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_03.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_04.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_05.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_06.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_07.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_08.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_09.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_10.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_11.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_12.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_13.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_14.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_15.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_16.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_17.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_18.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_19.htm

[Chapter 16] The java.text Package

about the locale that is in use.

The Format class is the superclass of all of the classes that generate and parse string representations of
various types of data. The DateFormat class formats and parses dates and times according to the
customs and language of a particular locale. Similarly, the NumberFormat class formats and parses
numbers, including currency values, in a locale-dependent manner.

The MessageFormat class can create a textual message from a pattern string, while ChoiceFormat
maps numerical ranges to strings. By themselves, these classes do not provide different results for
different locales. However, they can be used in conjunction with java.util.ResourceBundle
objects that generate locale-specific pattern strings.

The Collator class handles collating strings according to the rules of a particular locale. Different
languages have different characters and different rules for sorting those characters; Collator and its
subclass, RuleBasedCollator, are designed to take those differences into account when collating
strings. In addition, the CollationKey class can be used to optimize the sorting of a large collection
of strings.

The BreakIterator class finds various boundaries, such as word boundaries and line boundaries, in
textual data. Again, BreakIterator locates these boundaries according to the rules of a particular
locale.

Figure 16.1 shows the class hierarchy for the java.text package.

Figure 16.1: The java.text package

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_01.htm (2 of 13) [9/10/2001 16:08:50]

[Chapter 16] The java.text Package

BreakIterator

Name

BreakIterator

Synopsis

Class Name:

java.text.BreakIterator

Superclass:

java.lang.Object

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_01.htm (3 of 13) [9/10/2001 16:08:50]

[Chapter 16] The java.text Package

Immediate Subclasses:

None

Interfaces Implemented:

java.lang.Cloneable, java.io.Serializable

Availability:

New as of JDK 1.1

Description

The BreakIterator class is an abstract class that defines methods that find the locations of
boundaries in text, such as word boundaries and sentence boundaries. A BreakIterator operates on
the object passed to its setText() method; that object must implement the CharacterIterator
interface or be a String object. When a String is passed to setText(), the BreakIterator
creates an internal StringCharacterIterator to iterate over the String.

When you use a BreakIterator, you call first() to get the location of the first boundary and
then repeatedly call next() to iterate through the subsequent boundaries.

The BreakIterator class defines four static factory methods that return instances of
BreakIterator that locate various kinds of boundaries. Each of these factory methods selects a
concrete subclass of BreakIterator based either on the default locale or a specified locale. You
must create a separate instance of BreakIterator to handle each kind of boundary you are trying to
locate:

● getWordInstance() returns an iterator that locates word boundaries, which is useful for
search-and-replace operations. A word iterator correctly handles punctuation marks.

● getSentenceInstance() returns an iterator that locates sentence boundaries, which is
useful for textual selection. A sentence iterator correctly handle punctuation marks.

● getLineInstance() returns an iterator that locates line boundaries, which is useful in line
wrapping. A line iterator correctly handles hyphenation and punctuation.

● getCharacterInstance() returns an iterator that locates boundaries between characters,
which is useful for allowing the cursor to interact with characters appropriately, since some
characters are stored as a base character and a diacritical mark, but only represent one display
character.

Class Summary
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_01.htm (4 of 13) [9/10/2001 16:08:50]

[Chapter 16] The java.text Package

public abstract class java.util.BreakIterator extends java.lang.Object
 implements java.lang.Cloneable,
 java.io.Serializable {
 // Constants
 public final static int DONE;
 // Constructors
 protected BreakIterator();
 // Class Methods
 public static synchronized Locale[] getAvailableLocales();
 public static BreakIterator getCharacterInstance();
 public static BreakIterator getCharacterInstance(Locale where);
 public static BreakIterator getLineInstance();
 public static BreakIterator getLineInstance(Locale where);
 public static BreakIterator getSentenceInstance();
 public static BreakIterator getSentenceInstance(Locale where);
 public static BreakIterator getWordInstance();
 public static BreakIterator getWordInstance(Locale where);
 // Instance Methods
 public Object clone();
 public abstract int current();
 public abstract int first();
 public abstract int following(int offset);
 public abstract CharacterIterator getText();
 public abstract int last();
 public abstract int next();
 public abstract int next(int n)
 public abstract int previous();
 public abstract void setText(CharacterIterator newText);
 public void setText(String newText);
}

Constants

DONE

public final static int DONE

Description

A constant that is returned by next() or previous() if there are no more breaks to be
returned.

Constructors

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_01.htm (5 of 13) [9/10/2001 16:08:50]

[Chapter 16] The java.text Package

BreakIterator

protected BreakIterator()

Description

This constructor should be called only from constructors of subclasses.

Class Methods

getAvailableLocales

public static synchronized Locale[] getAvailableLocales()

Returns

An array of Locale objects.

Description

This method returns an array of the Locale objects that can be passed to
getCharacterInstance(), getLineInstance(), getSentenceInstance(), or
getWordInstance().

getCharacterInstance

public static BreakIterator getCharacterInstance()

Returns

A BreakIterator appropriate for the default Locale.

Description

This method creates a BreakIterator that can locate character boundaries in the default
Locale.

public static BreakIterator getCharacterInstance(Locale where)

Parameters

where

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_01.htm (6 of 13) [9/10/2001 16:08:50]

[Chapter 16] The java.text Package

The Locale to use.

Returns

A BreakIterator appropriate for the given Locale.

Description

This method creates a BreakIterator that can locate character boundaries in the given
Locale.

getLineInstance

public static BreakIterator getLineInstance()

Returns

A BreakIterator appropriate for the default Locale.

Description

This method creates a BreakIterator that can locate line boundaries in the default Locale.

public static BreakIterator getLineInstance(Locale where)

Parameters

where

The Locale to use.

Returns

A BreakIterator appropriate for the given Locale.

Description

This method creates a BreakIterator that can locate line boundaries in the given Locale.

getSentenceInstance

public static BreakIterator getSentenceInstance()

Returns

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_01.htm (7 of 13) [9/10/2001 16:08:50]

[Chapter 16] The java.text Package

A BreakIterator appropriate for the default Locale.

Description

This method creates a BreakIterator that can locate sentence boundaries in the default
Locale.

public static BreakIterator getSentenceInstance(Locale where)

Parameters

where

The Locale to use.

Returns

A BreakIterator appropriate for the given Locale.

Description

This method creates a BreakIterator that can locate sentence boundaries in the given
Locale.

getWordInstance

public static BreakIterator getWordInstance()

Returns

A BreakIterator appropriate for the default Locale.

Description

This method creates a BreakIterator that can locate word boundaries in the default
Locale.

public static BreakIterator getWordInstance(Locale where)

Parameters

where

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_01.htm (8 of 13) [9/10/2001 16:08:50]

[Chapter 16] The java.text Package

The Locale to use.

Returns

A BreakIterator appropriate for the given Locale.

Description

This method creates a BreakIterator that can locate word boundaries in the given Locale.

Instance Methods

clone

public Object clone()

Returns

A copy of this BreakIterator.

Overrides

Object.clone()

Description

This method creates a copy of this BreakIterator and then returns it.

current

public abstract int current()

Returns

The current position of this BreakIterator.

Description

This method returns the current position of this BreakIterator. The current position is the
character index of the most recently returned boundary.

first

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_01.htm (9 of 13) [9/10/2001 16:08:50]

[Chapter 16] The java.text Package

public abstract int first()

Returns

The position of the first boundary of this BreakIterator.

Description

This method finds the first boundary in this BreakIterator and returns its character index.
The current position of the iterator is set to this boundary.

following

public abstract int following(int offset)

Parameters

offset

An offset into this BreakIterator.

Returns

The position of the first boundary after the given offset of this BreakIterator or DONE if
there are no more boundaries.

Throws

IllegalArgumentException

If offset is not a valid value for the CharacterIterator of this
BreakIterator.

Description

This method finds the first boundary after the given offset in this BreakIterator and returns
its character index.

getText

public abstract CharacterIterator getText()

Returns

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_01.htm (10 of 13) [9/10/2001 16:08:50]

[Chapter 16] The java.text Package

The CharacterIterator that this BreakIterator uses.

Description

This method returns a CharacterIterator that represents the text this BreakIterator
examines.

last

public abstract int last()

Returns

The position of the last boundary of this BreakIterator.

Description

This method finds the last boundary in this BreakIterator and returns its character index.
The current position of the iterator is set to this boundary.

next

public abstract int next()

Returns

The position of the next boundary of this BreakIterator or DONE if there are no more
boundaries.

Description

This method finds the next boundary in this BreakIterator after the current position and
returns its character index. The current position of the iterator is set to this boundary.

public abstract int next(int n)

Parameters

n

The boundary to return. A positive value moves to a later boundary a negative value
moves to a previous boundary; the value 0 does nothing.

Returns

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_01.htm (11 of 13) [9/10/2001 16:08:50]

[Chapter 16] The java.text Package

The position of the requested boundary of this BreakIterator.

Description

This method finds the nth boundary in this BreakIterator, starting from the current
position, and returns its character index. The current position of the iterator is set to this
boundary.

For example, next(-2) finds the third previous boundary. Thus next(1) is equivalent to
next(), next(-1) is equivalent to previous(), and next(0) does nothing.

previous

public abstract int previous()

Returns

The position of the previous boundary of this BreakIterator.

Description

This method finds the previous boundary in this BreakIterator, starting from the current
position, and returns its character index. The current position of the iterator is set to this
boundary.

setText

public abstract void setText(CharacterIterator newText)

Parameters

newText

The CharacterIterator that contains the text to be examined.

Description

This method tells this BreakIterator to examine the piece of text specified by the
CharacterIterator. This current position of this BreakIterator is set to first().

public void setText(String newText)

Parameters

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_01.htm (12 of 13) [9/10/2001 16:08:50]

[Chapter 16] The java.text Package

newText

The String that contains the text to be examined.

Description

This method tells this BreakIterator to examine the piece of text specified by the String,
using a StringCharacterIterator created from the given string. This current position of
this BreakIterator is set to first().

Inherited Methods

Method Inherited From Method Inherited From

equals(Object) Object finalize() Object

getClass() Object hashCode() Object

notify() Object notifyAll() Object

toString() Object wait() Object

wait(long) Object wait(long, int) Object

See Also

CharacterIterator, Locale, String, StringCharacterIterator

UnknownServiceException CharacterIterator

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_01.htm (13 of 13) [9/10/2001 16:08:50]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch15_26.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

[Chapter 17] The java.util Package

Chapter 17

17. The java.util Package
Contents:
Calendar
Date
Dictionary
EmptyStackException
Enumeration
EventListener
EventObject
GregorianCalendar
Hashtable
ListResourceBundle
Locale
MissingResourceException
NoSuchElementException
Observable
Observer
Properties
PropertyResourceBundle
Random
ResourceBundle
SimpleTimeZone
Stack
StringTokenizer
TimeZone
TooManyListenersException
Vector

The package java.util contains a number of useful classes and interfaces. Although the name of the
package might imply that these are utility classes, they are really more important than that. In fact, Java
depends directly on several of the classes in this package, and many programs will find these classes
indispensable. The classes and interfaces in java.util include:

● The Hashtable class for implementing hashtables, or associative arrays.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_01.htm (1 of 10) [9/10/2001 16:09:28]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch16_19.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_03.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_04.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_05.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_06.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_07.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_08.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_09.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_10.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_11.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_12.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_13.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_14.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_15.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_16.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_17.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_18.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_19.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_20.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_21.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_22.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_23.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_24.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_25.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_26.htm

[Chapter 17] The java.util Package

● The Vector class, which supports variable-length arrays.

● The Enumeration interface for iterating through a collection of elements.

● The StringTokenizer class for parsing strings into distinct tokens separated by delimiter
characters.

● The EventObject class and the EventListener interface, which form the basis of the new
AWT event model in Java 1.1.

● The Locale class in Java 1.1, which represents a particular locale for internationalization purposes.

● The Calendar and TimeZone classes in Java. These classes interpret the value of a Date object
in the context of a particular calendar system.

● The ResourceBundle class and its subclasses, ListResourceBundle and
PropertyResourceBundle, which represent sets of localized data in Java 1.1.

Figure 17.1 shows the class hierarchy for the java.util package.

Figure 17.1: The java.util package

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_01.htm (2 of 10) [9/10/2001 16:09:28]

[Chapter 17] The java.util Package

BitSet

Name

BitSet

Synopsis

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_01.htm (3 of 10) [9/10/2001 16:09:28]

[Chapter 17] The java.util Package

Class Name:

java.util.BitSet

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.lang.Cloneable, java.io.Serializable

Availability:

JDK 1.0 or later

Description

The BitSet class implements a set of bits. The set grows in size as needed. Each element of a BitSet has
a boolean value. When a BitSet object is created, all of the bits are set to false by default. The bits in a
BitSet are indexed by nonnegative integers, starting at 0. The size of a BitSet is the number of bits that
it currently contains. The BitSet class provides methods to set, clear, and retrieve the values of the
individual bits in a BitSet. There are also methods to perform logical AND, OR, and XOR operations.

Class Summary

public final class java.util.BitSet extends java.lang.Object
 implements java.lang.Cloneable, java.io.Serializable {
 // Constructors
 public BitSet();
 public BitSet(int nbits);
 // Instance Methods
 public void and(BitSet set);
 public void clear(int bit);
 public Object clone();
 public boolean equals(Object obj);
 public boolean get(int bit);
 public int hashCode();
 public void or(BitSet set);
 public void set(int bit);
 public int size();
 public String toString();

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_01.htm (4 of 10) [9/10/2001 16:09:28]

[Chapter 17] The java.util Package

 public void xor(BitSet set);
}

Constructors

BitSet

public BitSet()

Description

This constructor creates a BitSet with a default size of 64 bits. All of the bits in the BitSet are
initially set to false.

public BitSet(int nbits)

Parameters

nbits

The initial number of bits.

Description

This constructor creates a BitSet with a size of nbits. All of the bits in the BitSet are initially
set to false.

Instance Methods

and

public void and(BitSet set)

Parameters

set

The BitSet to AND with this BitSet.

Description

This method computes the logical AND of this BitSet and the specified BitSet and stores the
result in this BitSet. In other words, for each bit in this BitSet, the value is set to only true if
the bit is already true in this BitSet and the corresponding bit in set is true.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_01.htm (5 of 10) [9/10/2001 16:09:28]

[Chapter 17] The java.util Package

If the size of set is greater than the size of this BitSet, the extra bits in set are ignored. If the size
of set is less than the size of this BitSet, the extra bits in this BitSet are set to false.

clear

public void clear(int bit)

Parameters

bit

The index of the bit to clear.

Description

This method sets the bit at the given index to false. If bit is greater than or equal to the number of
bits in the BitSet, the size of the BitSet is increased so that it contains bit values. All of the
additional bits are set to false.

clone

public Object clone()

Returns

A copy of this BitSet.

Overrides

Object.clone()

Description

This method creates a copy of this BitSet and returns it. In other words, the returned BitSet has
the same size as this BitSet, and it has the same bits set to true.

equals

public boolean equals(Object obj)

Parameters

obj

The object to be compared with this object.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_01.htm (6 of 10) [9/10/2001 16:09:28]

[Chapter 17] The java.util Package

Returns

true if the objects are equal; false if they are not.

Overrides

Object.equals()

Description

This method returns true if obj is an instance of BitSet and it contains the same bit values as the
object this method is associated with. In other words, this method compares each bit of this BitSet
with the corresponding bit of obj. If any bits do not match, the method returns false. If the size of
this BitSet is different than obj, the extra bits in either this BitSet or in obj must be false for
this method to return true.

get

public boolean get(int bit)

Parameters

bit

The index of the bit to retrieve.

Returns

The boolean value of the bit at the given index.

Description

This method returns the value of the given bit. If bit is greater than or equal to the number of bits in
the BitSet, the method returns false.

hashCode

public int hashCode()

Returns

The hashcode for this BitSet.

Overrides

Object.hashCode()

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_01.htm (7 of 10) [9/10/2001 16:09:28]

[Chapter 17] The java.util Package

Description

This method returns a hashcode for this object.

or

public void or(BitSet set)

Parameters

set

The BitSet to OR with this BitSet.

Description

This method computes the logical OR of this BitSet and the specified BitSet, and stores the
result in this BitSet. In other words, for each bit in this BitSet, the value is set to true if the bit
is already true in this BitSet or the corresponding bit in set is true.

If the size of set is greater than the size of this BitSet, this BitSet is first increased in size to
accommodate the additional bits. All of the additional bits are initially set to false.

set

public void set(int bit)

Parameters

bit

The index of the bit to set.

Description

This method sets the bit at the given index to true. If bit is greater than or equal to the number of
bits in the BitSet, the size of the BitSet is increased so that it contains bit values. All of the
additional bits except the last one are set to false.

size

public int size()

Returns

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_01.htm (8 of 10) [9/10/2001 16:09:28]

[Chapter 17] The java.util Package

The size of this BitSet.

Description

This method returns the size of this BitSet, which is the number of bits currently in the set.

toString

public String toString()

Returns

A string representation of this BitSet.

Overrides

Object.toString()

Description

This method returns a string representation of this BitSet. The string lists the indexes of all the bits
in the BitSet that are true.

xor

public void xor(BitSet set)

Parameters

set

The BitSet to XOR with this BitSet.

Description

This method computes the logical XOR (exclusive OR) of this BitSet and the specified BitSet
and stores the result in this BitSet. In other words, for each bit in this BitSet, the value is set to
true only if the bit is already true in this BitSet, and the corresponding bit in set is false, or
if the bit is false in this BitSet and the corresponding bit in set is true.

If the size of set is greater than the size of this BitSet, this BitSet is first increased in size to
accommodate the additional bits. All of the additional bits are initially set to false.

Inherited Methods

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_01.htm (9 of 10) [9/10/2001 16:09:28]

[Chapter 17] The java.util Package

Method Inherited From Method Inherited From

finalize() Object getClass() Object

notify() Object notifyAll() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Cloneable, Serializable

Vector Calendar

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_01.htm (10 of 10) [9/10/2001 16:09:28]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_26.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

[Chapter 18] The java.util.zip Package

Chapter 18

18. The java.util.zip Package
Contents:
CheckedInputStream
CheckedOutputStream
Checksum
CRC32
DataFormatException
Deflater
DeflaterOutputStream
GZIPInputStream
GZIPOutputStream
Inflater
InflaterInputStream
ZipEntry
ZipException
ZipFile
ZipInputStream
ZipOutputStream

The package java.util.zip is new as of Java 1.1. It contains classes that provide support for
general-purpose data compression and decompression using the ZLIB compression algorithms. The
important classes in java.util.zip are those that provide the means to read and write data that is
compatible with the popular GZIP and ZIP formats: GZIPInputStream, GZIPOutputStream,
ZipInputStream, and ZipOutputStream. Figure 18.1 shows the class hierarchy for the
java.util.zip package.

Figure 18.1: The java.text package

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_01.htm (1 of 7) [9/10/2001 16:10:00]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_26.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_03.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_04.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_05.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_06.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_07.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_08.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_09.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_10.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_11.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_12.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_13.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_14.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_15.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_16.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_17.htm

[Chapter 18] The java.util.zip Package

It is easy to use the GZIP and ZIP classes because they subclass java.io.FilterInputStream
and java.io.FilterOutputStream. For example, to decompress GZIP data, you simply create
a GZIPInputStream around the input stream that represents the compressed data. As with any
InputStream, you could be reading from a file, a socket, or some other data source. You can then
read decompressed data by calling the read() methods of the GZIPInputStream. The following
code fragment creates a GZIPInputStream that reads data from the file sample.gz :

FileInputStream inFile;
try {
 inFile = new FileInputStream("sample.gz");
} catch (IOException e) {
 System.out.println("Couldn't open file.");
 return;
}
GZIPInputStream in = new GZIPInputStream(inFile);

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_01.htm (2 of 7) [9/10/2001 16:10:00]

[Chapter 18] The java.util.zip Package

// Now use in.read() to get decompressed data.

Similarly, you can compress data using the GZIP format by creating a GZIPOutputStream around
an output stream and using the write() methods of GZIPOutputStream. The following code
fragment creates a GZIPOutputStream that writes data to the file sample.gz :

FileOutputStream outFile;
try {
 outFile = new FileOutputStream("sample.gz");
} catch (IOException e) {
 System.out.println("Couldn't open file.");
 return;
}
GZIPOutputStream out = new GZIPOutputStream(outFile);
// Now use out.write() to write compressed data.

A ZIP file, or archive, is not quite as easy to use because it may contain more than one compressed
file. A ZipEntry object represents each compressed file in the archive. When you are reading from
a ZipInputStream, you must first call getNextEntry() to access an entry, and then you can
read decompressed data from the stream, just like with a GZIPInputStream. When you are writing
data to a ZipOutputStream, use putNextEntry() before you start writing each entry in the
archive. The ZipFile class is provided as a convenience for reading an archive; it allows
nonsequential access to the entries in a ZIP file.

The remainder of the classes in java.util.zip exist to support the GZIP and ZIP classes. The
generic Deflater and Inflater classes implement the ZLIB algorithms; they are used by
DeflaterOutputStream and InflaterInputStream to decompress and compress data. The
Checksum interface and the classes that implement it, Adler32 and CRC32, define algorithms that
generate checksums from stream data. These checksums are used by the CheckedInputStream
and CheckedOutputStream classes.

Adler32

Name

Adler32

Synopsis

Class Name:

java.util.zip.Adler32

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_01.htm (3 of 7) [9/10/2001 16:10:00]

[Chapter 18] The java.util.zip Package

Superclass:

java.lang.Object

Immediate Subclasses:

None

Interfaces Implemented:

java.util.zip.Checksum

Availability:

New as of JDK 1.1

Description

The Adler32 class implements the Checksum interface using the Adler-32 algorithm. This
algorithm is significantly faster than CRC-32 and almost as reliable.

Class Summary

public class java.util.zip.Adler32 extends java.lang.Object
 implements java.util.zip.Checksum {
 // Constructors
 public Adler32();

 // Instance Methods
 public long getValue();
 public void reset();
 public void update(int b);
 public void update(byte[] b);
 public native void update(byte[] b, int off, int len);
}

Constructors

Adler32

public Adler32()

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_01.htm (4 of 7) [9/10/2001 16:10:00]

[Chapter 18] The java.util.zip Package

Description

This constructor creates an Adler32 object.

Instance Methods

getValue

public long getValue()

Returns

The current checksum value.

Implements

Checksum.getValue()

Description

This method returns the current value of this checksum.

reset

public void reset()

Implements

Checksum.reset()

Description

This method resets the checksum to its initial value, making it appear as though it has not been
updated by any data.

update

public void update(int b)

Parameters

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_01.htm (5 of 7) [9/10/2001 16:10:00]

[Chapter 18] The java.util.zip Package

b

The value to be added to the data stream for the checksum calculation.

Implements

Checksum.update(int)

Description

This method adds the specified value to the data stream and updates the checksum value. The
method uses only the lowest eight bits of the given int.

public void update(byte[] b)

Parameters

b

An array of bytes to be added to the data stream for the checksum calculation.

Description

This method adds the bytes from the specified array to the data stream and updates the
checksum value.

public native void update(byte[] b, int off, int len)

Parameters

b

An array of bytes to be added to the data stream for the checksum calculation.

off

An offset into the byte array.

len

The number of bytes to use.

Implements

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_01.htm (6 of 7) [9/10/2001 16:10:00]

[Chapter 18] The java.util.zip Package

Checksum.update(byte[], int, int)

Description

This method adds len bytes from the specified array, starting at off, to the data stream and
updates the checksum value.

Inherited Methods

Method Inherited From Method Inherited From

clone() Object equals(Object) Object

finalize() Object getClass() Object

hashCode() Object notify() Object

notifyAll() Object toString() Object

wait() Object wait(long) Object

wait(long, int) Object

See Also

Checksum, CRC32

Vector CheckedInputStream

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_01.htm (7 of 7) [9/10/2001 16:10:00]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch17_26.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_02.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

[Appendix A] The Unicode 2.0 Character Set

Appendix A

A. The Unicode 2.0 Character Set
Characters Description

\u0000 - \u1FFF Alphabets

\u0020 - \u007F Basic Latin

\u0080 - \u00FF Latin-1 supplement

\u0100 - \u017F Latin extended-A

\u0180 - \u024F Latin extended-B

\u0250 - \u02AF IPA extensions

\u02B0 - \u02FF Spacing modifier letters

\u0300 - \u036F Combining diacritical marks

\u0370 - \u03FF Greek

\u0400 - \u04FF Cyrillic

\u0530 - \u058F Armenian

\u0590 - \u05FF Hebrew

\u0600 - \u06FF Arabic

\u0900 - \u097F Devanagari

\u0980 - \u09FF Bengali

\u0A00 - \u0A7F Gurmukhi

\u0A80 - \u0AFF Gujarati

\u0B00 - \u0B7F Oriya

\u0B80 - \u0BFF Tamil

\u0C00 - \u0C7F Telugu

\u0C80 - \u0CFF Kannada

\u0D00 - \u0D7F Malayalam

\u0E00 - \u0E7F Thai

\u0E80 - \u0EFF Lao

\u0F00 - \u0FBF Tibetan

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/appa_01.htm (1 of 3) [9/10/2001 16:10:38]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_17.htm

[Appendix A] The Unicode 2.0 Character Set

\u10A0 - \u10FF Georgian

\u1100 - \u11FF Hangul Jamo

\u1E00 - \u1EFF Latin extended additional

\u1F00 - \u1FFF Greek extended

\u2000 - \u2FFF Symbols and punctuation

\u2000 - \u206F General punctuation

\u2070 - \u209F Superscripts and subscripts

\u20A0 - \u20CF Currency symbols

\u20D0 - \u20FF Combining diacritical marks for symbols

\u2100 - \u214F Letterlike symbols

\u2150 - \u218F Number forms

\u2190 - \u21FF Arrows

\u2200 - \u22FF Mathematical operators

\u2300 - \u23FF Miscellaneous technical

\u2400 - \u243F Control pictures

\u2440 - \u245F Optical character recognition

\u2460 - \u24FF Enclosed alphanumerics

\u2500 - \u257F Box drawing

\u2580 - \u259F Block elements

\u25A0 - \u25FF Geometric shapes

\u2600 - \u26FF Miscellaneous symbols

\u2700 - \u27BF Dingbats

\u3000 - \u33FF CJK auxiliary

\u3000 - \u303F CJK symbols and punctuation

\u3040 - \u309F Hiragana

\u30A0 - \u30FF Katakana

\u3100 - \u312F Bopomofo

\u3130 - \u318F Hangul compatibility Jamo

\u3190 - \u319F Kanbun

\u3200 - \u32FF Enclosed CJK letters and months

\u3300 - \u33FF CJK compatibility

\u4E00 - \u9FFF
CJK unified ideographs: Han characters used in China, Japan, Korea, Taiwan,
and Vietnam

\uAC00 - \uD7A3 Hangul syllables

\uD800 - \uDFFF Surrogates

\uD800 - \uDB7F High surrogates

\uDB80 - \uDBFF High private use surrogates

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/appa_01.htm (2 of 3) [9/10/2001 16:10:38]

[Appendix A] The Unicode 2.0 Character Set

\uDC00 - \uDFFF Low surrogates

\uE000 - \uF8FF Private use

\uF900 - \uFFFF Miscellaneous

\uF900 - \uFAFF CJK compatibility ideographs

\uFB00 - \uFB4F Alphabetic presentation forms

\uFB50 - \uFDFF Arabic presentation forms-A

\uFE20 - \uFE2F Combing half marks

\uFE30 - \uFE4F CJK compatibility forms

\uFE50 - \uFE6F Small form variants

\uFE70 - \uFEFE Arabic presentation forms-B

\uFEFF Specials

\uFF00 - \uFFEF Halfwidth and fullwidth forms

\uFFF0 - \uFFFF Specials

ZipOutputStream The UTF-8 Encoding

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/appa_01.htm (3 of 3) [9/10/2001 16:10:38]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch18_17.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

[Appendix B] The UTF-8 Encoding

Appendix B

B. The UTF-8 Encoding
Internally, Java always represents Unicode characters with 16 bits. However, this is an inefficient use
of bits when most of the characters being used only need eight bits or less to be represented, which is
the case for text written in English and a number of other languages. The UTF-8 encoding provides a
more compact way of representing sequences of Unicode when most of the characters are 7-bit ASCII
characters. Therefore, UTF-8 is often a more efficient way of storing or transmitting text than using
16 bits for every character.

The UTF-8 encoding is a variable-width encoding of Unicode characters. Seven-bit ASCII characters
(\u0000-\u007F) are represented in one byte, so they remain untouched by the encoding (i.e., a
string of ASCII characters is a legal UTF-8 string). Characters in the range \u0080-\u07FF are
represented in two bytes, and characters in the range \u0800-\uFFFF are represented in three bytes.
Java actually uses a slightly modified version of UTF-8, since it encodes \u0000 using two bytes.
The advantage of this approach is that a UTF-8 encoded string never contains a null character.

Java provides support for reading characters in the UTF-8 encoding with the readUTF() methods in
RandomAccessFile, DataInputStream, and ObjectInputStream . The writeUTF()
methods in RandomAccessFile, DataOutputStream, and ObjectOutputStream handle
writing characters in the UTF-8 encoding.

The UTF-8 encoding begins with an unsigned 16-bit quantity that indicates the number of bytes of
data that follow. This length value is in the format read by the readUnsignedShort() methods
the above input classes and written by the writeUnsignedShort() methods in the above output
classes.

The rest of the bytes are variable-length characters. A 1-byte character always has its high-order bit
set to 0. A 2-byte character always begins with the high-order bits 110, while a 3-byte character starts
with the high-order bits 1110. The second and third bytes of 2- and 3-byte characters always have
their high-order bits set to 10, which makes them easy to distinguish from 1-byte characters and the
initial bytes of 2- and 3-byte characters. This encoding scheme leaves room for seven bits of data in 1-
byte characters, 11 bits of data in 2-byte characters, and 16 bits of data in 3-byte characters.

The table below summarizes the UTF-8 encoding:

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/appb_01.htm (1 of 2) [9/10/2001 16:10:58]

[Appendix B] The UTF-8 Encoding

Bytes in Minimum Maximum # of Binary Byte Sequence

Character Character Character Data Bits (x = data bit)

1 \u0000 \u007F 7 0xxxxxxx

2 \u0080 \u07FF 11 110xxxxx 10xxxxxx

3 \u0800 \uFFFF 16 1110xxxx 10xxxxxx 10xxxxxx

The Unicode 2.0 Character
Set

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/appb_01.htm (2 of 2) [9/10/2001 16:10:58]

http://rtfm.vn.ua/prog/tech/orb/books/java/exp/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/awt/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/langref/index.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/javanut/index.htm

Index

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Symbols and Numbers
+ (concatenation) operator : String Concatenation

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copyright © 1996 O'Reilly & Associates, Inc. All Rights Reserved.

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_0.htm [9/10/2001 16:11:33]

http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_a.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_b.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_c.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_d.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_e.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_f.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_g.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_h.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_i.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_j.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_k.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_l.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_m.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_n.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_o.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_p.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_q.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_r.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_s.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_t.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_u.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_v.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_w.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_x.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_y.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_z.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/ch02_03.htm#JFC-CH-2-SECT-3
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_a.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_b.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_c.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_d.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_e.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_f.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_g.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_h.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_i.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_j.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_k.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_l.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_m.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_n.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_o.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_p.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_q.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_r.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_s.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_t.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_u.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_v.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_w.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_x.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_y.htm
http://rtfm.vn.ua/prog/tech/orb/books/java/fclass/index/idx_z.htm

	rtfm.vn.ua
	Java Fundamental Classes Reference
	Preface
	[Chapter 1] Introduction
	[Chapter 2] Strings and Related Classes
	[Chapter 3] Threads
	[Chapter 4] Exception Handling
	[Chapter 5] Collections
	[Chapter 6] I/O
	[Chapter 7] Object Serialization
	[Chapter 8] Networking
	[Chapter 9] Security
	[Chapter 10] Accessing the Environment
	[Chapter 11] The java.io Package
	[Chapter 12] The java.lang Package
	[Chapter 13] The java.lang.reflect Package
	[Chapter 14] The java.math Package
	[Chapter 15] The java.net Package
	[Chapter 16] The java.text Package
	[Chapter 17] The java.util Package
	[Chapter 18] The java.util.zip Package
	[Appendix A] The Unicode 2.0 Character Set
	[Appendix B] The UTF-8 Encoding
	Index

