
DesignCon 2004

SerDes Architectures and
Applications

Dave Lewis, National Semiconductor Corporation

Abstract

When most system designers look at serializer/deserializer (SerDes) devices, they often
compare speed and power without considering how the SerDes works and what it
actually does with their data. Internal SerDes architecture may seem irrelevant, but this
overlooked item can dictate many important system parameters like system topology,
protocol overhead, data formatting and flow, latency, clocking and timing requirements,
and the need for additional buffering as well as logic. These issues can have a big impact
on system cost, performance, and efficiency.

There are at least four distinct SerDes architectures. They include: parallel clock SerDes,
8b/10 SerDes, embedded clock bits (alias start-stop bit) SerDes, and bit interleaving
SerDes. Each one has evolved over the years to address a certain set of system design
issues. This paper unveils the inner workings of these four SerDes architectures,
examines their differences, and shows how each fits an important range of today’s
applications.

Author(s) Biography

Dave Lewis is a Technical Marketing Manager in National Semiconductor's PC &
Networking Group, handling high-speed interface products. He is the author of many
articles and design guides including the original "LVDS Owner's Manual." He holds a
BSEE from the University of California at San Diego.

Introduction

Serial interconnects form the critical backbone of modern communications systems, so
the choice of serializer/deserializer (SerDes) can have a big impact on system cost and
performance. While the maze of choices may seem confusing at first, SerDes devices fall
into a few basic architectures, each tailored to specific application requirements. A basic
understanding of these architectural differences enables the designer to quickly find the
right SerDes for the application. In this article we examine four distinct SerDes
architectures and show how each plays a vital role in today’s systems.

SerDes Architectures

Parallel Clock SerDes

Figure 1. Parallel clock serializer coding example.

Parallel clock SerDes are normally used to serialize wide “data-address-control” parallel
buses such as PCI, UTOPIA, processor buses, and control buses, etc. Instead of tackling
the whole bus with one multiplexer, the parallel clock SerDes architecture employs a
bank of n-to-1 multiplexers, each serializing its section of the bus separately. The
resulting serial data streams travel to the receiver in parallel with an additional clock
signal pair that the receiver uses to latch in and recover the data. Since clock and data
travel on multiple pairs, pair-to-pair skew must be minimized for proper deserialization.

Embedded Clock (Start-Stop) Bits SerDes

Figure 2. 18-bit embedded clock bits serializer coding example.

The embedded clock bits architecture transmitter serializes the data bus and the clock
onto one serial signal pair. Two clock bits, one low and one high, are embedded into the
serial stream every cycle, framing the start and end of each serialized word (hence the
alternative name “start-stop bit” SerDes) and creating a periodic rising edge in the serial
stream. Data payload word widths are not constrained to byte multiples; 10- and 18- bit
widths are popular bus widths.

Figure 3. Periodic embedded clock transition.

After powering up, the receiver automatically searches for the periodic embedded clock
rising edge. Since the data payload bits change value over time while the clock bits do
not, the receiver is able to locate the unique clock edge and synchronize to it. Once
locked, the receiver recovers data from the serial stream regardless of payload data
pattern. This automatic synchronization capability is commonly called “lock to random
data” and requires no external system intervention. This is an especially useful feature in
systems where the receiver is in a remote module not under direct system control. Since
the receiver is locked to the incoming embedded clock and not an external reference
clock, jitter requirements for both transmitter and receiver input clocks are relaxed
significantly.

8b/10b SerDes

Figure 4. 8b/10b serializer coding example.

The 8-bit/10-bit (8b/10b) serializer maps each parallel data byte to a 10-bit code and
serializes the 10-bit code onto a serial pair. The 10-bit transmission codes were developed
by IBM Corporation1 in the early 1980’s and guarantee both multiple edge transitions
every cycle as well as DC balance (balanced number of transmitted ones and zeros).
Frequent edge transitions in the stream allow the receiver to synchronize to the incoming
data stream. DC balance facilitates driving AC-coupled loads, long cables and optical
modules.

In order for the receiver to locate the 10-bit code word boundaries in the serial stream, the
transmitter first marks one such boundary by sending a special symbol called a comma
character. The unique bit sequence in this comma character never appears in normal data
traffic and acts as reliable a marker for receiver code alignment. Once code alignment is
accomplished, the receiver maps the 10-bit codes back to byte data, flagging an error if it
detects an invalid 10b code.

Most 8b/10b deserializer architectures monitor lock by comparing the recovered clock
frequency to an external reference clock. As a result, they typically require tight external
clock source frequency and jitter control.

Bit Interleaving SerDes

Figure 5. Bit interleaving serializer coding example.

Bit interleaving SerDes multiplex several slower SONET/SDH or 8b/10b serial streams
into one faster serial stream by interleaving the bits. The receiver demultiplexes the bits
back into the original slower streams. Note that a serial stream coming into transmitter
input channel 1 may not come out on receiver output channel 1. This is not regarded as a
problem in the applications because the serial streams contain independent cell or packet
data that is processed downstream. Due to their high-speed nature and low jitter
requirements, bit interleaving SerDes require very precise external clocks.

Applications

Parallel Clock SerDes

Parallel clock SerDes are normally used to serialize traditional wide
“data+address+control” buses, acting as a “virtual ribbon cable” unidirectional bridge.

Figure 6. Parallel clock SerDes accommodate traditional wide parallel buses with address

and control as well as data signals.

Despite requiring multiple serial pairs, parallel clock SerDes still deliver benefits over
non-serialization such as fewer wires (especially grounds), lower power, longer cable
driving capability, lower noise/EMI, and lower cable/connector costs. Not being confined
to using one serial pair, parallel clock SerDes can be made arbitrarily wide and also avoid
the design issues associated with ultra high speed serial data rates. Parallel clock SerDes
offer excellent price/performance and are often the only practical way to transmit a
traditional wide parallel bus over several meters of cable. Common parallel bus widths
for these chipsets include 21-, 28-, and 48- bits.

Figure 7. Unidirectional rack-to-rack processor bus extension.

Common applications include stackable Ethernet switch expansion, rack-to-rack and
shelf-to-shelf datacom/telecom interconnect, and video/camera links.

Embedded Clock (Start-Stop) Bits SerDes

Embedded clock bits SerDes are especially well suited to applications that transmit raw
data plus other signals such as control, parity, frame, sync, status, etc. An application
example for serializing 18 bits is shown below. The 18-bit transmitter serializes not only
the data but also two extra bits of additional information such as parity and frame. These
bits are serialized along with the data at the normal A/D sampling rate so no data
buffering or extra logic is required.

Figure 8. Signal processing system example implementations based on DS92LV18
SerDes (above) and 8b/10b SerDes (below).

Using a byte-oriented 8b/10b SerDes in the same application would be more complicated.
The extra non-byte-oriented control information must be buffered and sent in byte
format. A K28.5 comma character must also be sent at the start of link synchronization,
requiring additional logic. These extra “non-data” bytes require the SerDes to operate
faster than the data conversion rate, placing higher demands on backplane or cable design
and also requiring some kind of idle insertion/deletion flow control mechanism. While in
data communications systems such buffering typically already exists, in many non-
datacom applications this extra processing and buffering must be added.

Another feature of the embedded clock bits SerDes is automatic receiver lock to random
data. This is an especially useful feature in systems where the receiver is in a remote
module not under direct system control and also in systems where one transmitter
broadcasts to multiple receivers. In the broadcast case, a new receiver module inserted
onto the bus will lock to random data without the need to interrupt traffic to the other
receivers by sending training patterns or characters.

Figure 9. Automatic receiver lock to random data in a broadcast topology during hot
insertion.

The embedded clock bits deserializer locks to and tracks the incoming embedded clock
rising edge, requiring a reference clock only during initial synchronization to prevent
lock to a false harmonic. This relaxes the jitter requirement on both transmit and
reference clocks by at least an order of magnitude (see table below), reducing the cost of
the clock oscillators and clock distribution networks. In many cases, an inexpensive PC-
grade oscillator can be used to generate the receiver reference clock.

 Embedded Clock
Bits SerDes

Other SerDes

Serializer Transmit Input
Clock Jitter 80 or 120 ps RMS 5 or 10 ps RMS

Deserializer Reference
Clock vs. Serializer
Transmit Clock Disparity

± 50000 PPM ± 100 PPM

Figure 10. Comparison illustrating relaxed clocking requirements of embedded clock bits

SerDes versus typical SerDes chipsets.

Embedded clock bits SerDes are well suited to non-byte-oriented applications such as
applications requiring transmission of unpacketized raw data plus control signals.
Examples include signal-processing systems such as base stations, automotive

imaging/video and sensor systems where an analog-to-digital converter, camera or
display communicates raw data with the processing unit at the other end of the link.

8b/10b SerDes

8b/10b SerDes are well suited to serializing byte-oriented data such as cell or packet
traffic across backplanes, cable and fiber. Many standards such as Ethernet, Fibre
Channel, InfiniBand and others use the popular 8b/10b coding at rates of 1.0625, 1.25,
2.5, and 3.125 Gbps and many SerDes are available which span these data rates.

8b/10b coding has a maximum run length (the maximum number of consecutive ones or
zeros in the serial stream) of 5 bits. This limits the spectral content of the serial stream
that can ease the task of suppressing electromagnetic radiation. For example, given a 1
Gbps line rate after 8b/10b coding, the maximum and minimum 1st harmonic frequencies
are 1 GHz and (1 GHz)/5 = 200 MHz. (The max and min fundamental frequencies are
therefore 500 and 100 MHz, respectively.)

Minimizing the run length can also reduce deterministic jitter due to inter-symbol
interference (ISI) on lossy interconnects, though this effect is small for most applications.
ISI is caused by interconnects that attenuate higher frequencies more than low
frequencies, “smearing” longer consecutive bits sequences into surrounding isolated bits.

Figure 11. ISI versus signaling rate and run length for a typical FR4 backplane.

The graph above shows a typical FR4 backplane S21 loss versus frequency curve.
Plotting the max and min frequencies for the 1st harmonics, we see the slope between the
points—hence the ISI—increases dramatically with signaling rate due to the sharp roll off
in loss above 3 GHz. Increasing the run length (and therefore decreasing the min
frequency), however, does not have a large effect on ISI since the loss curve is relatively
flat at low frequencies.

8b/10b serial streams are DC balanced, meaning the running disparity—or the number of
ones sent minus the number of zeros sent—is on average equal to zero. 8b/10b data code
words have a disparity of +2, 0, or –2, so the running disparity of an 8b/10b serial data
stream always lies between +2 and –2.

Figure 12. 8b/10b running disparity example.

DC balance coding as well as short run length are necessary for reliably driving AC
coupled environments and fiber optic modules. This is a major advantage of 8b/10b
coding as more serial interconnects go optical. In addition, DC balance can help extend
cable drive capability.

8b/10b coding also provides a way to check errors and send control information. As
described earlier, most of the possible 10-bit code permutations are not valid 8b/10b data
code words. This allows 8b/10b deserializers to flag invalid codes and provide a level of
error checking similar to using a parity bit. While this scheme does not count total bit
errors, it is a good way to monitor serial link performance. In addition to data code
words, many standards also define control words such as packet/frame markers, fault
flags, alignment characters, etc. These control code words help systems assemble and
disassemble packets, making 8b/10b coding very popular in communications data
processing systems.

Bit Interleaving SerDes

Bit interleaving SerDes are commonly used in telecom transmission equipment such as
add-drop multiplexers and pseudo-optical switches to aggregate SONET/SDH streams
for transmission over cable or fiber to the core network. Common serializer
configurations include 4 x 155 Mbps to 622 Mbps and 4 x 622 Mbps to 2.488 Gbps
mux/demux functions.

Figure13. Bit interleaving SerDes 4 x STM1 (155 Mbps) to 1 x STM4 (622 Mbps)

application example.

Other types of bit interleaving SerDes chips multiplex 8b/10b-coded streams and are
employed in switch and router equipment to get more bandwidth through existing
backplanes. In the example below, a bit interleaving SerDes is used to multiplex up to 4 x
1.25 Gbps 8b/10b LVDS streams into one 5 Gbps CML serial signal. Backward
compatibility to 1.25 and 2.5 Gbps speeds supports existing low and medium speed line
cards while the 5 Gbps maximum rate enables the router to support high capacity line
cards without chassis redesign.

Figure 14. Bit interleaving SerDes router application example.

Comparison Overview

Each SerDes architecture has its own advantages making it well suited to certain
applications.

Parallel clock SerDes are inexpensive and conveniently serialize wide buses. The major
drawback is the use of multiple serial pairs, requiring more wiring and low pair-to-pair
skew.

Embedded clock bit SerDes are well suited for applications needing a couple of extra bits
and/or the lock to random data feature. They also have relaxed transmitter and reference
clock requirements for systems with inexpensive clock sources. The lack of DC balance
coding can be a disadvantage with AC coupling and when driving optical modules.

8b/10b SerDes work well with byte-oriented cell or packet data. The 8b/10b coding
guarantees sufficient edge transition density in the serial stream as well as DC balance for
driving AC-coupled interconnect and fiber optics. When using 8b/10b SerDes with bus

widths that are not byte multiples, extra design effort is required to pack the bus into
bytes and run the SerDes link the increased speed.

Bit interleaving SerDes are required for many SONET/SDH applications and also
datacom applications where it’s imperative to get the most data through the fewest pairs.
Such performance, however, comes at a higher price and tighter jitter requirements.

Technology Advantages Disadvantages
Parallel Clock SerDes Serializes wide buses

Low cost
Automatic transmitter/receiver
sync

More pairs/wires needed
Tight pair-to-pair skew
requirements

Embedded (Start-Stop)
Bit SerDes

10- and 18- bit widths available
Lock to random data capability
Relaxed clocking requirements

No inherent DC balance
Not well suited for AC-
coupled or fiber applications

8b/10b SerDes DC balance coding
Works well in AC-coupled & fiber
environments
Widely available

Byte-oriented
Tight clocking requirements
Requires comma for sync

Bit Interleaving
SerDes

Aggregates existing slower serial
streams
SONET/SDH-compliant versions

High speed design challenges
Higher cost

Figure 15. Comparison overview of advantages/disadvantages of SerDes architectures.

Conclusion

Over the past ten years, several SerDes architectures have flourished to meet the
diverging needs of a growing number of applications. Understanding the advantages and
disadvantages of each allows the designer to fit the SerDes to the application versus the
application to the SerDes in order to maximize performance and minimize system cost
and complexity.

1 A. X. Widmer and P. A. Franaszek, A DC-Balanced, Partitioned-Block, 8B/10B
Transmission Code, IBM J. Res. Develop. Vol. 27, No. 5, 1983

2 LVDS Owner’s Manual Design Guide, National Semiconductor Corporation, 2001

