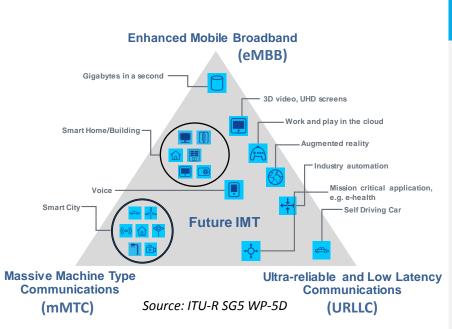

CREATING THE LIVING NETWORK...

Wireless Access and Systems
Technologies for Next
Generation Customers

Speaker: Benoît Pelletier, InterDigital Canada Ltée.



How is 5G Different from Previous Generations?

5G Use Cases and Key Requirements

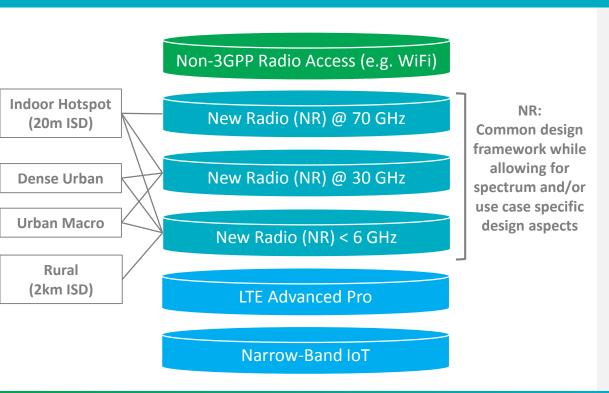
Support for different services having diverging requirements is a key challenge for 5G Systems

eMBB

- Peak Data Rate of 20 Gbps
- 1 ms Latency (air interface)
- 10 *Tbps* per *k m*2 Area Traffic
- Indoor/hotspot and enhanced wide-area coverage

mMTC

- Low data rate (1 to 100 kbps)
- High device density (up to 200,000/km2)
- Latency: seconds to hours
- Low power: up to 15 years battery life


URLLC

- Low to medium data rates (50 kbps to 10 Mbps)
- < 1 ms air interface latency</p>
- 99.999% reliability and availability
- High mobility

5G: A Multi-Layer Radio Network

5G will be designed with native support for connectivity across multiple radio layers

- Radio Layers could be deployed as "Standalone" or using multi-connectivity framework
- Framework should enable splitting of data and control functions across layers
- 5G operators should have flexibility to deploy radio layers based on their individual roll out plans for 5G services and spectrum availability
- Mature 5G networks (i.e. 2025+) envisioned to include all radio layers working together
- LTE and NB-IoT expected to evolve as a components within 5G networks

5G New Radio (NR) – Whole New System Design

3GPP designing new non-backwards compatible air interface and radio network architecture for 5G

NR Terminal Devices

NR Air Interface

NR Radio Access Network

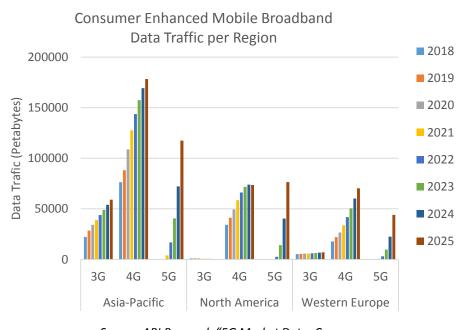
New L2/L3 User and Control Plan Architecture and Protocols

- More efficient initial access protocols (e.g. on-demand system information)
- New mobility management approaches (e.g. terminal-centric mobility)
- New protocol function split across network nodes

New Physical Layer Design

- New non-backwards compatible physical layer: waveform, multiple access scheme,
- Massive number of antennas (i.e. massive MIMO)
- Exploiting new spectrum: mmWave, unlicensed/shared spectrum, ...

New Radio Access Network Architecture


- Centralized/Cloud RAN architecture
- Fronthaul protocol split and design
- Tight interworking with LTF

*Transmission/Reception Point

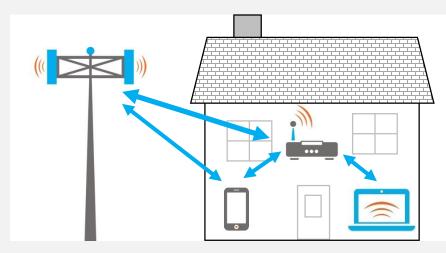
5G Use Case Spotlight: eMBB

Enhanced Mobile Broadband (eMBB) expected to drive early deployment of 5G service

Source: ABI Research "5G Market Data: Consumer Enhanced Mobile Broadband" Report, March 2016

- Asia-Pacific region expected to take the lead in terms of 5G eMBB service roll out
 - → Japan using Tokyo 2020 Olympic games as early 5G technology showcase
- Many new use cases beyond today's mainstream mobile broadband services:
 - Pervasive video (e.g. high resolution video communication, UHD multimedia streaming, ...)
 - Smart office environment (i.e. all devices wirelessly connected)
 - High-speed mobile broadband (e.g. eMBB in car, train, airplane)
 - Virtual Reality and Augmented Reality
 - And more...

5G Use Case Spotlight: Indoor Connectivity


5G design requirements for eMBB could enable connectivity to and inside the home

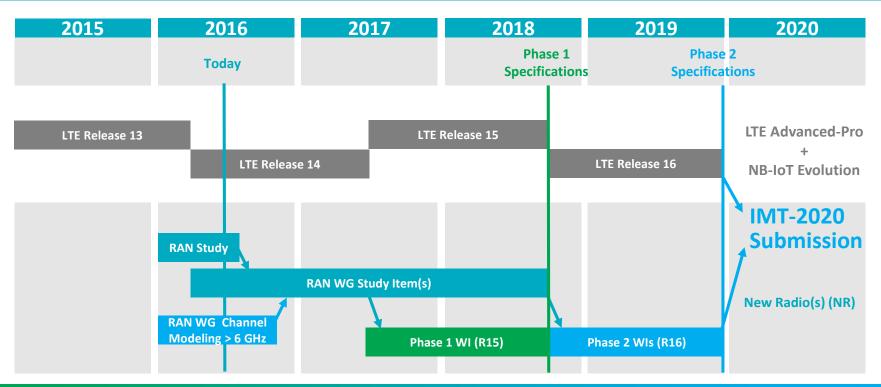
Scenario 1: 5G Connectivity to the home

- Large bandwidth in mmWave spectrum could provide connectivity to access point within the home
- Other technology (e.g. WiFi) used for connectivity inside home

Scenario 2: 5G Connectivity inside the home

- 5G connectivity to access point within the home
- Devices inside home connected using 5G NR (e.g. mmWave unlicensed or shared spectrum) through access point <u>and</u> 3GPP radio network

IoT Connectivity: Cellular-Based Technologies


Optimal access technology depends on the nature and needs of the IoT application

	Increasing coverage and battery life			
	Increasing data rates and complexity			
	LTE Cat 1	LTE Cat 0/Cat M	EC-GSM	NB-IoT
Standards Release	3GPP Release 8 (initial LTE release)	3GPP Releases 12-13	3GPP Release 13	3GPP Release 13
Data Rates	Up to 10 Mbps Downlink and 5 Mbps Uplink	~ 1 Mbps	~ 500 kbps	~ 100 kbps
Highlights	Early market lead for IoT services on 4G networks	 Supports wide- range of IoT services Co-exists with MBB 	 Supported on legacy 2G equipment 20 dB coverage improvement of 2G 	 Native low power wide area coverage technology Up to 10 year battery life

3GPP RAN Standardization Timeline

Next Generation System Specification Work to Complete for 2020

5G Timeline: Early Commercial Trials and Rollouts

Looking back at what happened with 4G, will early rollouts be 5G or 4.75G?

Verizon forms the Verizon 5G Technical Forum (V5GTF) in 2015

- Creating platform for Verizon's 28/39 GHz fixed wireless access Testing mmW equipment with Cisco, Ericsson, Nokia, Samsung, ... trials and deployments
- Announced completion of Verizon 5G Specifications in July 2016

AT&T

- Conducting 5G trials with the intent to "pivot to compliant
- commercial deployments once 5G technology standards are set" Trialing mmW technology at 15 GHz and 28 GHz in Austin, Texas with Ericsson and Intel

Bell Canada trials 5G with Nokia

 Demonstrated 6x data speeds compared to 4G in 73 GHz band

- 2018 Pyeongchang Winter Olympics, South Korea Ministry of Science, ICT & Future Planning, KT, SKT, ...
- Demo broadcasting equipment, holograms, virtual reality, safety Projecting: 16,000 smartphones, 13,000 PCs, 3,500 WiFi spots and

- 2018 FIFA World Cup, Russia
- MTS and Ericsson team up to demonstrate 5G Huawei also planning 5G demonstrations/trials

2020 Tokyo Summer Olympics, Japan

- Ongoing trials: Fujitsu (4.65 GHz), Huawei (6 GHz), Ericsson (15 GHz), Nokia networks, test equipment vendors, ...
- Ministry of Internal Affairs and Communications established commercialization plan with NTT Docomo, KDDI, Sony, Sharp, ...

Thank you.

